CN105977370A - 一种基于压电微泵的嵌入式制冷器件及其制备方法 - Google Patents

一种基于压电微泵的嵌入式制冷器件及其制备方法 Download PDF

Info

Publication number
CN105977370A
CN105977370A CN201610439019.5A CN201610439019A CN105977370A CN 105977370 A CN105977370 A CN 105977370A CN 201610439019 A CN201610439019 A CN 201610439019A CN 105977370 A CN105977370 A CN 105977370A
Authority
CN
China
Prior art keywords
piezoelectric
piezoelectric micropump
refrigeration device
fluid channel
micropump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610439019.5A
Other languages
English (en)
Other versions
CN105977370B (zh
Inventor
罗文博
蒲诗睿
吴传贵
帅垚
张万里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201610439019.5A priority Critical patent/CN105977370B/zh
Publication of CN105977370A publication Critical patent/CN105977370A/zh
Application granted granted Critical
Publication of CN105977370B publication Critical patent/CN105977370B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Reciprocating Pumps (AREA)

Abstract

本发明属微电子器件集成与散热技术领域,尤其涉及一种基于压电微泵的嵌入式制冷器件及其制备方法。该制冷器件包括微流道和压电微泵两部分;微流道为单独对应单个芯片,设置于芯片下方;压电微泵置于微流道下方。本发明中,微流道是为每个芯片散热,尺寸更加微小,散热能力更好;本发明将压电微泵置于每个芯片的下方,不仅缩小了整体封装的体积,而且可以根据芯片的具体功率实现将不同能力的压电微泵与微流道集成形成具有不同制冷能力的器件,实现按需散热,提高系统温度分布均匀性。本发明结构简单、体积小,易于集成,芯片散热均匀;可应用于高密度集成微系统、功率半导体器件及设备等方面。

