WO2018205733A1 - 发光二极管 - Google Patents

发光二极管 Download PDF

Info

Publication number
WO2018205733A1
WO2018205733A1 PCT/CN2018/078658 CN2018078658W WO2018205733A1 WO 2018205733 A1 WO2018205733 A1 WO 2018205733A1 CN 2018078658 W CN2018078658 W CN 2018078658W WO 2018205733 A1 WO2018205733 A1 WO 2018205733A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
emitting diode
light emitting
composition
hole storage
Prior art date
Application number
PCT/CN2018/078658
Other languages
English (en)
French (fr)
Inventor
叶大千
张东炎
吴超瑜
王笃祥
Original Assignee
厦门三安光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门三安光电有限公司 filed Critical 厦门三安光电有限公司
Publication of WO2018205733A1 publication Critical patent/WO2018205733A1/zh
Priority to US16/676,839 priority Critical patent/US11127879B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to the field of epitaxial gallium nitride semiconductor device epitaxy, and more particularly to a light emitting diode having a hole storage structure.
  • Nitride material system materials are widely used in solid-state displays, illumination, and signal lamps because their band gaps cover the entire visible range. Because nitride materials have many advantages such as non-toxicity, high brightness, low operating voltage, and easy miniaturization, the use of gallium nitride-based light-emitting diodes as a light source to replace conventional light sources has become an irreversible trend. However, one of the keys to solving a nitride light-emitting device that achieves higher luminous efficiency is how to increase the concentration of holes and the efficiency of recombination.
  • the technical solution of the present invention is: a light emitting diode with a hole storage structure: a first type semiconductor layer, an active layer and a second type semiconductor layer, the second type semiconductor layer containing hole storage The layer, the hole storage layer forms a polarized electric field, and the direction of the electric field is directed to the active layer.
  • the light emitting diode further comprises an electron blocking layer between the hole storage layer and the active layer or between the active layer and the second type semiconductor layer.
  • the hole storage layer is a superlattice structure comprising a barrier layer and a well layer, wherein the superlattice structure forms a reverse polarization electric field due to polarization between the barrier layer and the well layer .
  • the thickness of the single barrier layer is ⁇ 1 dish.
  • the hole storage layer is composed of a polarized material.
  • the barrier layer level of the superlattice structure exhibits a stepwise change from high to low along a direction away from the active layer.
  • the well layer level of the superlattice structure exhibits a stepwise change from low to high in a direction away from the active layer.
  • the polarization field intensity relationship in the second type semiconductor layer is: energy level step grading > energy level step stabilization > non-hole storage layer.
  • an additional polarization field is formed at the interface of the energy storage step of the hole storage layer.
  • the polarization field strength relationship in the second type semiconductor layer is: energy level step grading > energy level step stabilization > non-hole storage layer.
  • the superlattice layer has a logarithm of ⁇ 6 pairs, the number of steps of the barrier layer level is ⁇ 2, and the number of superlattice layers in each step is >2 layers.
  • the superlattice of each step is too small, and the hole overflow phenomenon is more likely to occur, and it is difficult to achieve the purpose of storing holes. If the number of the same steps is too small, the effect of hole storage is not obvious. Therefore, the number of steps in which the energy level of the barrier layer changes is preferably 3 or more.
  • the number of hole peaks appearing in the hole storage layer coincides with the number of energy level steps in the hole storage layer, and the position of the hole peak appears at the energy level step gradation position.
  • the hole storage layer is an AlGaN/GaN superlattice structure
  • the A1 composition of the AlGaN layer on the side close to the active layer is Oy ⁇ lOO ⁇ , and each step A1 is sequentially The composition drops by 5 ⁇ 3 ⁇ 4 ⁇ 20 ⁇ 3 ⁇ 4.
  • the A1 component of the AlGaN layer near the active layer side is
  • the A1 component of the AlGaN layer in the middle part is ⁇ ⁇ , away from the AlGa side of the active layer
  • the A1 component of the N layer is 5 ⁇ 3 ⁇ 4 ⁇ 80 ⁇ 3 ⁇ 4.
  • the hole storage layer is composed of a GaN/InGaN superlattice, wherein the In composition in the InGaN near the active layer side is the highest (10 ⁇ 15 ⁇ 3 ⁇ 4), and the middle portion is The In composition in InGaN is centered (
  • the In composition away from the active layer side is the highest (0 ⁇ 5%), and the In composition is >5% lower in each step away from the active layer.
  • the hole storage layer is composed of an AlGaN/InGaN superlattice
  • the A1 composition of the AlGaN layer on the side close to the active layer is Oy ⁇ lOO ⁇
