CN105990478A - 一种氮化镓基发光二极管外延结构 - Google Patents

一种氮化镓基发光二极管外延结构 Download PDF

Info

Publication number
CN105990478A
CN105990478A CN201510070273.8A CN201510070273A CN105990478A CN 105990478 A CN105990478 A CN 105990478A CN 201510070273 A CN201510070273 A CN 201510070273A CN 105990478 A CN105990478 A CN 105990478A
Authority
CN
China
Prior art keywords
layer
light emitting
emitting diode
epitaxial structure
diode epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510070273.8A
Other languages
English (en)
Inventor
孙钱
李增成
黄应南
孙秀建
鲁德
刘小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crystal Energy Photoelectric (changzhou) Co Ltd
Original Assignee
Crystal Energy Photoelectric (changzhou) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crystal Energy Photoelectric (changzhou) Co Ltd filed Critical Crystal Energy Photoelectric (changzhou) Co Ltd
Priority to CN201510070273.8A priority Critical patent/CN105990478A/zh
Publication of CN105990478A publication Critical patent/CN105990478A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

本发明提供一种氮化镓基发光二极管外延结构,从下至上依次包括:衬底、应力控制层、n型GaN层、应力缓冲层、多量子阱有源层、间隔层、电子阻挡层、p型GaN层和欧姆接触层,其特征在于,该发光二极管外延结构还包括在所述多量子阱有源层下方设有禁带宽度大于n型GaN的电流扩展层。该外延结构可以有效的减少发光二极管在大电流条件下工作时有源区中电子的泄漏,并能够有效的提高空穴-电子对的辐射复合效率,改善LED的抗静电特性。