Description

一种基于压电微泵的嵌入式制冷器件及其制备方法
技术领域
本发明属微电子器件集成与散热技术领域。尤其涉及一种基于压电微泵的嵌入式制冷器件及其制备方法。
背景技术
随着微电子技术的不断发展,集成电路工艺线宽不断缩小,集成度显著提升,GaN等新型半导体功率器件的产业化进一步提升了集成电路芯片的功率密度,使得芯片功率和发热量越来越大。将具有不同功率密度的芯片采用3维集成等方法形成多芯片集成微系统,使得系统热特征表现为系统发热功率的急剧上升,局部高热流密度热点的非均匀分布,可供散热器件使用的空间进一步减小等特征。传统的空气对流制冷无论是散热能力还是体积都无法满足器件和系统的散热要求,液体冷却逐渐成为集成微系统的首选冷却方式,其优点是:可以利用较小的功率消耗达到液体的循环流动、工作噪声很小、可以利用对流、相变等多种方式完成散热过程。
现有液体散热系统一般由水泵、冷却工作区、水箱、水管等组成,水泵通电将水箱内冷水注入冷却工作区,将热源芯片热量带走回流至水箱中,由此形成水循环将芯片热量带走。整个系统的缺点是结构复杂、体积庞大,不易于集成,应用中受到较多限制。为适应微系统集成的需要,研究人员提出了一种用于热管理的转接板,这种转接板主要由两块包含用于冷却的微通道以及电信号传导的TSV硅通孔的硅载板组成,同时利用一个微型泵将冷却水从热交换器抽送到转接板的入口处,经由微通道流至转接板的出口处,再返回到热交换器,这样,就为贴在转接板上的芯片实现了降温。
对于3维集成芯片,由于流道设计的难度和流体压降的存在,仅靠外部微型泵难以使冷却液较为均匀的分布在每一层,造成离微泵较远的芯片和每层中心的芯片温度过高。并且,器件上的芯片功率并不完全相同,外置一个微泵的泵水能力无法满足所有芯片的要求,微流道的尺寸也过大,不能完全发挥其制冷功效。另外,外置的微泵体积较大,接入微流道的软管需要经过PCB板、基板等,工艺复杂,一旦发生故障,所有芯片都无法正常工作。所以,在现代微系统往集成化、小型化发展的道路上,改善这些问题势在必行。
发明内容
针对上述存在问题或不足,为解决结构复杂、体积庞大,不易于集成,应用受限,芯片散热不均匀的问题,本发明提供了一种基于压电微泵的嵌入式制冷器件及其制备方法,采用内置的、结构简单的基于无阀压电微泵的制冷器件。
该基于压电微泵的嵌入式制冷器件包括微流道和压电微泵两部分。
所述微流道为单独对应单个芯片,通过键合方式将其散热工作区域正对设置于芯片下方。
所述压电微泵集成于微流道下方,即压电微泵无压电陶瓷片一面与微流道通过键合的方式连接在一起。
所述压电微泵泵腔的深度和微流道翅片的宽度可调,以实现改变泵水能力或是制冷能力,把不同能力的压电微泵与微流道键合在一起做成具有不同制冷能力的器件。
所述压电陶瓷片材料为BaTiO3或PZT;衬底为Si、Al2O3陶瓷或有机玻璃;泵膜材料为Si或聚二甲基硅氧烷(PDMS)。
其制备方法包括如下步骤:
步骤1、清洗3片相同衬底,并用氮气吹干后,用减薄工艺减薄至厚度0.3mm-0.5mm。
步骤2、在其中2片衬底上刻蚀出结构对应的流体通道即翅片,一片上设有流体进出口,另一片上没有。
步骤3、将上述两片衬底的流体通道图形区即散热工作区域相对应,通过键合的方式连接在一起形成一个整体,即微流道。键合方式为金属键合、直接键合或阳极键合。
步骤4、使用刻蚀技术在第3片衬底上制备压电微泵的泵腔、进出流道和进出口,制备区域为压电微泵图形区。步骤5、将步骤3制得的微流道和步骤4制得的第3片衬底整体相对应键合;键合方式为金属键合、直接键合或阳极键合。
步骤6、在步骤5得到的第3片衬底未键合面制备压电微泵的泵膜;泵膜厚度为50um-100um,泵膜平面尺寸与衬底大小相适应。
步骤7、在步骤6的基础上,图形区外围制作TSV。
步骤8、在泵膜上,正对泵腔的位置处粘贴压电陶瓷片。
所述步骤8中压电陶瓷片与泵腔同样大小。
该基于压电微泵的嵌入式制冷器件的使用方法为:
根据芯片的具体功率配备相适应的不同能力的压电微泵制冷器件,且一个芯片配备一个制冷器件,让每个芯片都能得到针对性的散热。
本发明中,微流道不是为每层芯片散热,而是为每个芯片散热,尺寸更加微小,散热能力更好;嵌入式的压电微泵不是像传统结构那样置于微流道转接板外,甚至是PCB板外,而是置于每个芯片的下方。将微流道和压电微泵键合在一起,贴在每个芯片的下方,大大缩小了整体封装的体积。而且,改变泵腔的深度或是微流道翅片的宽度就能相应的改变泵水能力或是制冷能力,把不同能力的压电微泵与微流道键合在一起做成具有不同制冷能力的器件,根据芯片的具体功率选择能力不同的制冷器件,让每个芯片都能得到针对性的散热。
本发明运用压电驱动的原理,即通过高能量密度压电陶瓷的逆压电效应和弹性体的超声振动,将微观变形通过共振放大和机电耦合转换成机构的宏观运动,来驱动压电片上下振动,使内部冷却水经压电微泵出口进入微流道的入口,在微流道内流动,后又从微流道的出口流出,经热交换器冷却后又流入压电微泵的进口,不断循环带走芯片上产生的热量。
综上所述,本发明的制冷器件顺应现代微系统发展对热管理技术小型化、集成化的要求,结构简单、体积小,易于集成,芯片散热均匀;应用于高密度集成微系统、功率半导体器件及设备等方面。
附图说明
图1是本发明制冷器件应用的部分集成示意图;
图2是实施例的微流道上层结构示意图;
图3是实施例的微流道下层结构示意图;
图4是实施例的压电微泵结构示意图;
附图标记:1-芯片,2-嵌入式制冷器件(包括3-微流道和4-压电微泵),5-TSV,6-Si片,7-微流道的翅片,8-微流道的进水口,9-微流道的出水口,10-PDMS泵膜,11-压电陶瓷片,12-压电微泵的泵腔,13-压电微泵的流道,14-压电微泵的进水口,15-压电微泵的出水口。
具体实施方式
本实施例提供的嵌入式压电微泵的制冷器件包括两部分,如图2、3所示的微流道和如图4所示的压电微泵,具体制备过程包括以下步骤:
步骤1、在丙酮、无水乙醇和去离子水中超声清洗3片相同Si片,Si片尺寸为8mm×5mm,厚度为0.5mm,并用氮气吹干,将其腐蚀减薄至0.3mm。
步骤2、对步骤1得到的Si片分别进行刻蚀,形成对应如图2、3、4所示的微流道上层、微流道下层和压电微泵泵腔、进出流道及进出口的结构。
首先,采用正胶在3片Si片表面旋涂一层薄且均匀的光刻胶层;将这些涂好光刻胶的Si片进行前烘处理;将其中一片Si片与提前设计好的仅含有流道图形的掩膜版对准,另一片Si片与提前设计好的含有流道及进出口图形的掩膜版对准,再将最后一片Si片与提前设计好的含有泵腔、进出流道及进出口图形的掩膜板对准;通过紫外光照射让各自掩膜版上的图形转移到光刻胶上;将上述处理的3片Si片放入显影液中,使曝光区域的光刻胶溶解;然后对其进行烘焙;采用深反应离子刻蚀法(DRIE)分别对这3片Si片进行刻蚀;将刻蚀好后的3片Si片放入丙酮溶液中使剩余的光刻胶溶解;至此分别在3片Si片上形成了如图2、3、4图形区所示的结构。
步骤3、在如图2、3所示的两片Si片的微流道图形外围区依次蒸镀Au和Sn,将两Si片图形区相对应,放入键合机中进行金属键合;压力1MPa,温度290℃。
步骤4、将步骤3制得的微流道和图4所示Si片的图形外围区依次蒸镀Au和Sn,相适应放入键合机中进行第二次金属键合;压力1MPa,温度290℃。
步骤5、制备PDMS薄膜。首先,将道康宁Sylgard184和固化剂以10:1的比例搅拌均匀,形成PDMS预聚物;再将其放入干燥箱中减压脱直至没有气泡;然后把PDMS预聚物浇铸在玻璃板上,放入甩胶机中进行旋涂,得到厚度为100um的PDMS薄膜。
步骤6、用树脂胶把PDMS薄膜粘贴在步骤5得到的第3片衬底未键合面制备压电微泵的泵膜,使其大小与该面吻合。
步骤7、此时三片Si片形成一个整体,在外围使用深反应离子刻蚀法刻蚀出所需数量的TSV。
步骤8、在PDMS泵膜上粘接上与泵腔同样大小的压电陶瓷片,并使压电陶瓷片与泵腔重合。