  • each step A1 is sequentially The composition drops S ⁇ SO ⁇ .
  • the A1 composition of the AlGaN layer near the active layer side is SSy ⁇ lOO ⁇
  • the Al1 layer of the middle portion has an A1 composition of 15 ⁇ 3 ⁇ 4 ⁇ 90 ⁇ 3 ⁇ 4, away from the A1 side of the active layer
  • the Al composition of the GaN layer is 5% to 80 ⁇ 3 ⁇ 4.
  • the second type semiconductor layer comprises an electron blocking layer, a hole storage layer, and a p-type gallium nitride layer in this order.
  • the hole storage layer comprises an AlGaN/GaN or GaN/InGaN superlattice structure.
  • the light emitting diodes sequentially include an n-type semiconductor layer, an active layer, and a p-type semiconductor layer, the hole storage layer being located within the P-type layer, and having a band width stepped
  • the change can greatly increase the concentration of holes in the P-type layer, can effectively improve the composite luminous efficiency in the quantum well, and improve the photoelectric performance of the device.
  • the present invention has at least the following beneficial effects: a reverse-polarized electric field is formed in the hole storage layer, and a stronger polarization built-in field is formed at the step-graded step, due to the inverse in the hole storage layer
  • the action of the polarization field causes the holes in the P-type to be acceleratedly injected into the active layer, and there is a step in the hole storage layer with a change in energy (Note: This step exists in the absence of an applied electric field. ), the additional polarized electric field at the step will further serve as a hole storage.
  • FIG. 1 is a structural diagram of a light emitting diode LED with a hole storage layer structure in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a partial energy band structure of the GaN-based LED structure shown in FIG. 1.
  • FIG. 3 is a schematic diagram showing a local polarization field intensity distribution of the GaN-based LED structure shown in FIG. 1.
  • FIG. 4 is a schematic diagram showing local electron and hole concentration distribution of the GaN-based LED structure shown in FIG. 1.
  • FIG. 5 is a schematic view showing a partial energy band structure of a GaN-based LED structure according to Embodiment 2.
  • FIG. 6 is a schematic view showing a partial energy band structure of a GaN-based LED structure according to Embodiment 3.
  • FIG. 7 is a schematic view showing a partial energy band structure of a GaN-based LED structure according to Embodiment 4.
  • Embodiments of the invention are a schematic view showing a partial energy band structure of a GaN-based LED structure according to Embodiment 5.
  • a light emitting diode with a hole storage layer structure the structure of which includes from bottom to top:
  • the electron storage layer 600 is located within the P-type GaN layer and includes three types;
  • FIG. 2 is a schematic view showing a partial energy band structure of the GaN-based LED structure shown in FIG. 1;
  • the hole storage layer 600 is located in the P-GaN layer 400, the hole storage layer is composed of an AlGaN/GaN superlattice, wherein AlGaN is a barrier layer, preferably less than 1 nm, preferably ⁇ 0.8 nm, GaN
  • the thickness is ⁇ 2 nm, in which the Mg in the well layer GaN is slightly miscellaneous, and the impurity concentration is 0 ⁇ 10 17 cm -3 , which is cumbersome to avoid the hole storage layer and the P-type GaN layer.
  • a pn junction is formed between them.
  • the stepped band structure in the hole storage layer 600 is characterized by: the energy level varies from high to low along the direction from the quantum well light-emitting layer to the quantum well light-emitting layer, wherein the number of steps of the energy level change is ⁇ 3, The superlattice logarithm in the step is >2.
  • the energy band of the hole storage layer 600 exhibits a stepwise change: the width of the 6 01 band near the side of the MQW layer 300 is the highest, and the A1 component of the barrier layer is: 25%; The width of the belt is intermediate, and the A1 component of the barrier layer is 15%; the final 603 band width is the lowest, and the A1 component of the barrier layer ranges from: 5%; wherein 60 1 , 602 and 603 each comprise 8 pairs of superlattices structure.
  • FIG. 3 is a schematic view showing a local polarization field distribution of the GaN-based LED structure shown in FIG. 1.
  • the energy level of the hole storage layer 600 is divided into three steps, the energy level distribution: 601>602>603, the distribution of the A1 component in the hole storage layer is 601>602>603:
  • the intensity to the polarization field is: 601>60 2>603.
  • the difference in polarization field strength between 601, 602, 603 and the P-GaN layer is: -0.5 MV/cm, -0.25 MV/cm, -0.05 MV/cm ; at the interface in the hole storage layer
  • the polarization field intensity differences were: -0.25 MV/cm, -0.20 MV/cm, -0.05 MV/cm, respectively.
  • a stronger reverse polarization field occurs at the interface of 601/602, 602/603, 603/P-GaN.
