CN105970315A - 医用聚左旋乳酸熔融纺纤维的制备方法 - Google Patents

医用聚左旋乳酸熔融纺纤维的制备方法 Download PDF

Info

Publication number
CN105970315A
CN105970315A CN201610471206.1A CN201610471206A CN105970315A CN 105970315 A CN105970315 A CN 105970315A CN 201610471206 A CN201610471206 A CN 201610471206A CN 105970315 A CN105970315 A CN 105970315A
Authority
CN
China
Prior art keywords
plla
medical
lactic acid
poly
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610471206.1A
Other languages
English (en)
Inventor
冯建永
赵磊
郭丹丹
杲爽
朱延圆
伍永康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN201610471206.1A priority Critical patent/CN105970315A/zh
Publication of CN105970315A publication Critical patent/CN105970315A/zh
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/724Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged forming webs during fibre formation, e.g. flash-spinning

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Textile Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开的医用聚左旋乳酸熔融纺纤维的制备方法,步骤如下:将具有良好生物降解性和生物相容性的医用聚左旋乳酸切片并干燥,采用单孔板、36孔板或24孔板螺杆挤压机挤出进行熔融纺丝和牵伸卷绕制得聚左旋乳酸熔融纺纤维。本发明方法制备的医用聚左旋乳酸熔融纺纤维具有较小的纤维直径、光滑的表面、圆形的横截面、较高的熔点。该医用聚左旋乳酸熔融纺纤维具有较好的应用前景,可以用来模拟细胞外基质(ECM)中的纤维网络结构,可以用来制备应用于组织工程的纤维支架,制备应用于血管、神经、韧带、肌肉、膝盖、肌腱、骨组织工程、药物释放和装载等方面的机织物和针织物支架。

