CN105967401A - 一种油田措施井筒返排液处理后用于钻井液配液的方法 - Google Patents

一种油田措施井筒返排液处理后用于钻井液配液的方法 Download PDF

Info

Publication number
CN105967401A
CN105967401A CN201610402048.4A CN201610402048A CN105967401A CN 105967401 A CN105967401 A CN 105967401A CN 201610402048 A CN201610402048 A CN 201610402048A CN 105967401 A CN105967401 A CN 105967401A
Authority
CN
China
Prior art keywords
discharge opeing
returns
acidity
high viscosity
returned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610402048.4A
Other languages
English (en)
Other versions
CN105967401B (zh
Inventor
刘沛华
周立辉
穆谦益
李岩
冀忠伦
张璇
杨琴
朱妍
任鹏
刘宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Natural Gas Co Ltd
Original Assignee
China Petroleum and Natural Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Natural Gas Co Ltd filed Critical China Petroleum and Natural Gas Co Ltd
Priority to CN201610402048.4A priority Critical patent/CN105967401B/zh
Publication of CN105967401A publication Critical patent/CN105967401A/zh
Application granted granted Critical
Publication of CN105967401B publication Critical patent/CN105967401B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/003Downstream control, i.e. outlet monitoring, e.g. to check the treating agents, such as halogens or ozone, leaving the process

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明提供了一种油田措施井筒返排液处理后用于钻井液配液的方法,包括以下步骤,管道粗滤、重力沉砂、平流隔油、比例掺混、微电解氧化、两级中和、混凝过滤和水质测试,本发明实现了酸性返排液与高粘度返排液的同步处理,适用于老井压裂、酸化、洗井、修井作业措施过程中产生的返排液净化处理,处理后水质的粘度、pH、矿化度、CL、SO4 2‑、Ca2++Mg2+及起泡剂含量满足钻井液配液要求。酸性电解质环境可以增强电场效应,加速电絮凝反应和氧化还原反应,破坏电解质中分散胶体的稳定体系,快速使胶体离子沉淀或向电极聚集,从而提高溶液中悬浮态或胶体态污染物去除效率。

Description

一种油田措施井筒返排液处理后用于钻井液配液的方法
技术领域
本发明涉及老油田改造地面工程技术领域,特别涉及一种油田措施井筒返排液处理后用于钻井液配液的方法,适用于老井压裂、酸化、洗井、修井作业措施过程中产生的返排液净化处理,处理后水质满足油田生产现场钻井液配液需求。
背景技术
随着油田持续性开发,油层的含水上升、压力下降,开采难度加大,为了确保油井产能,常常采取洗井、修井、酸化、压裂等老油田储层重复改造措施,作业过程中井筒返排液含有大量的细砂粒、悬浮物、机杂、胶体残渣、溶解性有机物等。国内80%以上油气生产区块属于老油田,老井基数大、措施作业频繁、返排液数量多、水质复杂、外排处理成本高、环保压力大,如何合理科学解决措施井筒返排液问题,已迫在眉睫!