  • the presence of the inverse polarization field has an effect of accelerating the holes in it, allowing the holes to gain more energy. Therefore, holes are more likely to migrate from P-GaN to the MQW direction.
  • the hole storage layer is an AlGaN/GaN superlattice structure
  • the GaN layer has a lower barrier than the AlGaN layer, so holes accelerated by the polarization field tend to accumulate in the GaN layer, so holes
  • the storage layer plays the role of storing holes. Since the thickness of the barrier layer is ⁇ 1 nm, when the concentration of the holes reaches a certain level, a tunneling effect occurs, and the barrier effect of the barrier layer on the holes is avoided.
  • FIG. 4 is a schematic diagram showing local electron and hole concentration distributions of the GaN-based LED structure shown in FIG. 1:
  • the hole concentration of the hole storage layer in the P-GaN exhibits three concentration peaks, and the concentration >1E1 8 cm -3 is significantly higher than the hole concentration in the P-GaN by 0.5 to 10 times. And the position where the three hole concentration peaks appear is at the interface of 601/602, 602/603, 603/P-GaN in the hole storage layer.
  • Embodiment 1 This embodiment is different from Embodiment 1 in that the hole storage layer is composed of a GaN/InGaN superlattice in which the In composition in the InGaN near the active layer side is the highest ( ⁇ ), and the middle portion is The In composition in InGaN is centered (5 ⁇ 3 ⁇ 4 ⁇ 10 ⁇ 3 ⁇ 4), and the In composition away from the active layer side is the lowest (0 ⁇ 3 ⁇ 4 ⁇ 5 ⁇ 3 ⁇ 4), and the In group is in each step away from the active layer. The drop is >5%.
  • Embodiment 5 is a partial energy band diagram of Embodiment 2.
  • the polarization effect generated by the stepwise gradation of the GaN/InGaN superlattice structure is used to accelerate the holes and complete the hole storage effect, and
  • the structure does not contain a high-resistance layer of AlGaN, and the device's turn-on voltage is more advantageous than in Embodiment 1.
  • the hole storage layer is composed of an AlGaN/InGaN superlattice, wherein the In composition in the InGaN near the active layer side is the highest (10 ⁇ 3 ⁇ 4 ⁇ 15 ⁇ 3 ⁇ 4).
  • the I n component in the middle portion of InGaN is centered (S ⁇ IO ⁇ ), and the In composition away from the active layer side is the lowest (O ⁇ S ⁇ ), and the In composition is in each step away from the active layer. Drop >5%.
  • the A1 component of the 601 barrier layer near the 300-side of the MQW layer is: 25%; the second A1 component of the 602 barrier layer is 15%; and the last 603 barrier layer has the A1 component range of 5:
  • FIG. 6 is a partial energy band diagram of Embodiment 3.
  • This embodiment differs from Embodiment 1 in that the hole storage layer is composed of an AlGaN/GaN superlattice, and the stepped band structure within the hole storage layer 600 is characterized by: an energy level along the quantum well light-emitting layer to The direction away from the quantum well light-emitting layer exhibits a stepwise change from high to low, wherein the number of steps of the energy level change is 4, and the number of superlattice pairs in each step is 4 pairs.
  • the A1 composition of the 601 barrier layer near the side of the MQW layer 300 is: 35%; the second component of the 602 barrier layer is 25%; the A1 component of the 603 barrier layer is 15% again; the last group 604 of the 604 barrier layer The range is: 5 ⁇ 3 ⁇ 4.
  • the hole storage layer has four steps, and four concentration peaks are generated corresponding to the hole concentration distribution. Therefore, the hole concentration in the hole storage layer in this embodiment is further improved compared with the first embodiment, and the hole storage effect is further improved. Better.
  • the number of superlattices in each step is 4 pairs, and the more the superlattice pairs, the longer the cavity in which the holes are accelerated by the polarization field, and the greater the energy obtained by the holes, but the band The cost of the process will increase.
  • Embodiment 1 differs from Embodiment 1 in that the hole storage layer is composed of an AlGaN/GaN superlattice, and the stepped band structure within the hole storage layer 600 is characterized by: an energy level along the quantum well light-emitting layer to The direction away from the quantum well light-emitting layer exhibits a stepwise change from high to low, wherein the number of steps of the energy level change is 2, and the super-crystal in each step The logarithm is 8 pairs.
  • the A1 component of the 601 barrier layer near the side of the MQW layer 300 is: 50%; the A1 component of the 602 barrier layer ranges from 5%.
  • Embodiment 8 is a partial energy band diagram of Embodiment 5.
  • the hole storage layer level has two steps, but since the A1 composition difference between the two steps is >45%, a very strong additional polarization field is generated at the interface of the energy level step gradation. Therefore, a strong hole concentration peak (hole concentration > 5E19cm 3 ) is generated at the interface, which also serves as a hole storage effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