Description

一种氮化镓基发光二极管外延结构
技术领域
本发明涉及半导体技术领域,尤其涉及一种氮化镓基发光二极管外延结构。
背景技术
LED (Light Emitting Diode,发光二极管) 是一种能够将电能转化为可见光的固态的半导体器件,它可以直接把电能转化为光能。LED 作为一种新的照明光源材料被广泛应用着。白光LED作为一种新型光源,因具有反应速度快、抗震性好、寿命长、节能环保等优点而快速发展。目前已被广泛应用于景观美化及室内外照明等领域。
外延结构的生长是 LED 芯片的关键技术,而多量子阱又是外延层的最重要部分,对大功率 GaN 基 LED 来说,电子泄漏是导致GaN基LED外延层的光输出效率下降的重要原因之一。为了解决这个问题,现有技术采用的LED外延结构如图1所示,该结构是在多量子阱上方加入一层p型AlGaN层作为电子阻挡层。但由于GaN材料体系中强的极化效应的存在,p型AlGaN电子阻挡层和量子垒之间的极化电场会减小量子垒与电子阻挡层界面处的导带带阶,削弱电子阻挡作用。另一方面,p型AlGaN电子阻挡层同时对空穴的注入也有一定的阻挡。研究表明P型AlGaN电子阻挡层虽然能减少电子泄漏,但是其效果不尽令人满意。如果为了增强电子阻挡作用而提高AlGaN的Al组分或者增加厚度,虽然可以进一步减小电子泄漏,但对空穴注入的阻挡加剧会导致整体的发光效率下降。
发明内容
针对上述现有技术的不足,本发明的目的是提供一种氮化镓基发光二极管外延结构。该外延结构可以有效的减少发光二极管在大电流条件下工作时有源区中电子的泄漏,并能够有效的提高空穴-电子对的辐射复合效率,改善LED的抗静电特性。
为了实现上述目的,本发明采用以下技术方案:一种氮化镓基发光二极管外延结构,从下至上依次包括:衬底、应力控制层、n型GaN层、应力缓冲层、多量子阱有源层、间隔层、电子阻挡层、p型GaN层和欧姆接触层,其特征在于,该发光二极管外延结构还包括在所述多量子阱有源层下方设有禁带宽度大于n型GaN的电流扩展层。
优选地,所述电流扩展层的纵向电导率小于n型GaN层。
优选地,所述电流扩展层位于下列位置之一:应力控制层和n型GaN之间、n型GaN内部、n型GaN与应力缓冲层之间。
优选地,所述电流扩展层为单层AlxGayIn1-x-yN层,其中0≤x≤1,0≤y≤1。
优选地,所述电流扩展层为多层不同组分的AlxGayIn1-x-yN层,其中0≤x≤1,0≤y≤1。
优选地,所述电流扩展层为AlxGayIn1-x-yN/AlaGabIn1-a-bN交替沉积结构,其中0≤x≤1,0≤y≤1,0≤a≤1,0≤b≤1。
优选地,所述应力控制层为一层或多层AlxGa1-xN层,其中0≤x≤1。
优选地,所述应力缓冲层为InxGa1-xN层,或InxGa1-xN/GaN超晶格,其中0.005≤x≤0.5。
优选地,所述量子阱有源层由周期为m的窄带隙InxGa1-xN量子阱和宽带隙InaAlbGa1-a-bN量子垒构成,其中1≤m≤20,0≤x<1,0≤a<1,0≤b<1。
优选地,所述间隔层为InxAlyGa1-x-yN,其中0≤x<1,0≤y<1;其厚度为5nm-100 nm。
本发明的有益效果是:本发明通过在量子阱有源层下方设置电流扩展层,不仅有效的减少发光二极管在大电流条件下工作时有源区中电子的泄漏,而且能有效的提高空穴-电子对的辐射复合效率,提高电流的横向扩展能力并改善LED的抗静电特性。
附图说明
图1为现有技术LED外延结构示意图;
图2为本发明提供的一种氮化镓基LED外延结构示意图;
图3为现有技术没有电流扩展层的LED外延结构能带示意图;
图4为本发明实施例一氮化镓基LED外延结构能带示意图;
图5为本发明实施例二氮化镓基LED外延结构能带示意图。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图对本发明进行进一步的详细说明。
如图2所示,本发明提供一种氮化镓基LED外延结构为:从下到上依次为衬底层1,应力控制层2,n型GaN层3,电流扩展层4,应力缓冲层5,多量子阱有源区6,间隔层7,电子阻挡层8,p型GaN层9,欧姆接触层10。
衬底1包括但不限于硅衬底、蓝宝石衬底、GaN衬底。应力控制层2包括但不限于GaN层、AlN层、一层或多层AlxGa1-xN层,其中,0≤x≤1;当衬底为硅衬底时,应力控制层为多层组分逐渐降低的AlxGa1-xN层;或应力控制层直接和衬底接触的第一层为AlN层,应力控制层的总厚度为300nm-2000nm;当衬底为蓝宝石时,应力控制层为GaN,或AlN,其厚度为5nm-100nm。n型GaN层为一层或多层结构,可能一部分非故意掺杂,一部分硅掺杂,或全部硅掺杂,其总厚度为1um-8um,掺杂浓度为1×1018cm-3-3×1019cm-3。应力缓冲层5为InxGa1-xN层,或InxGa1-xN/GaN超晶格,其中0.005≤x≤0.5,其可掺杂硅,当掺杂硅时,掺杂浓度为1×1017cm-3-1×1019cm-3,掺杂方式可以为全部掺杂,或交替掺杂,其厚度为10nm-500nm,更优选地,厚度为30nm-200nm。量子阱有源层6由m个周期的窄带隙InxGa1-xN量子阱6a和宽带隙InaAlbGa1-a-bN量子垒6b交替沉积组成,其中,m 为整数值,1≤m≤20,0≤x<1,0≤a<1,0≤b<1。间隔层7为InxAlyGa1-x-yN,其中0≤x<1,0≤y<1;其厚度为5nm-100 nm,该间隔层7可以掺杂Mg或不掺杂,当掺杂Mg时,其优选掺杂浓度为5×1017cm-3-5×1019cm-3。电子阻挡层8为掺Mg的单层AlxGa1-xN层,或Mg掺杂的AlxGa1-xN/InyGa1-yN超晶格,其中0≤x<1,0≤y<1,电子阻挡层的厚度为5nm-100nm,更优选地,其厚度为10nm-60nm,电子阻挡层的掺杂浓度为2×1018cm-3-2×1020cm-3
下面给出两个具体的实施例。
实施例一
该实施例氮化镓基LED外延结构示意图,如图2所示,包括硅衬底1;AlN/Al0.5Ga0.5N/Al0.2Ga0.8N/Al0.05Ga0.95N四层结构的应力控制层2;n型GaN层3,其中n型GaN层3包括一层500nm的非故意掺杂的GaN层和一层3mm的硅掺杂的n-GaN层,n-GaN的掺杂浓度为8×1018cm-3;n型掺杂的Al0.1Ga0.9N电流扩展层4,其中电流扩展层4的厚度为60nm,掺杂浓度为5×1018cm-3;硅掺杂浓度为2×1017 cm-3,厚度为50nm的In0.02Ga0.98N应力缓冲层5;多量子阱有源层6,其交替周期为6的窄禁带In0.15Ga0.85N量子阱6a和宽禁带的GaN量子垒6b,量子阱/垒的厚度分别为3nm/12nm;间隔层7是厚度为5nm的不掺杂的GaN层;电子阻挡层8是Mg掺杂浓度为1.5×1019 cm-3厚度为20nm的Al0.2Ga0.8N层;p型GaN层9的厚度为100nm,掺杂浓度为3×1019cm-3;欧姆接触层10是厚度为30nm的重掺p型GaN,掺杂浓度为2×1020cm-3
图3为现有技术没有电流扩展层的LED外延结构能带示意图。从图中可以看出电子从n型GaN层3直接注入应力缓冲层5并随后注入量子阱有源区6。在大电流的作用下,电子的热动能高,部分电子在输运过程中还未来得及与量子阱有源区6的空穴复合就穿过了量子阱有源区,因而电子泄漏几率大。
图4为实施例一中采用n型掺杂的Al0.1Ga0.9N电流扩展层4的氮化镓基LED外延结构能带示意图。由于电流扩展层4的禁带宽度比GaN高,在导带有一个势垒,电子从3注入4时被阻挡减速。此时,电子从n型GaN层3经过电流扩展层4后注入到应力缓冲层5和有源区6时,运动速度被减慢,更容易与量子阱有源区6中的空穴复合,从而提高辐射复合效率,并减少电子泄漏。
另一方面,由于电流扩展层4的掺杂浓度低于n型GaN层3,且在电流扩展层4和n型GaN层3的界面处形成极化,形成的二维电子气,具有很高的横向迁移率。则电流扩展层4和n型GaN层3的界面处具有很好的横向扩展,可以显著改善抗静电特性(ESD)。
实施例二
该实施例氮化镓基LED外延结构示意图,如图2所示,包括蓝宝石衬底1;应力控制层2为不掺杂的GaN层;n型GaN层3的厚度为3um,掺杂浓度为2×1019cm-3;电流扩展层4为交替沉积的AlGaN/InGaN超晶格结构,在n型GaN层3上间隔沉积一厚度为10nm的Al0.05Ga0.95N层4b和厚度为5nm的In0.05Ga0.95N层4a,如图5所示,其中Al0.05Ga0.95N掺杂浓度为1×1019cm-3,In0.05Ga0.95N中不掺杂;应力缓冲层5为交替生长不掺杂的InGaN/GaN(2nm/5nm)超晶格,其中InGaN中的In组分为10%;多量子阱有源层6为交替生长的15对窄禁带的In0.15Ga0.85N量子阱6a和宽禁带的GaN量子垒6b;间隔层7是厚度为50nm的Mg掺杂In0.05Ga0.95N层;电子阻挡层8为AlGaN/InGaN(3nm/3nm)超晶格;p型GaN层9的厚度为200nm,掺杂浓度为6×1019cm-3;欧姆接触层10是厚度为5nm的重掺p型In0.2Ga0.8N,掺杂浓度为3×1020cm-3
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可轻易想到的变换或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (10)