Description

医用聚左旋乳酸熔融纺纤维的制备方法
技术领域
本发明涉及医用聚左旋乳酸熔融纺纤维的制备方法。
背景技术
一个好的支架材料应能模拟天然细胞外基质(ECM)的物理结构和化学成分(Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials 2003;24(24):4353-64;Wei G, Ma PX. Nanostructured biomaterials for regeneration. Adv Funct Mater 2008;18(22):3568-82)。其中,ECM是一种天然的有序结构,这种结构在维护细胞和组织的结构与功能方面具有非常重要的作用(Stevens MM. Exploring and Engineering the Cell-Surface Interface. Biophys J 2011;100(3):189a)。ECM中生物纤维的直径为几十纳米到微米,可以提供适合细胞生长的微环境。这种取向的纤维结构可以引导组织形态发生和重构,并且可以作为生物活性因子调节细胞迁移、增殖和分化。因此,利用合成高分子制备熔融纺纤维,并且通过制备的纤维支架表面的微观结构和化学性质可以调控细胞行为以及组织的生长和功能(Cima L, Vacanti J, Vacanti C, et al. Tissue engineering by cell transplantation using degradable polymer substrates. Journal of biomechanical engineering 1991;113(2):143-51)。
目前,可以应用于医用的合成高分子有聚氧乙烯(PEO)、聚乙烯醇(PVA)、聚乙烯酸(PAA)、聚乙二醇(PEG)、左旋聚乳酸(PLLA)、聚乙醇酸(PGA)、聚乳酸-羟基乙酸共聚物(PLGA)、聚己内酯(PCL)(Rezwan K, Chen QZ, Blaker JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006;27(18):3413-31;Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005;26(27):5474-91)等。PLLA是聚乳酸(PLA)的其中一种,并且与其它医用合成高分子相比(Rezwan K, Chen QZ, Blaker JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006;27(18):3413-31;Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005;26(27):5474-91),PLLA的熔融纺丝更容易实现,具有较好的可纺性,可以制得粗细均匀和质量较好的纤维(Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005;26(27):5474-91;Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci 2007;32(8-9):762-98)。同时PLLA是被美国食品和药物管理局(Food and Drug Administration, FDA)批准的可以临床应用的高分子(Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000;21(23):2475-90)。
一些研究者是利用PLLA切片而不是直接利用PLLA纤维来制备多孔支架。比如,利用热诱导相分离方法制备的可以应用组织工程领域的PLLA共聚物纳米纤维多孔支架(Liu X, Ma PX. The nanofibrous architecture of poly (L-lactic acid)-based functional copolymers. Biomaterials 2010;31(2):259-69)。可以应用于骨组织工程的PLLA/纳米金刚石支架(Zhang Q, Mochalin VN, Neitzel I, et al. Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials 2011;32(1):87-94)和磷灰石涂层的PLLA纳米纤维无序多孔支架(Whited BM, Whitney JR, Hofmann MC, et al. Pre-osteoblast infiltration and differentiation in highly porous apatite-coated PLLA electrospun scaffolds. Biomaterials 2011;32(9):2294-304)。利用成纤维生长因子与PLLA复合的PLLA纳米纤维无序支架(Liu S, Qin M, Hu C, et al. Tendon healing and anti-adhesion properties of electrospun fibrous membranes containing bFGF loaded nanoparticles. Biomaterials 2013;34(19):4690-701)。以及聚癸二酸丙三醇酯(PGS)/PLLA复合的非线性弹性生物材料(Xu B, Rollo B, Stamp LA, et al. Non-linear elasticity of core/shell spun PGS/PLLA fibres and their effect on cell proliferation. Biomaterials 2013;34(27):6306-17)。以及生长因子缩氨酸/PLLA复合的静电纺纳米纤维有序支架(Callahan LAS, Xie S, Barker IA, et al. Directed differentiation and neurite extension of mouse embryonic stem cell on aligned poly (lactide) nanofibers functionalized with YIGSR peptide. Biomaterials 2013;34(36):9089-95)。利用模板浸出-相分离方法制备的可以应用于骨组织工程的PLLA多孔支架 (Wei G, Jin Q, Giannobile WV, et al. The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials 2007;28(12):2087-96)。利用相分离方法制备了纤维直径为100-200 nm的PLLA纳米纤维多孔支架,并且用来模仿天然胶原纤维的结构,实验结果表明该PLLA纳米纤维多孔支架可以促进成骨细胞的分化(Hu J, Liu X, Ma PX. Induction of osteoblast differentiation phenotype on poly (L-lactic acid) nanofibrous matrix. Biomaterials 2008;29(28):3815-21)。