提供一种带有空穴存储层(600)结构的发光二极管;包括:第一类型半导体层、有源层和第二类型半导体层,其特征在于:所述第二类型导体层中含有空穴存储层(600),所述空穴存储层(600)形成极化电场,并且电场的方向指向有源层。在一些实施例中,空穴存储层(600)位于P型层(400)之内,并且其能带宽度呈台阶式变化,可以大幅度提升了P型层(400)内空穴的浓度,能有效提升量子阱内的复合发光效率,提升器件的光电性能。

Description

发光二极管 技术领域
[0001] 本发明涉及氮化镓半导体器件外延领域, 尤其涉及带有空穴存储结构的发光二 极管。
背景技术
[0002] 氮化物材料体系材料因其带隙覆盖整个可见光范围, 用其制备的发光二极管等 光电器件, 被广泛应用于固态显示、 照明和信号灯等领域。 因为氮化物材料具 有无毒、 亮度高、 工作电压低、 易小型化等诸多优点, 使用氮化镓基发光二极 作为光源替代传统光源已成为不可逆转的趋势。 然而要实现更高发光效率的氮 化物发光器件, 需要解决的关键之一是如何提高空穴的浓度以及复合效率。
技术问题
问题的解决方案
技术解决方案
[0003] 本发明的目的是: 提供一种空穴存储结构, 其可应用于氮化镓基发光二极管, 提升 P型层内的空穴浓度以及电子空穴复合效率。
[0004] 本发明的技术方案为: 一种带有空穴存储结构的发光二极管: 第一类型半导体 层、 有源层和第二类型半导体层, 所述第二类型半导体层中含有空穴存储层, 所述空穴存储层形成极化电场, 并且电场的方向指向有源层。
[0005] 优选地, 所述发光二极管还包含电子阻挡层, 其位于所述空穴存储层与有源层 之间或者位于有源层与第二类型半导体层。
[0006] 优选地, 所述空穴存储层之越靠近有源层区域, 其对应极化电场强度越强。
[0007] 优选地, 所述空穴存储层为超晶格结构, 包含垒层和阱层, 所述超晶格结构中 由于垒层与阱层之间的极化性能形成反向极化电场。
[0008] 优选地, 所述超晶格结构中, 单个垒层的厚度≤1皿。
[0009] 优选地, 所述空穴存储层由极化材料构成。 [0010] 在一些实施例中, 所述超晶格结构的垒层能级沿远离有源层的方向呈现台阶式 由高到低变化。
[0011] 在一些实施例中, 所述超晶格结构的阱层能级沿远离有源层的方向呈现台阶式 由低到高变化。
[0012] 优选地, 第二类型半导体层内的极化场强度大小关系为: 能级台阶渐变处>能 级台阶稳定处 >非空穴存储层处。
[0013] 优选地, 在所述空穴存储层的能级台阶变化的界面处形成附加极化场。
[0014] 优选地, 第二类型半导体层内的极化场强度大小关系为: 能级台阶渐变处>能 级台阶稳定处 >非空穴存储层处。
[0015] 优选地, 所述超晶格层的对数≥6对, 垒层能级变化的台阶数≥2, 每级台阶中 超晶格层数 >2层。 在本发明中, 每级台阶的超晶格对数过少吋较容易出现空穴 溢出现象, 较难达到存储空穴的目的, 同吋台阶数量太少吋则空穴存储的效果 不明显, 因此垒层能级变化的台阶数以 3阶以上为尤佳。
[0016] 优选地, 所述空穴存储层内出现的空穴峰值数量与空穴存储层内的能级台阶数 一致, 并且空穴峰值的位置出现在能级台阶渐变位置处。
[0017] 在一些实施例中, 所述空穴存储层为 AlGaN/GaN超晶格结构, 其靠近有源层一 侧的 AlGaN层之 A1组分范围为 Oy^lOO^ , 依次每级台阶 A1组分下降 5<¾~20<¾。 较佳的, 所述 AlGaN/GaN超晶格结构中, 靠近有源层一侧的 AlGaN层的 A1组分为
25%~100%; 中间部分的 AlGaN层的 A1组分为 ^^〜 ^, 远离有源层一侧的 AlGa
N层的 A1组分为 5<¾~80<¾。
[0018] 在一些实施例中, 所述空穴存储层由 GaN/InGaN超晶格构成, 其中靠近有源层 一侧的 InGaN中的 In组分最高 (10~15<¾) , 中间部分的 InGaN中的 In组分居中 (
5%~10%) , 远离有源层一侧的 In组分最高 (0~5%) , 在远离有源层方向每级台 阶中 In组分下降>5%。
[0019] 在一些实施例中, 所述空穴存储层由 AlGaN/InGaN超晶格构成, 其靠近有源层 一侧的 AlGaN层之 A1组分范围为 Oy^lOO^ , 依次每级台阶 A1组分下降 S^ SO^ 。 较佳的, 所述 AlGaN/GaN超晶格结构中, 靠近有源层一侧的 AlGaN层的 A1组分 为 SSy^lOO^; 中间部分的 AlGaN层的 A1组分为 15<¾~90<¾, 远离有源层一侧的 A1 GaN层的 Al组分为 5%~80<¾。 在一些实施例中, 所述第二类型半导体层依次包含 电子阻挡层、 空穴存储层和 p型氮化镓层。 优选地: 所述空穴存储层包括 AlGaN/ GaN或者 GaN/InGaN超晶格结构。