Claims (10)

1.一种基于压电微泵的嵌入式制冷器件,包括微流道和压电微泵两部分,其特征在于:
所述微流道为单独对应单个芯片,通过键合方式将其散热工作区域正对设置于芯片下方;
所述压电微泵集成于微流道下方,即压电微泵无压电陶瓷片一面与微流道通过键合的方式连接在一起;
所述微流道为2片0.3mm-0.5mm厚度的衬底构成,压电微泵为0.3mm-0.5mm厚度的衬底、厚度50um-100um泵膜和压电陶瓷片构成,其中微流道和压电微泵的平面尺寸相同并相适应;
所述微流道的散热工作区域与芯片的平面尺寸比例为0.8~1.2。
2.如权利要求1所述基于压电微泵的嵌入式制冷器件,其特征在于:所述压电微泵泵腔的深度可调,实现泵水能力的调整,即制冷能力的调整。
3.如权利要求1所述基于压电微泵的嵌入式制冷器件,其特征在于:所述微流道翅片的宽度可调,实现泵水能力的调整,即制冷能力的调整。
4.如权利要求1所述基于压电微泵的嵌入式制冷器件,其特征在于:所述衬底为Si、Al2O3陶瓷或有机玻璃。
5.如权利要求1所述基于压电微泵的嵌入式制冷器件,其特征在于:所述键合的方式为金属键合、直接键合或阳极键合。
6.如权利要求1所述基于压电微泵的嵌入式制冷器件,其特征在于:所述泵膜材料为Si或聚二甲基硅氧烷PDMS。
7.如权利要求1所述基于压电微泵的嵌入式制冷器件,其特征在于:所述压电陶瓷片材料为BaTiO3或PZT。
8.如权利要求1所述基于压电微泵的嵌入式制冷器件的使用方法为:
根据芯片的具体功率配备相适应的不同能力的压电微泵制冷器件,且一个芯片配备一个制冷器件,让每个芯片都能得到针对性的散热。
9.如权利要求1所述基于压电微泵的嵌入式制冷器件的制备方法,包括如下步骤:
步骤1、清洗3片相同衬底,并用氮气吹干后,用减薄工艺减薄至厚度0.3mm-0.5mm;
步骤2、在其中2片衬底上刻蚀出结构对应的流体通道即翅片,其中一片上设有流体进出口;
步骤3、将步骤2制得的2片衬底的流体通道图形区即散热工作区域相对应,通过键合的方式连接在一起形成一个整体,即微流道;
步骤4、使用刻蚀技术在第3片衬底上制备压电微泵的泵腔、进出流道和进出口,制备区域为压电微泵图形区;
步骤5、将步骤3制得的微流道和步骤4制得的第3片衬底整体相对应键合;
步骤6、在步骤5得到的第3片衬底未键合面制备压电微泵的泵膜;厚度为50um-100um,泵膜平面尺寸与衬底大小相适应;
步骤7、在步骤6的基础上,图形区外围制作硅通孔TSV;
步骤8、在泵膜上,正对泵腔的位置处粘贴压电陶瓷片。
10.如权利要求9所述基于压电微泵的嵌入式制冷器件的制备方法,其特征在于:所述步骤8中压电陶瓷片与泵腔同样大小。
CN201610439019.5A 2016-06-17 2016-06-17 一种基于压电微泵的嵌入式制冷器件及其制备方法 Expired - Fee Related CN105977370B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610439019.5A CN105977370B (zh) 2016-06-17 2016-06-17 一种基于压电微泵的嵌入式制冷器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610439019.5A CN105977370B (zh) 2016-06-17 2016-06-17 一种基于压电微泵的嵌入式制冷器件及其制备方法

Publications (2)

Publication Number Publication Date
CN105977370A true CN105977370A (zh) 2016-09-28
CN105977370B CN105977370B (zh) 2018-06-19

Family

ID=57022808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610439019.5A Expired - Fee Related CN105977370B (zh) 2016-06-17 2016-06-17 一种基于压电微泵的嵌入式制冷器件及其制备方法

Country Status (1)