前人的研究主要是利用静电纺丝技术制备PLLA纳米纤维并且制备多孔支架。比如,Kurpinski(Kurpinski KT, Stephenson JT, Janairo RRR, et al. The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds. Biomaterials 2010;31(13):3536-42)利用静电纺丝技术制备了PLLA纳米纤维有序与无序支架,并且将内皮细胞种植在该支架上研究细胞的渗透性生长和组织重塑,实验结果表明有序支架可以促进细胞向支架内部的渗透性生长。Zuidema(Zuidema JM, Hyzinski-García MC, Van Vlasselaer K, et al. Enhanced GLT-1 mediated glutamate uptake and migration of primary astrocytes directed by fibronectin-coated electrospun poly-l-lactic acid fibers. Biomaterials 2014;35(5):1439-49)利用静电纺丝技术制备了可以应用于神经组织工程的PLLA纳米纤维有序与无序支架,其中有序支架与无序支架的纤维直径分别为2.38±0.46 μm和2.49±0.32 μm。虽然利用静电纺丝方法制备的PLLA纳米纤维支架具有一些优势,比如简单的制备过程、纳米尺度的纤维直径和较高的孔隙率。但这种支架的力学性能较差,支架中有序纤维根数无法知道,纤维与纤维之间的粘合效果较差,并且国内没有规模化制备静电纺纳米纤维的宽幅设备。目前利用静电纺丝方法制备有序支架只是小量实验阶段,无法满足产业化实际应用要求。
目前对PLLA的熔融纺丝主要集中在纺丝条件对纤维结构和性能的影响,并且这些PLLA的熔融纺纤维主要用做纺织工业方面,而非医用。比如,Nishimura(Nishimura Y, Takasu A, Inai Y, et al. Melt spinning of poly(L-lactic acid) and its biodegradability. J Appl Polym Sci 2005;97(5):2118-24)将分子量为1.7×105,熔点为171℃的PLLA,采用长径比为28的单螺杆挤压机进行熔融纺丝,并且研究了1-18倍的牵伸比对纤维断裂强力、断裂伸长、拉伸模量、双折射率、密度和结晶度的影响及变化规律。此外,Kim(Kim MS, Kim JC, Kim YH. Effects of take‐up speed on the structure and properties of melt‐spun poly (L‐lactic acid) fibers. Polym Advan Technol 2008;19(7):748-55)采用45 mm的螺杆直径、230℃的纺丝温度、36孔喷丝板成功制备了75 denier/36 filament的PLLA熔融纺纤维,并且研究卷绕速度(2000-5000 m/min)对PLLA熔融纺纤维结构与性能的影响。Zhang (Zhang H, Yang G, Wang X, et al. Study on the melt‐spinnability of poly (L‐lactic acid). Polymer Engineering & Science 2009;49(12):2315-19)将三种不同分子量的工业用PLLA,以200-230℃的纺丝温度、9 mL/min的计量泵流量、28孔喷丝板、0.3 mm的喷丝孔直径制备了工业用PLLA熔融纺纤维,并且研究不同分子量纤维的结构与性能差异。从这些文献可以看出,这些研究侧重于工业用PLLA熔融纺纤维制备及结构与性能研究,而医用PLLA的熔融纺丝鲜有报道,是否可以熔融纺丝未知。并且目前对应用于生物医学领域的PLLA的静电纺丝纳米纤维支架研究较多(Kurpinski KT, Stephenson JT, Janairo RRR, et al. The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds. Biomaterials 2010;31(13):3536-42;Yang F, Murugan R, Wang S, et al. Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005;26(15):2603-10),但并没有人制备医用PLLA熔融纺纤维及研究纤维支架上的细胞性能。
从这些文献(Nishimura Y, Takasu A, Inai Y, et al. Melt spinning of poly(L-lactic acid) and its biodegradability. J Appl Polym Sci 2005;97(5):2118-24;Kim MS, Kim JC, Kim YH. Effects of take‐up speed on the structure and properties of melt‐spun poly (L‐lactic acid) fibers. Polym Advan Technol 2008;19(7):748-55;Zhang H, Yang G, Wang X, et al. Study on the melt‐spinnability of poly (L‐lactic acid). Polymer Engineering & Science 2009;49(12):2315-19 ;Fambri L, Pegoretti A, Fenner R, et al. Biodegradable fibres of poly (L-lactic acid) produced by melt spinning. Polymer 1997;38(1):79-85 )可以看出,这些研究侧重于PLLA熔融纺纤维的制备及结构与性能研究,并且所纺的纺织工业用PLLA的熔融纺纤维所用的PLLA切片的纯度小,含有较多杂质,所制备的熔融纺纤维不具有良好的生物相容性,不满足医用要求(Gupta B, Revagade N, Hilborn J. Poly (lactic acid) fiber: an overview. Prog Polym Sci 2007;32(4):455-82)。