1.一种氮化镓基发光二极管外延结构,从下至上依次包括:衬底、应力控制层、n型GaN层、应力缓冲层、多量子阱有源层、间隔层、电子阻挡层、p型GaN层和欧姆接触层,其特征在于,该发光二极管外延结构还包括在所述多量子阱有源层下方设有禁带宽度大于n型GaN的电流扩展层。
2.根据权利要求1所述的一种氮化镓基发光二极管外延结构,其特征在于,所述电流扩展层的纵向电导率小于n型GaN层。
3.根据权利要求1或2所述的一种氮化镓基发光二极管外延结构,其特征在于,所述电流扩展层位于下列位置之一:应力控制层和n型GaN之间、n型GaN内部、n型GaN与应力缓冲层之间。
4.根据权利要求1或2或3所述的一种氮化镓基发光二极管外延结构,其特征在于,所述电流扩展层为单层AlxGayIn1-x-yN层,其中0≤x≤1,0≤y≤1。
5.根据权利要求1或2或3所述的一种氮化镓基发光二极管外延结构,其特征在于,所述电流扩展层为多层不同组分的AlxGayIn1-x-yN层,其中0≤x≤1,0≤y≤1。
6.根据权利要求1或2或3所述的一种氮化镓基发光二极管外延结构,其特征在于,所述电流扩展层为AlxGayIn1-x-yN/AlaGabIn1-a-bN交替沉积结构,其中0≤x≤1,0≤y≤1,0≤a≤1,0≤b≤1。
7.根据权利要求1所述的一种氮化镓基发光二极管外延结构,其特征在于,所述应力控制层为一层或多层AlxGa1-xN层,其中0≤x≤1。
8.根据权利要求1所述的一种氮化镓基发光二极管外延结构,其特征在于,所述应力缓冲层为InxGa1-xN层,或InxGa1-xN/GaN超晶格,其中0.005≤x≤0.5。
9.根据权利要求1所述的一种氮化镓基发光二极管外延结构,其特征在于,所述量子阱有源层由周期为m的窄带隙InxGa1-xN量子阱和宽带隙InaAlbGa1-a-bN量子垒构成,其中1≤m≤20,0≤x<1,0≤a<1,0≤b<1。
10.根据权利要求1所述的一种氮化镓基发光二极管外延结构,其特征在于,所述间隔层为InxAlyGa1-x-yN,其中0≤x<1,0≤y<1;其厚度为5nm-100 nm。
CN201510070273.8A 2015-02-11 2015-02-11 一种氮化镓基发光二极管外延结构 Pending CN105990478A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510070273.8A CN105990478A (zh) 2015-02-11 2015-02-11 一种氮化镓基发光二极管外延结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510070273.8A CN105990478A (zh) 2015-02-11 2015-02-11 一种氮化镓基发光二极管外延结构