Country Link
CN (1) CN105977370B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110985359A (zh) * 2019-12-23 2020-04-10 中国电子科技集团公司第二十六研究所 表贴式压电微泵及其制作方法
CN111255667A (zh) * 2020-01-15 2020-06-09 东方红卫星移动通信有限公司 一种低轨卫星微流控系统的压电致动微驱动器
CN111405818A (zh) * 2020-03-25 2020-07-10 电子科技大学 一种集成温度传感器的微流道自适应散热系统
CN111769087A (zh) * 2020-05-26 2020-10-13 厦门大学 一种大功率GaN器件散热与集成一体化结构及制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667561A (zh) * 2009-09-04 2010-03-10 厦门大学 硅基汽液相分离式散热芯片及其制备方法
CN102539617A (zh) * 2010-12-27 2012-07-04 中国科学院大连化学物理研究所 一种微流体驱动泵及其应用
DE102011107046A1 (de) * 2011-07-11 2013-01-17 Friedrich-Schiller-Universität Jena Mikropumpe
CN103824826A (zh) * 2014-02-21 2014-05-28 电子科技大学 一种微流道散热方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667561A (zh) * 2009-09-04 2010-03-10 厦门大学 硅基汽液相分离式散热芯片及其制备方法
CN102539617A (zh) * 2010-12-27 2012-07-04 中国科学院大连化学物理研究所 一种微流体驱动泵及其应用
DE102011107046A1 (de) * 2011-07-11 2013-01-17 Friedrich-Schiller-Universität Jena Mikropumpe
CN103824826A (zh) * 2014-02-21 2014-05-28 电子科技大学 一种微流道散热方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C R TAMANAHA等: ""Hybrid macro–micro fluidics system for a chip-based biosensor"", 《JOURNAL OF MICROMECHANICS AND MICROENGINEERING》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110985359A (zh) * 2019-12-23 2020-04-10 中国电子科技集团公司第二十六研究所 表贴式压电微泵及其制作方法
CN110985359B (zh) * 2019-12-23 2022-02-18 中国电子科技集团公司第二十六研究所 表贴式压电微泵及其制作方法
CN111255667A (zh) * 2020-01-15 2020-06-09 东方红卫星移动通信有限公司 一种低轨卫星微流控系统的压电致动微驱动器
CN111405818A (zh) * 2020-03-25 2020-07-10 电子科技大学 一种集成温度传感器的微流道自适应散热系统
CN111769087A (zh) * 2020-05-26 2020-10-13 厦门大学 一种大功率GaN器件散热与集成一体化结构及制作方法

Also Published As

Publication number Publication date
CN105977370B (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
US10334755B2 (en) Liquid cooling of electronic devices
CN105977370A (zh) 一种基于压电微泵的嵌入式制冷器件及其制备方法
TW591984B (en) Micro-circulating flow channel system and its manufacturing method
US7713789B2 (en) Semiconductor device with a high thermal dissipation efficiency
Sekar et al. A 3D-IC technology with integrated microchannel cooling
US7992627B2 (en) Microjet module assembly
TW560238B (en) Electroosmotic microchannel cooling system
US8929071B2 (en) Low cost manufacturing of micro-channel heatsink
US20110277491A1 (en) Heat dissipation system with a spray cooling device
US20060140829A1 (en) Microstructure, microreactor, micro heat exchanger and method for fabricating microstructure
JP2004531050A (ja) 熱増強型マイクロ回路パッケージとその作製方法
JP6119352B2 (ja) 半導体装置及びその製造方法
JP2006054434A (ja) 熱を発生するデバイスにおける所望のホットスポットを冷却するための柔軟な流体輸送のための方法及び装置
CN107275297B (zh) 一种微流体散热通道、散热方法及制备方法
US20170135247A1 (en) Heat transfer device and electronic device
CN104465562A (zh) 一种链式交错型微通道结构
CN1794444A (zh) 基于金刚石薄膜的微通道式散热器
US10784115B2 (en) Method of etching microelectronic mechanical system features in a silicon wafer
Dang et al. Wafer-level microfluidic cooling interconnects for GSI
CN108735693A (zh) 高散热性硅/玻璃复合转接板及其制造方法
CN110993577B (zh) 一种pdms微通道热沉、pdms模具、硅模具及其制备方法
Joshi et al. Keynote Lecture: Micro and Meso Scale Compact Heat Exchangers in Electronics Thermal Management–Review
US9613928B2 (en) Method and apparatus for chip-to-wafer integration
JP6222985B2 (ja) 液体吐出ヘッド、並びに、素子基板および液体吐出ヘッドの製造方法
TW200912238A (en) Micro liquid cooling device and droplet generator thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180619

Termination date: 20210617