而医用PLLA的纯度大,基本不含杂质,要求更高,所制备的支架具有良好的生物相容性,有利于细胞粘附和生长(Wang Y, Shi H, Qiao J, et al. Electrospun tubular scaffold with circumferentially aligned nanofibers for regulating smooth muscle cell growth. Acs Appl Mater Inter 2014;6(4):2958-62)。并且医用PLLA是被美国食品和药物管理局批准的可以临床应用的高分子(Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000;21(23):2475-90)。
与干法纺丝和湿法纺丝方法相比,熔融纺丝技术具有很大的优势,比如,无需溶剂、纺丝速度高、符合经济环保要求。同时,熔融纺丝是目前制备大量纤维并且满足产业化应用的主要方法(Persson M, Cho SW, Skrifvars M. The effect of process variables on the properties of melt-spun poly(lactic acid) fibres for potential use as scaffold matrix materials. J Mater Sci 2013;48(8):3055-66)。
因此,有必要利用熔融纺丝技术制备可以满足产业化应用的、方便后续研究及制备组织工程支架用的医用PLLA熔融纺纤维,同时利用这种纤维来模拟ECM中的纤维网络结构。
发明内容
本发明的目的是针对现有技术存在的不足,而提供一种医用聚左旋乳酸(PLLA)熔融纺纤维的制备方法。
本发明的医用聚左旋乳酸熔融纺纤维的制备方法,包括如下步骤:
1)将分子量为300000、熔点为176.90℃,具有良好生物降解性和生物相容性的聚左旋乳酸进行切片,并干燥;
2)取步骤1)的聚左旋乳酸切片采用单孔板、36孔板或24孔板螺杆挤压机挤出进行熔融纺丝,得到PLLA熔融纺初生纤维;
3)利用卷绕机以70-400 m/min的卷绕速度对步骤2)制得的聚左旋乳酸熔融纺初生纤维进行卷绕。
本发明中,所述的单孔板螺杆挤压机的螺杆转速通常为80 rad/min -90 rad/min,左热板温度为200-260℃,右热板温度为200-260℃,压力为8.0MPa-17.0 MPa。
本发明中,所述的36孔板的孔直径D为0.3 mm,孔长L/孔径D=3,通常控制36孔板螺杆挤压机的螺杆转速为80 rad/min -90 rad/min,螺杆温度为210-250℃。
本发明中,所述的24孔板的孔直径D为0.3 mm,孔长L/孔径D=3,通常控制24孔板螺杆挤压机的螺杆转速为80 rad/min -90 rad/min,螺杆温度为210-250℃。
本发明的有益效果在于:
本发明方法制备的医用PLLA熔融纺纤维具有较小的纤维直径、光滑的表面、圆形的横截面、较高的熔点。该医用PLLA熔融纺纤维具有较好的应用前景,可以用来模拟细胞外基质(ECM)中的纤维网络结构,可以制备应用于组织工程的纤维支架,可以用来制备应用于血管、神经、韧带、肌肉、膝盖、肌腱、骨组织工程、药物释放和装载等方面的机织物和针织物支架。
附图说明
图1是实施例1制备的单根PLLA熔融纺纤维的表面扫描电镜照片;
图2是实施例1制备的单根PLLA熔融纺纤维的横截面扫描电镜照片;
图3是实施例2制备的单根PLLA熔融纺纤维的表面扫描电镜照片;
图4是实施例2制备的单根PLLA熔融纺纤维的横截面扫描电镜照片;
图5是实施例3制备的单根PLLA熔融纺纤维的表面扫描电镜照片;
图6是实施例3制备的单根PLLA熔融纺纤维的横截面扫描电镜照片;
图7是实施例1、2、3制备的PLLA熔融纺纤维的直径比较;
图8是PLLA熔融纺纤维的DSC曲线(差示扫描量热曲线)。
具体实施方式
以下结合实施例进一步说明本发明。
实施例 1
1)将购自济南岱罡生物工程有限公司的PLLA,其分子量为30万,熔点为176.90℃。利用DHG-9240A型电热鼓风干燥箱将PLLA切片在60℃条件下干燥24 h,去除水分。
2)采用单孔板螺杆挤压机挤出制备PLLA熔融纺初生纤维,控制螺杆转速为84.2 rad/min,左热板温度为240℃,右热板温度为240℃,压力为12.5MPa。
3)采用GKR103卷绕机对制备的熔融纺初生纤维进行牵伸卷绕,卷绕速度为150 m/min。
得到直径为27.95±5.81 μm,表面光滑,横截面为圆形,熔点为170.69℃的医用PLLA熔融纺纤维。
本例制得的医用PLLA熔融纺纤维表面与横截面形态如图1、2所示,纤维直径如图7所示。
实施例 2
1)同实施例步骤1);
2) 采用36孔板螺杆挤压机挤出制备PLLA熔融纺初生纤维,36孔板的孔直径D为0.3 mm,孔长L/孔径D=3,控制螺杆转速为88 rad/min,螺杆温度为230℃。
3)采用卷绕机对制备的熔融纺初生纤维进行卷绕,卷绕速度为70 m/min。得到直径为160±30 μm,表面光滑,横截面为圆形,熔点为170.69℃的医用PLLA熔融纺纤维。
本例制得的医用PLLA熔融纺纤维表面与横截面形态如图3、4所示,纤维直径如图7所示。
实施例 3
1)同实施例步骤1);
2) 采用24孔板螺杆挤压机挤出制备PLLA熔融纺初生纤维,24孔板的孔直径D为0.3 mm,孔长L/孔径D=3,控制螺杆转速为88 rad/min,螺杆温度为230℃。
3)采用卷绕机对制备的熔融纺初生纤维进行卷绕,卷绕速度为70 m/min。得到直径为70.30±11.41 μm,表面光滑,横截面为圆形,熔点为170.69℃的医用PLLA熔融纺纤维。
本例制得的医用PLLA熔融纺纤维表面与横截面形态如图5、6所示,纤维直径如图7所示,DSC曲线如图8所示。