[0020] 在一些实施例中, 所述发光二极管依次包括 n型半导体层、 有源层和 p型半导体 层, 所述空穴存储层位于 P型层之内, 并且其能带宽度呈台阶式变化, 可以大幅 度提升了 P型层内空穴的浓度, 能有效提升量子阱内的复合发光效率, 提升器件 的光电性能。
发明的有益效果
有益效果
[0021] 本发明至少具有以下有益效果: 所述空穴存储层中形成反向极化电场, 并且在 能带台阶渐变处形成更强的极化内建场, 由于空穴存储层内的反向极化场的作 用使得 P型内的空穴会被加速注入到有源层内, 同吋由于空穴存储层内存有能带 变化的台阶 (注: 此台阶在未加外加电场吋便存在) , 在台阶处的附加极化电 场会进一步起到空穴存储的作用。
对附图的简要说明
附图说明
[0022] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。
[0023] 图 1是根据本发明实施的一种带有空穴存储层结构的发光二极管 LED结构图。
[0024] 图 2为图 1示的 GaN基 LED结构的局部能带结构示意图。
[0025] 图 3为图 1示的 GaN基 LED结构的局部极化场强分布示意图。
[0026] 图 4为图 1示的 GaN基 LED结构的局部电子以及空穴浓度分布示意图。
[0027] 图 5是实施例 2所述 GaN基 LED结构的局部能带结构示意图。
[0028] 图 6是实施例 3所述 GaN基 LED结构的局部能带结构示意图。
[0029] 图 7是实施例 4所述 GaN基 LED结构的局部能带结构示意图。
[0030] 图 8是实施例 5所述 GaN基 LED结构的局部能带结构示意图。 本发明的实施方式
[0031] 为使本发明之一种带有空穴存储层结构的发光二极管的制备方法更易于理解其 实质性特点及其所具的实用性, 下面便结合附图对本发明若干具体实施例作进 一步的详细说明。 但以下关于实施例的描述及说明对本发明保护范围不构成任 何限制。
[0032] 实施例 1
[0033] 请参看图 1, 一种带有空穴存储层结构的发光二极管, 其结构由下至上依次包 括:
[0034] (1) 衬底 001 ;
[0035] (2) 位于衬底上的缓冲层 100;
[0036] (3) 位于缓冲层上的 N型层 200, 用以提供发光用的电子;
[0037] (4) 位于 N型层上的 MQW层 300, 电子和空穴复合发光的主要区域;
[0038] (5) 位于 MQW层上的 P型层 400, 用以提供发光用的空穴;
[0039] (6) 位于 MQW层与 P型层之间的电子阻挡层 500, 用以阻挡 200内的电子过冲
[0040] (7) 电子存储层 600位于 P型 GaN层之内, 包含三种;
[0041] (8) 第一电子存储层 601;
[0042] (9) 第二电子存储层 602;
[0043] (10; ) 第三电子存储层 603;
[0044] (8) P/N电极 700。
[0045] 图 2为图 1示的 GaN基 LED结构的局部能带结构示意图:
[0046] 其中, 空穴存储层 600位于 P-GaN层 400内, 空穴存储层由 AlGaN/GaN超晶格构 成, 其中 AlGaN为垒层, 厚度低于 lnm为佳, 可取〜 0.8nm, GaN为阱层, 厚度〜 2 nm, 其中阱层 GaN内进行轻微的 Mg惨杂, 惨杂浓度为 0~10 17cm -3,此轻惨杂目的 为避免空穴存储层与 P型 GaN层之间形成 pn结。 空穴存储层 600之内的台阶状能带 结构特征为: 能级沿量子阱发光层至远离量子阱发光层方向呈现台阶式由高到 低变化, 其中能级变化的台阶数≥3, 每级台阶中超晶格对数>2。 [0047] 本实施例中, 空穴存储层 600的能带呈现台阶式变化: 靠近 MQW层 300—侧的 6 01能带宽度最高, 其垒层的 A1组分为: 25%; 其次 602能带宽度居中间, 其垒层 的 A1组分为 15%; 最后 603能带宽度最低, 其垒层的 A1组分范围为: 5%; 其中 60 1、 602、 603各包含 8对超晶格结构。
[0048] 图 3为图 1示的 GaN基 LED结构的局部极化场分布示意图。
[0049] 其中, 由于空穴存储层 600的能级分为三级台阶状, 能级分布: 601>602>603, 空穴存储层内的 A1组分分布为 601>602>603: 因此反向极化场的强度为: 601>60 2>603。 其中: 601, 602, 603与 P-GaN层之间的极化场强度差值分别为: -0.5M V/cm, -0.25MV/cm, -0.05MV/cm; 空穴存储层内界面处的极化场强度差值分别 为: -0.25MV/cm, -0.20MV/cm, -0.05MV/cm。