油田措施井筒返排液中存在大量的胶体物质,大分子化合物,增加了流体稳定性,按粘度大小可分为低粘度返排液、粘度小于5mPa·s,中粘度返排液、粘度介于5mPa·s与20mPa·s之间,高粘度返排液、粘度大于20mPa·s。
国内的废水处理工艺大多为混凝-沉淀-过滤,适用于粘度较小的常规废水体系。即使用于处理低粘度油田措施井筒返排液,常规化学絮凝等处理方法,也很难破坏流体稳定性,导致过滤层污染和堵塞,随着油田水平井的开发和推广,高粘度返排液所占比例逐年增加,如何降低返排液粘度是油田措施井筒返排液处理的技术难题。
目前,摆在油田措施井筒返排液处理的技术难题有四点:一是常规处理工艺难以满足高粘度返排液破碎胶体和破坏稳定性要求;二是常规处理设备难以满足酸性返排液腐蚀性要求;三是措施井筒返排液含有大量的高价离子,常规过滤后不能直接外排,若达到外排标准处理成本又太高,难以满足低成本要求;四是措施井筒返排液工艺回用方向不明确,无相应的达标水质指标体系。本着节约资源、保护环境、降低成本的目的,考虑到油田措施作业用水量大,将措施井筒返排液处理定位为工艺回收再利用。因此本发明旨在提出一套适用于油田措施井筒返排液处理后用于钻井液配液的水质指标和工艺技术体系。
发明内容
为了克服现有处理方法中,不能同步处理酸性返排液与高粘度返排液的问题,本发明提供一种油田措施井筒返排液处理后用于钻井液配液的方法,实现酸性返排液与高粘度返排液的同步处理,使返排液在处理后的粘度、pH、矿化度、CL-、SO4 2-、Ca2++Mg2+及起泡剂含量满足钻井液配液的要求,微电解技术集氧化还原、絮凝吸附、络合及电沉淀等作用于一体,适用于油田井筒返排液降粘净化处理。根据原电池原理,酸性电解质环境可以增强电场效应,加速电絮凝反应和氧化还原反应,破坏电解质中分散胶体的稳定体系,快速使胶体离子沉淀或向电极聚集,从而提高溶液中悬浮态或胶体态污染物去除效率。
本发明采用的技术方案是:
一种油田措施井筒返排液处理后用于钻井液配液的方法,包括以下步骤:
1)管道粗滤:
酸性返排液与高粘度返排液分别通过管道进行输送,按照管道过滤器进行简易格栅粗过滤,去除25mm以上树枝和杂物,分离后杂物通过手动清理;
2)重力沉砂:
酸性返排液与高粘度返排液分别提升至不同的重力沉砂池,水力停留时间大于90s,以确保砂粒充分沉降,去除粒径0.15mm以上的砂粒,定期回收沉淀物;
3)平流隔油:
酸性返排液与高粘度返排液分别提升至不同的平流隔油池,有效停留时间不小于2h,去除粒径60μm以上、密度小于1.0g/cm3的浮油和分散油,定期刮油回收;
4)比例掺混:
酸性返排液与高粘度返排液同步均匀混合,通过比例掺混形成pH值为3~5的偏酸液体,构建微电解高效降粘的酸性电解质环境;
5)微电解氧化:
酸性返排液与高粘度返排液掺混后粘度从20mPa·s降至1.5mPa·s以下;
6)两级中和:
酸性返排液与高粘度返排液降粘后混合液通过pH调节剂调节pH值至8左右,反应时间5~20min;
7)混凝过滤:
通过水质检测结果确定絮凝剂、助凝剂的加量,去除废液中固相颗粒物与有机物,搅拌反应时间10min后静置,混凝沉降时间30min,过滤上清液后泵入清水罐存储,底部沉降污泥回收处理,使得出水悬浮物浓度≤5mg/L,固体颗粒直径≤3μm;
8)水质测试:
测试处理后水质的粘度、pH、矿化度、CL-、SO4 2-、Ca2++Mg2+及起泡剂含量,水质要求目标值为:粘度<1.5 mPa·s、pH值为6~9,矿化度<4000mg/L,CL-<3000mg/L,SO4 2-<200mg/L,Ca2++Mg2+<400mg/L,起泡剂<5mg/L。
所述步骤4)中,通过测定酸性返排液与高粘度返排液的pH值确定掺混比例,掺混成pH值为3~5的偏酸液体;具体步骤为:
第一步进行高粘度返排液和酸性返排液酸碱度测定;采取返排液样品各100mL,使用pH测试仪分别测定样品酸碱值;记录高粘度返排液样品pH值=a,酸性返排液样品pH值=b;计算两种返排液酸碱度比值=a:b;