Claims (4)

1.医用聚左旋乳酸熔融纺纤维的制备方法,包括如下步骤:
1)将分子量为300000、熔点为176.90℃,具有良好生物降解性和生物相容性的聚左旋乳酸进行切片,并干燥;
2)取步骤1)的聚左旋乳酸切片采用单孔板、36孔板或24孔板螺杆挤压机挤出进行熔融纺丝,得到PLLA熔融纺初生纤维;
3)利用卷绕机以70-400 m/min的卷绕速度对步骤2)制得的聚左旋乳酸熔融纺初生纤维进行卷绕。
2.根据权利要求1所述的医用聚左旋乳酸熔融纺纤维的制备方法,其特征是所述的单孔板螺杆挤压机的螺杆转速为80 rad/min -90 rad/min,左热板温度为200-260℃,右热板温度为200-260℃,压力为8.0MPa-17.0 MPa。
3.根据权利要求1所述的医用聚左旋乳酸熔融纺纤维的制备方法,其特征是所述的36孔板的孔直径D为0.3 mm,孔长L/孔径D=3,控制36孔板螺杆挤压机的螺杆转速为80 rad/min -90 rad/min,螺杆温度为210-250℃。
4.根据权利要求1所述的医用聚左旋乳酸熔融纺纤维的制备方法,其特征是所述的24孔板的孔直径D为0.3 mm,孔长L/孔径D=3,控制24孔板螺杆挤压机的螺杆转速为80 rad/min -90 rad/min,螺杆温度为210-250℃。
CN201610471206.1A 2016-06-22 2016-06-22 医用聚左旋乳酸熔融纺纤维的制备方法 Pending CN105970315A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610471206.1A CN105970315A (zh) 2016-06-22 2016-06-22 医用聚左旋乳酸熔融纺纤维的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610471206.1A CN105970315A (zh) 2016-06-22 2016-06-22 医用聚左旋乳酸熔融纺纤维的制备方法

Publications (1)

Publication Number Publication Date
CN105970315A true CN105970315A (zh) 2016-09-28

Family

ID=57020568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610471206.1A Pending CN105970315A (zh) 2016-06-22 2016-06-22 医用聚左旋乳酸熔融纺纤维的制备方法

Country Status (1)

Country Link
CN (1) CN105970315A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019038784A1 (en) * 2017-08-21 2019-02-28 Gupta Ronak Rajendra MULTIPRODUCTIVE SEPARATE INTERLACED YARNS, METHODS OF MAKING THE SAME, AND TEXTILE WOVEN FABRICS THEREOF
CN110694115A (zh) * 2019-10-22 2020-01-17 上海交通大学医学院附属第九人民医院 体外构建肌腱组织的方法及其生物材料和应用
US10767287B2 (en) 2016-04-25 2020-09-08 Ronak Rajendra Gupta Method for manufacturing a multi-ply separable filament yarns and multi-ply separable textured yarn
CN114941185A (zh) * 2022-06-13 2022-08-26 四川大学 一种聚乳酸纤维人工肌肉及其制备方法
US12060661B2 (en) 2016-04-25 2024-08-13 Ronak Rajendra Gupta Recycled separable multi-filament parallel yarns and woven fabric thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1687497A (zh) * 2005-04-25 2005-10-26 东华大学 一种聚乳酸类共混聚合物纤维的制备方法
JP2008115503A (ja) * 2006-11-07 2008-05-22 Toyohashi Univ Of Technology 電界印加によるステレオコンプレックス化ポリ乳酸材料の作製方法
CN101613889A (zh) * 2009-07-24 2009-12-30 中国科学院宁波材料技术与工程研究所 一种含31螺旋结构的聚乳酸纤维及其制备方法
CN101805941A (zh) * 2010-04-13 2010-08-18 东华大学 一种高熔点聚乳酸纤维的制备方法
CN102634866A (zh) * 2012-04-25 2012-08-15 中国科学院宁波材料技术与工程研究所 一种自增强聚乳酸纤维及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1687497A (zh) * 2005-04-25 2005-10-26 东华大学 一种聚乳酸类共混聚合物纤维的制备方法
JP2008115503A (ja) * 2006-11-07 2008-05-22 Toyohashi Univ Of Technology 電界印加によるステレオコンプレックス化ポリ乳酸材料の作製方法
CN101613889A (zh) * 2009-07-24 2009-12-30 中国科学院宁波材料技术与工程研究所 一种含31螺旋结构的聚乳酸纤维及其制备方法
CN101805941A (zh) * 2010-04-13 2010-08-18 东华大学 一种高熔点聚乳酸纤维的制备方法
CN102634866A (zh) * 2012-04-25 2012-08-15 中国科学院宁波材料技术与工程研究所 一种自增强聚乳酸纤维及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIN SUP KIM ET AL: "Effects of take up speed on the structure and properties of melt-spun poly(L-lactic acid) fibers", 《POLYMERS FOR ADVANCED TECHNOLOGIES》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10767287B2 (en) 2016-04-25 2020-09-08 Ronak Rajendra Gupta Method for manufacturing a multi-ply separable filament yarns and multi-ply separable textured yarn
US12060661B2 (en) 2016-04-25 2024-08-13 Ronak Rajendra Gupta Recycled separable multi-filament parallel yarns and woven fabric thereof
WO2019038784A1 (en) * 2017-08-21 2019-02-28 Gupta Ronak Rajendra MULTIPRODUCTIVE SEPARATE INTERLACED YARNS, METHODS OF MAKING THE SAME, AND TEXTILE WOVEN FABRICS THEREOF
CN110694115A (zh) * 2019-10-22 2020-01-17 上海交通大学医学院附属第九人民医院 体外构建肌腱组织的方法及其生物材料和应用
CN114941185A (zh) * 2022-06-13 2022-08-26 四川大学 一种聚乳酸纤维人工肌肉及其制备方法