Publications (1)

Publication Number Publication Date
CN105990478A true CN105990478A (zh) 2016-10-05

Family

ID=57040976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510070273.8A Pending CN105990478A (zh) 2015-02-11 2015-02-11 一种氮化镓基发光二极管外延结构

Country Status (1)

Country Link
CN (1) CN105990478A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118904A (zh) * 2015-08-14 2015-12-02 湘能华磊光电股份有限公司 Led外延层结构生长方法及所得外延层结构和led芯片
CN108447953A (zh) * 2018-05-17 2018-08-24 安徽三安光电有限公司 一种氮化物发光二极管组件
CN108550675A (zh) * 2018-05-23 2018-09-18 华灿光电(浙江)有限公司 一种发光二极管外延片及其制备方法
CN109378366A (zh) * 2018-08-16 2019-02-22 华灿光电(浙江)有限公司 一种发光二极管外延片及其制造方法
CN109378375A (zh) * 2018-12-04 2019-02-22 西安赛富乐斯半导体科技有限公司 半极性氮化镓半导体构件及其制造方法
CN109473515A (zh) * 2018-10-26 2019-03-15 华灿光电(苏州)有限公司 一种氮化镓基发光二极管外延片的生长方法
CN109980056A (zh) * 2019-02-28 2019-07-05 华灿光电(苏州)有限公司 氮化镓基发光二极管外延片及其制造方法
CN110459652A (zh) * 2018-05-08 2019-11-15 中国科学院宁波材料技术与工程研究所 AlGaN基紫外LED器件及其制备方法与应用
CN112993102A (zh) * 2021-05-11 2021-06-18 东南大学 一种具有电子减速层结构的紫外发光二极管
CN113809209A (zh) * 2021-09-27 2021-12-17 厦门乾照光电股份有限公司 一种led外延结构及其制备方法、led芯片
CN114068778A (zh) * 2022-01-18 2022-02-18 至芯半导体(杭州)有限公司 一种uvb芯片的外延结构、uvb芯片
CN114361302A (zh) * 2022-03-17 2022-04-15 江西兆驰半导体有限公司 一种发光二极管外延片、发光二极管缓冲层及其制备方法
CN114400274A (zh) * 2022-03-25 2022-04-26 江西兆驰半导体有限公司 一种氮化镓基发光二极管及其制备方法
CN115036402A (zh) * 2022-08-12 2022-09-09 江苏第三代半导体研究院有限公司 诱导增强型Micro-LED同质外延结构及其制备方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118904B (zh) * 2015-08-14 2017-11-17 湘能华磊光电股份有限公司 Led外延层结构生长方法及所得外延层结构和led芯片
CN105118904A (zh) * 2015-08-14 2015-12-02 湘能华磊光电股份有限公司 Led外延层结构生长方法及所得外延层结构和led芯片
CN110459652A (zh) * 2018-05-08 2019-11-15 中国科学院宁波材料技术与工程研究所 AlGaN基紫外LED器件及其制备方法与应用
CN108447953B (zh) * 2018-05-17 2021-06-08 安徽三安光电有限公司 一种氮化物发光二极管组件
CN108447953A (zh) * 2018-05-17 2018-08-24 安徽三安光电有限公司 一种氮化物发光二极管组件
CN108550675A (zh) * 2018-05-23 2018-09-18 华灿光电(浙江)有限公司 一种发光二极管外延片及其制备方法
CN108550675B (zh) * 2018-05-23 2019-11-12 华灿光电(浙江)有限公司 一种发光二极管外延片及其制备方法
CN109378366A (zh) * 2018-08-16 2019-02-22 华灿光电(浙江)有限公司 一种发光二极管外延片及其制造方法
CN109473515A (zh) * 2018-10-26 2019-03-15 华灿光电(苏州)有限公司 一种氮化镓基发光二极管外延片的生长方法
CN109378375A (zh) * 2018-12-04 2019-02-22 西安赛富乐斯半导体科技有限公司 半极性氮化镓半导体构件及其制造方法
CN109378375B (zh) * 2018-12-04 2024-02-09 西安赛富乐斯半导体科技有限公司 半极性氮化镓半导体构件及其制造方法
CN109980056B (zh) * 2019-02-28 2020-10-09 华灿光电(苏州)有限公司 氮化镓基发光二极管外延片及其制造方法
CN109980056A (zh) * 2019-02-28 2019-07-05 华灿光电(苏州)有限公司 氮化镓基发光二极管外延片及其制造方法
CN112993102A (zh) * 2021-05-11 2021-06-18 东南大学 一种具有电子减速层结构的紫外发光二极管
CN113809209A (zh) * 2021-09-27 2021-12-17 厦门乾照光电股份有限公司 一种led外延结构及其制备方法、led芯片
CN114068778A (zh) * 2022-01-18 2022-02-18 至芯半导体(杭州)有限公司 一种uvb芯片的外延结构、uvb芯片
CN114361302A (zh) * 2022-03-17 2022-04-15 江西兆驰半导体有限公司 一种发光二极管外延片、发光二极管缓冲层及其制备方法
CN114361302B (zh) * 2022-03-17 2022-06-17 江西兆驰半导体有限公司 一种发光二极管外延片、发光二极管缓冲层及其制备方法
CN114400274A (zh) * 2022-03-25 2022-04-26 江西兆驰半导体有限公司 一种氮化镓基发光二极管及其制备方法
CN115036402A (zh) * 2022-08-12 2022-09-09 江苏第三代半导体研究院有限公司 诱导增强型Micro-LED同质外延结构及其制备方法