第二步进行高粘度返排液和酸性返排液混合样预处理;根据酸碱度比值量取AmL高粘度返排液和BmL酸性返排液样品,混合搅拌均匀后静置10min,要求A:B=a:b;
第三步进行高粘度返排液和酸性返排液掺混比例标定;使用pH测试仪测定混合液酸碱值:
当pH值=3~5时,则高粘度返排液和酸性返排液样品的掺混比例为A:B;
当pH值>5时,少量多次加入酸性返排液样品均匀搅拌微调至pH值=3~5,计量酸性返排液二次加入总量为CmL,则高粘度返排液和酸性返排液样品的掺混比例为A:(B+C);
当pH值<3时,少量多次加入高粘度返排液样品均匀搅拌微调至pH值=3~5,计量高粘度返排液二次加入总量为DmL,则高粘度返排液和酸性返排液样品的掺混比例为(A+D):B;
第四步进行高粘度返排液和酸性返排液比例输送控制;两种返排液流经平流隔油-比例掺混工艺流程时要求输送管径相同,输送流量可调;比例输送控制通过调节泵送流速实现,高粘度返排液和酸性返排液泵送流速比=掺混比例。
所述步骤5)中,微电解氧化中包括填充材料、电解质水溶液和氧化降粘剂;
在所述的填充材料中同时通入电解质水溶液和质量比为0.1%的氧化降粘剂,使高粘度返排液粘度从20mPa·s降至1.5mPa·s以下;
所述填充材料选择新型催化铁-碳合金,结构为不规则微孔晶体,孔隙率达到75%,比表面积达到1.3m2/g;所述电解质水溶液为步骤4)中高粘度返排液和酸性返排液按照掺混比例均匀混合成的液体;所述的氧化降粘剂为过氧化氢。
所述步骤6)中的两极中和的pH调节剂采用NaOH与CaO复合碱,配方比例为2:1。
所述步骤6)中的两级中和为第一级添加CaO中和调节pH值至5,第二级添加NaOH中和调节pH值至8。
所述步骤7)中的混凝过滤中絮凝剂溶液由聚合硅酸铝铁、酸性膨润土、水组合而成,质量百分比为2:1:20。
所述步骤7)中的助凝剂为水解聚丙烯酰胺粉剂。
所述步骤8)中,水质测试的具体方法为待清水罐静置10min后,分别取顶层、中层和下层水样,采用品式粘度计、pH测试仪、导电率测试仪、水质快速测试仪现场快速测定仪器进行试验测试,使水质满足要求。
与现有技术相比,本发明的有益效果是:
1、本发明提出了通过比例掺混酸性返排液与高粘度返排液形成pH值为3-5的偏酸液体,构建微电解高效降粘的酸性电解质环境,替代了传统的添加工业酸构建酸性电解质环境的做法,实现了“以废制废”,降低生产成本。
2、本发明实现了酸性返排液与高粘度返排液同步处理,有效降低酸性返排液的腐蚀性,解决了高粘度返排液和酸性返排液单独处理成本高、工艺复杂的难题。
3、本发明构建了一套措施井筒返排液处理后用于钻井液配液的水质指标体系,明确了油田井筒返排液工艺回用的方向。
4、本发明提出的复合碱和两级中和工艺可节省pH调节剂20%,减少Ca2+引入量,除铁效果显著,产生的Ca(OH)2具有絮凝作用,减少后端处理剂加量。
以下将结合附图进行进一步的说明。
附图说明
图1为油田措施井筒返排液处理后用于钻井液配液的工艺流程图。
图2为油田措施井筒返排液处理后用于钻井液配液的比例掺混实施步骤图。
图3为油田措施井筒返排液处理后用于钻井液配液的比例掺混控制原理图。
具体实施方式
实施例1:
为了克服现有处理方法中,不能同步处理酸性返排液与高粘度返排液的问题,本发明提供如图1所示的一种油田措施井筒返排液处理后用于钻井液配液的方法,实现酸性返排液与高粘度返排液的同步处理,使返排液在处理后的粘度、pH、矿化度、CL-、SO4 2-、Ca2++Mg2+及起泡剂含量满足钻井液配液的要求,微电解技术集氧化还原、絮凝吸附、络合及电沉淀等作用于一体,适用于油田井筒返排液降粘净化处理。根据原电池原理,酸性电解质环境可以增强电场效应,加速电絮凝反应和氧化还原反应,破坏电解质中分散胶体的稳定体系,快速使胶体离子沉淀或向电极聚集,从而提高溶液中悬浮态或胶体态污染物去除效率。