Similar Documents

Publication Publication Date Title
Khorshidi et al. A review of key challenges of electrospun scaffolds for tissue‐engineering applications
CN105970315A (zh) 医用聚左旋乳酸熔融纺纤维的制备方法
Bhardwaj et al. Electrospinning: A fascinating fiber fabrication technique
US11970790B2 (en) Poly(lactic acid) membrane and method of making the membrane
US11696972B2 (en) Process for the production of a hybrid structure consisting of coupled silk fibroin microfibers and nanofibers, hybrid structure thus obtained and its use as implantable medical device
Sun et al. Electrospun anisotropic architectures and porous structures for tissue engineering
Kancheva et al. Enhancing the mechanical properties of electrospun polyester mats by heat treatment.
CN106540327A (zh) 一种仿自然血管的三层人造血管支架及其制备方法
Thomas et al. Electrospinning of Biosyn®-based tubular conduits: structural, morphological, and mechanical characterizations
McCullen et al. Fiber-reinforced scaffolds for tissue engineering and regenerative medicine: use of traditional textile substrates to nanofibrous arrays
Li et al. Fibrous scaffolds for tissue engineering
Hasan et al. Application of electrospinning techniques for the production of tissue engineering scaffolds: a review
Maleknia et al. Electrospinning of gelatin nanofiber for biomedical application
Nayak et al. Fabrication and characterisation of nanofibres by meltblowing and melt electrospinning
Sebe et al. Polymers and formulation strategies of nanofibrous systems for drug delivery application and tissue engineering
Kwon et al. Electrospinning of microbial polyester for cell culture
JP2015178692A (ja) ナノファイバーの製造方法、及びナノファイバー
Ostrowska et al. Evaluation of 3D hybrid microfiber/nanofiber scaffolds for bone tissue engineering
Hoque Electrospun gelatin composite nanofibres: a review on structural and mechanical characterizations
Ranjbar-Mohammadi et al. Fabrication of Nanofibrous Hybrid Scaffolds from Polylactic Acid-Graphene and Gelatin for Application in Bone Tissue Engineering
Dodel et al. Modifying the mechanical properties of silk nanofiber scaffold by knitted orientation for regenerative medicine applications
Fan et al. Compare of electrospinning PLA and PLA/β-TCP scaffold in vitro
CN104667343B (zh) 聚乳酸熔融纺纤维热粘合固化有序支架的制备方法
Wen et al. Preparation of electrospun PLA nanofiber scaffold and the evaluation in vitro
Dzierzkowska et al. Bogu n

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160928

RJ01 Rejection of invention patent application after publication