Similar Documents

Publication Publication Date Title
CN105990478A (zh) 一种氮化镓基发光二极管外延结构
CN105977356B (zh) 一种具有复合电子阻挡层结构的紫外发光二极管
WO2012089003A1 (zh) 具有复合式双电流扩展层的氮化物发光二极管
CN105990479A (zh) 一种氮化镓基发光二极管外延结构及其制备方法
CN105870283B (zh) 一种具有复合极性面电子阻挡层的发光二极管
GB2543682A (en) Epitaxial structure for improving efficiency drop of GaN-based LED
CN111599903B (zh) 一种具有极化掺杂复合极性面电子阻挡层的紫外led
RU2011140129A (ru) Iii-нитридный светоизлучающий прибор, включающий бор
CN101714602A (zh) 用于光电器件的多量子阱结构
CN107195746B (zh) 一种具有共振隧穿结构电子阻挡层的发光二极管
US11817528B2 (en) Nitride-based light-emitting diode device
CN103489973A (zh) 半导体发光结构
KR102224116B1 (ko) 발광소자 및 조명시스템
Usman et al. Quantum efficiency enhancement by employing specially designed AlGaN electron blocking layer
US20210313489A1 (en) Optoelectronic device having a boron nitride alloy electron blocking layer and method of production
KR101211657B1 (ko) 질화물계 반도체 발광소자
CN204179101U (zh) 近紫外光发射装置
KR20100067504A (ko) 다층구조 양자장벽을 사용한 질화물 반도체 발광소자
KR102237111B1 (ko) 발광소자 및 조명시스템
WO2018205733A1 (zh) 发光二极管
Kyaw et al. Simultaneous enhancement of electron overflow reduction and hole injection promotion by tailoring the last quantum barrier in InGaN/GaN light-emitting diodes
CN112993102A (zh) 一种具有电子减速层结构的紫外发光二极管
CN206401345U (zh) 一种发光二极管外延片
CN217822841U (zh) 一种发光二极管
KR102322692B1 (ko) 자외선 발광소자

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20161005