[0050] 进一步地: 由于在 601/602、 602/603、 603/P-GaN的界面处会出现更强的反向极 化场。 而反向极化场的存在会对处于其中的空穴具有加速的作用, 使得空穴获 得更多的能量。 因此空穴更容易由 P-GaN向 MQW方向迁移。 同吋由于空穴存储 层为 AlGaN/GaN超晶格结构, GaN层相比于 AlGaN层势垒较低, 因此被极化场加 速的空穴会更倾向于聚集在 GaN层内, 因此空穴存储层便起到了存储空穴的作用 , 同吋由于垒层的厚度 <lnm, 当空穴的浓度达到一定程度吋会发生隧穿效应, 避免了垒层对空穴的阻挡作用。
[0051] 图 4为图 1示的 GaN基 LED结构的局部电子和空穴浓度分布示意图:
[0052] 其中: 处于 P-GaN内的空穴存储层的空穴浓度出现三个浓度峰值, 其浓度 >1E1 8cm -3明显高于 P-GaN内空穴浓度 0.5~10倍。 并且三个空穴浓度峰值出现的位置 为空穴存储层内 601/602、 602/603、 603/P-GaN的界面处。
[0053] 实施例 2
[0054] 本实施例区别于实施例 1在于: 空穴存储层由 GaN/InGaN超晶格构成, 其中靠 近有源层一侧的 InGaN中的 In组分最高 (ΙΟ^ ^) , 中间部分的 InGaN中的 In 组分居中 (5<¾~10<¾) , 远离有源层一侧的 In组分最低 (0<¾~5<¾) , 在远离有源 层方向每级台阶中 In组分下降>5%。
[0055] 图 5为实施例 2局部能带图。 该实施例中利用 GaN/InGaN超晶格结构能级台阶式 渐变产生的极化效应实现对空穴的加速, 以及完成空穴存储的效果, 并且由于 该结构中不含高阻层 AlGaN, 相比于实施例 1, 其器件的幵启电压会更有优势。
[0056] 实施例 3
[0057] 本实施例区别与实施例 1在于: 空穴存储层由 AlGaN/InGaN超晶格构成, 其中 靠近有源层一侧的 InGaN中的 In组分最高 (10<¾~15<¾) , 中间部分的 InGaN中的 I n组分居中 (S^ IO^) , 远离有源层一侧的 In组分最低 (O^ S^) , 在远离有 源层方向每级台阶中 In组分下降>5%。 并且靠近 MQW层 300—侧的 601垒层的 A1 组分为: 25%; 其次 602垒层的 A1组分为 15% ; 最后 603垒层的 A1组分范围为: 5 。
[0058] 图 6为实施例 3局部能带图。 该实施例采用了 AlGaN/InGaN超晶格结构能级台阶 式变化产生极化场。 由于不同材料之间产生的极化场强度大小关系为: AlGaN/I nGaN> AlGaN/GaN=GaN/InGaN , 所以该实施例中的空穴存储效果更强, 效果更
[0059] 实施例 4
[0060] 本实施例区别于实施例 1在于: 空穴存储层由 AlGaN/GaN超晶格构成, 空穴存 储层 600之内的台阶状能带结构特征为: 能级沿量子阱发光层至远离量子阱发光 层方向呈现台阶式由高到低变化, 其中能级变化的台阶数为 4, 每级台阶中超晶 格对数为 4对。 靠近 MQW层 300—侧的 601垒层的 A1组分为: 35% ; 其次 602垒层 的 A1组分为 25% ; 再次 603垒层的 A1组分为 15%; 最后 604垒层的 A1组分范围为: 5<¾。
[0061] 图 7为实施例 4局部能带图。 该实施例中空穴存储层具有 4级台阶, 对应于空穴 浓度分布会产生 4个浓度峰值, 因此该实施例中空穴存储层中的空穴浓度较实施 例 1会进一步提升, 空穴存储效果更佳。 此实施例中每级台阶中超晶格对数为 4 对, 超晶格对数越多, 处于其中的空穴受到极化场加速的吋间越长, 空穴获得 的能量越大, 但是带来的工艺成本会增加。
[0062] 实施例 5
[0063] 本实施例区别于实施例 1在于: 空穴存储层由 AlGaN/GaN超晶格构成, 空穴存 储层 600之内的台阶状能带结构特征为: 能级沿量子阱发光层至远离量子阱发光 层方向呈现台阶式由高到低变化, 其中能级变化的台阶数为 2, 每级台阶中超晶 格对数为 8对。 靠近 MQW层 300—侧的 601垒层的 A1组分为: 50%; 602垒层的 A1 组分范围为: 5%。
[0064] 图 8为实施例 5局部能带图。 该实施例中空穴存储层能级具有两级台阶, 但是由 于这两级台阶之间的 A1组分差异>45%, 所以在能级台阶渐变的界面处会产生非 常强的附加极化场, 因此会在界面处产生一个较强的空穴浓度峰值 (空穴浓度 > 5E19cm 3) , 同样会起到空穴存储的效果。
[0065] 以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技术 人员, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进 和润饰也应视为本发明的保护范围。

Claims

权利要求书
发光二极管, 包括: 第一类型半导体层、 有源层和第二类型半导体层 , 其特征在于: 所述第二类型半导体层中含有空穴存储层, 所述空穴 存储层内形成极化电场, 并且电场的方向指向有源层。
根据权利要求 1所述的发光二极管, 其特征在于: 所述空穴存储层之 越靠近有源层区域, 其对应极化电场强度越强。
根据权利要求 1所述的发光二极管, 其特征在于: 所述空穴存储层为 超晶格结构, 包含垒层和阱层, 所述超晶格结构中由于垒层与阱层之 间的极化性能形成反向极化电场。
根据权利要求 3所述的发光二极管, 其特征在于: 所述超晶格结构的 垒层能级沿远离有源层的方向呈现台阶式由高到低变化。
根据权利要求 3所述的发光二极管, 其特征在于: 所述超晶格结构的 阱层能级沿远离有源层的方向呈现台阶式由低到高变化。
根据权利要求 4或 5所述的发光二极管, 其特征在于: 在所述空穴存储 层的能级台阶变化的界面处形成附加极化场。
根据权利要求 4或 5所述的发光二极管, 其特征在于: 第二类型半导体 层内的极化场强度大小关系为: 能级台阶渐变处>能级台阶稳定处> 非空穴存储层处。
根据权利要求 4或 5所述的发光二极管, 其特征在于: 所述超晶格层的 对数≥6对, 能级变化的台阶数≥2, 每级台阶中超晶格对数>2。
根据权利要求 4或 5所述的发光二极管, 其特征在于: 所述空穴存储层 内出现的空穴峰值数量与空穴存储层内的能级台阶数一致, 并且空穴 峰值的位置出现在能级台阶渐变位置处。
根据权利要求 4所述的发光二极管, 其特征在于: 所述空穴存储层为 AlGaN/GaN超晶格结构, 其靠近有源层一侧的 AlGaN层之 A1组分范围 为 SO^ lOO 依次每级台阶 A1组分下降 5<¾~20<¾。
根据权利要求 10所述的发光二极管, 其特征在于: 所述 AlGaN/GaN超 晶格结构中, 靠近有源层一侧的 AlGaN层的 A1组分为 25<¾~100<¾; 中 间部分的 AlGaN层的 A1组分为 15<¾~90<¾, 远离有源层一侧的 AlGaN层 的 A1组分为 Sy^SOy^
[权利要求 12] 根据权利要求 4所述的发光二极管, 其特征在于: 所述空穴存储层由
AlGaN/InGaN超晶格构成, 其中靠近有源层一侧的 AlGaN层之 A1组分 范围为 20%~ 100%, 依次每级台阶 A1组分下降 5<¾~20<¾。
[权利要求 13] 根据权利要求 4所述的发光二极管, 其特征在于: 所述空穴存储层由
AlGaN/InGaN超晶格构成, 其中靠近有源层一侧的 AlGaN层的 A1组分 为 SSy^lOO^; 中间部分的 AlGaN层的 A1组分为 ^^〜 ^, 远离有源 层一侧的 AlGaN层的 A1组分为 Sy^SOy^
[权利要求 14] 根据权利要求 4所述的发光二极管, 其特征在于: 所述空穴存储层由
GaN/InGaN超晶格构成, 在远离有源层方向上每级台阶中 InGaN层的 I n组分下降>5%。
[权利要求 15] 根据权利要求 4所述的发光二极管, 其特征在于: 所述空穴存储层由
GaN/InGaN超晶格构成, 其中靠近有源层一侧的 InGaN层的 In组分为 1 0%~15%, 中间部分的 InGaN层的 In组分为 5<¾~10<¾, 远离有源层一侧 的 InGaN层的 In组分为 O^ S^
[权利要求 16] 根据权利要求 3所述的发光二极管, 其特征在于: 所述超晶格结构中 , 单个垒层的厚度≤^1^
[权利要求 17] 根据权利要求 1所述的发光二极管, 其特征在于: 所述空穴存储层由 极化材料构成。
[权利要求 18] 根据权利要求 1所述的发光二极管, 其特征在于: 所述第二类型半导 体层包含电子阻挡层、 空穴存储层和 p型氮化镓层。
PCT/CN2018/078658 2017-05-09 2018-03-12 发光二极管 WO2018205733A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/676,839 US11127879B2 (en) 2017-05-09 2019-11-07 Light-emitting diode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710323101.6A CN107180898B (zh) 2017-05-09 2017-05-09 发光二极管
CN201710323101.6 2017-05-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/676,839 Continuation US11127879B2 (en) 2017-05-09 2019-11-07 Light-emitting diode
US16/676,839 Continuation-In-Part US11127879B2 (en) 2017-05-09 2019-11-07 Light-emitting diode

Publications (1)

Publication Number Publication Date
WO2018205733A1 true WO2018205733A1 (zh) 2018-11-15

Family

ID=59831612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078658 WO2018205733A1 (zh) 2017-05-09 2018-03-12 发光二极管

Country Status (3)

Country Link
US (1) US11127879B2 (zh)
CN (1) CN107180898B (zh)
WO (1) WO2018205733A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6486401B2 (ja) * 2017-03-08 2019-03-20 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
CN107180898B (zh) * 2017-05-09 2019-05-17 天津三安光电有限公司 发光二极管
US11588072B2 (en) 2019-11-06 2023-02-21 Epistar Corporation Semiconductor device and semiconductor component including ihe same
US11322647B2 (en) * 2020-05-01 2022-05-03 Silanna UV Technologies Pte Ltd Buried contact layer for UV emitting device
CN114551654B (zh) * 2022-01-20 2023-08-22 北京大学 一种复合p型空穴注入层改善蓝绿光Micro-LED通信性能的方法及器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197293A (ja) * 2003-12-26 2005-07-21 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子及びその製造方法
CN102185057A (zh) * 2011-05-03 2011-09-14 映瑞光电科技(上海)有限公司 一种氮化物led结构及其制备方法
US20130099141A1 (en) * 2011-04-28 2013-04-25 Palo Alto Research Center Incorporated Ultraviolet light emitting device incorporting optically absorbing layers
CN105789392A (zh) * 2016-04-28 2016-07-20 聚灿光电科技股份有限公司 GaN基LED外延结构及其制造方法
CN107180898A (zh) * 2017-05-09 2017-09-19 天津三安光电有限公司 发光二极管

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594750A (en) * 1995-06-06 1997-01-14 Hughes Aircraft Company Selectively Si-doped InAs/A1AsSb short-period-superlattices as N-type cladding layers for mid-IR laser structures grown on InAs substrates
US7326963B2 (en) * 2004-12-06 2008-02-05 Sensor Electronic Technology, Inc. Nitride-based light emitting heterostructure
US9806226B2 (en) * 2010-06-18 2017-10-31 Sensor Electronic Technology, Inc. Deep ultraviolet light emitting diode
US20130228743A1 (en) * 2012-03-01 2013-09-05 Industrial Technology Research Institute Light emitting diode
US9401452B2 (en) * 2012-09-14 2016-07-26 Palo Alto Research Center Incorporated P-side layers for short wavelength light emitters
US9219189B2 (en) * 2012-09-14 2015-12-22 Palo Alto Research Center Incorporated Graded electron blocking layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197293A (ja) * 2003-12-26 2005-07-21 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子及びその製造方法
US20130099141A1 (en) * 2011-04-28 2013-04-25 Palo Alto Research Center Incorporated Ultraviolet light emitting device incorporting optically absorbing layers
CN102185057A (zh) * 2011-05-03 2011-09-14 映瑞光电科技(上海)有限公司 一种氮化物led结构及其制备方法
CN105789392A (zh) * 2016-04-28 2016-07-20 聚灿光电科技股份有限公司 GaN基LED外延结构及其制造方法
CN107180898A (zh) * 2017-05-09 2017-09-19 天津三安光电有限公司 发光二极管

Also Published As

Publication number Publication date
US11127879B2 (en) 2021-09-21
CN107180898A (zh) 2017-09-19
US20200075800A1 (en) 2020-03-05
CN107180898B (zh) 2019-05-17

Similar Documents

Publication Publication Date Title
WO2018205733A1 (zh) 发光二极管
GB2543682A (en) Epitaxial structure for improving efficiency drop of GaN-based LED
JP5404628B2 (ja) 多重量子井戸構造を有するオプトエレクトロニクス半導体チップ
US20070057282A1 (en) Semiconductor light-emitting device
TWI517431B (zh) 形成發光二極體裝置的方法
CN111599902B (zh) 一种具有空穴注入结构电子阻挡层的发光二极管
JP2008034848A (ja) 窒化物系発光素子
US11817528B2 (en) Nitride-based light-emitting diode device
KR20090058364A (ko) 질화갈륨계 반도체 발광소자
KR101211657B1 (ko) 질화물계 반도체 발광소자
US7935970B2 (en) Nitride semiconductor light emitting diode
CN112909141A (zh) 一种氮化物半导体发光元件及其制作方法
KR20150021613A (ko) 전자 저장 및 퍼짐층을 이용한 질화물 반도체 발광소자
CN111326626A (zh) 一种能够改善空穴传输能力的半导体发光器件
CN111326622A (zh) 一种基于空穴调整层的发光二极管
US10263145B2 (en) Ultraviolet light emitting device
CN111326616A (zh) 一种半导体发光元件
CN111326628A (zh) 一种基于n型掺杂叠层和功能层的发光二极管
CN111326618A (zh) 一种能够调整电子迁移速率的半导体发光器件
KR102212781B1 (ko) 발광소자 및 조명시스템
CN213636023U (zh) 一种多量子阱结构及发光二极管
CN117810332B (zh) 氮化镓基发光二极管外延片及其制备方法
CN109378375B (zh) 半极性氮化镓半导体构件及其制造方法
Jain et al. Electron blocking layer free full-color InGaN/GaN white light-emitting diodes
CN116960242A (zh) 一种发光二极管及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18799148

Country of ref document: EP

Kind code of ref document: A1