一种油田措施井筒返排液处理后用于钻井液配液的方法,包括以下步骤:
1)管道粗滤:
酸性返排液与高粘度返排液分别通过管道进行输送,按照管道过滤器进行简易格栅粗过滤,去除25mm以上树枝和杂物,分离后杂物通过手动清理;
2)重力沉砂:
酸性返排液与高粘度返排液分别提升至不同的重力沉砂池,水力停留时间大于90s,以确保砂粒充分沉降,去除粒径0.15mm以上的砂粒,定期回收沉淀物;
3)平流隔油:
酸性返排液与高粘度返排液分别提升至不同的平流隔油池,有效停留时间不小于2h,去除粒径60μm以上、密度小于1.0g/cm3的浮油和分散油,定期刮油回收;
4)比例掺混:
酸性返排液与高粘度返排液同步均匀混合,通过比例掺混形成pH值为3~5的偏酸液体,构建微电解高效降粘的酸性电解质环境;
5)微电解氧化:
酸性返排液与高粘度返排液掺混后粘度从20mPa·s降至1.5mPa·s以下;
6)两级中和:
酸性返排液与高粘度返排液降粘后混合液通过pH调节剂调节pH值至8左右,反应时间5~20min;
7)混凝过滤:
通过水质检测结果确定絮凝剂、助凝剂的加量,去除废液中固相颗粒物与有机物,搅拌反应时间10min后静置,混凝沉降时间30min,过滤上清液后泵入清水罐存储,底部沉降污泥回收处理,使得出水悬浮物浓度≤5mg/L,固体颗粒直径≤3μm;
8)水质测试:
测试处理后水质的粘度、pH、矿化度、CL-、SO4 2-、Ca2++Mg2+及起泡剂含量,水质要求目标值为:粘度<1.5 mPa·s、pH值为6~9,矿化度<4000mg/L,CL-<3000mg/L,SO4 2-<200mg/L,Ca2++Mg2+<400mg/L,起泡剂<5mg/L。
本发明提出了通过比例掺混酸性返排液与高粘度返排液形成pH值为3-5的偏酸液体,构建微电解高效降粘的酸性电解质环境,替代了传统的添加工业酸构建酸性电解质环境的做法,实现了“以废制废”,降低生产成本。
本发明实现了酸性返排液与高粘度返排液同步处理,有效降低酸性返排液的腐蚀性,解决了高粘度返排液和酸性返排液单独处理成本高、工艺复杂的难题。本发明构建了一套措施井筒返排液处理后用于钻井液配液的水质指标体系,明确了油田井筒返排液工艺回用的方向。
本发明提出的复合碱和两级中和工艺可节省pH调节剂20%,减少Ca2+引入量,除铁效果显著,产生的Ca(OH)2具有絮凝作用,减少后端处理剂加量。
实施例2:
基于实施例1的基础上,本实施例中,所述步骤4)中,通过测定酸性返排液与高粘度返排液的pH值确定掺混比例,掺混成pH值为3~5的偏酸液体;具体步骤为:
第一步进行高粘度返排液和酸性返排液酸碱度测定;采取返排液样品各100mL,使用pH测试仪分别测定样品酸碱值;记录高粘度返排液样品pH值=a,酸性返排液样品pH值=b;计算两种返排液酸碱度比值=a:b;
第二步进行高粘度返排液和酸性返排液混合样预处理;根据酸碱度比值量取AmL高粘度返排液和BmL酸性返排液样品,混合搅拌均匀后静置10min,要求A:B=a:b;
第三步进行高粘度返排液和酸性返排液掺混比例标定;使用pH测试仪测定混合液酸碱值:
当pH值=3~5时,则高粘度返排液和酸性返排液样品的掺混比例为A:B;
当pH值>5时,少量多次加入酸性返排液样品均匀搅拌微调至pH值=3~5,计量酸性返排液二次加入总量为CmL,则高粘度返排液和酸性返排液样品的掺混比例为A:(B+C);
当pH值<3时,少量多次加入高粘度返排液样品均匀搅拌微调至pH值=3~5,计量高粘度返排液二次加入总量为DmL,则高粘度返排液和酸性返排液样品的掺混比例为(A+D):B;
第四步进行高粘度返排液和酸性返排液比例输送控制;两种返排液流经平流隔油-比例掺混工艺流程时要求输送管径相同,输送流量可调;比例输送控制通过调节泵送流速实现,高粘度返排液和酸性返排液泵送流速比=掺混比例。
所述步骤5)中,微电解氧化中包括填充材料、电解质水溶液和氧化降粘剂;
在所述的填充材料中同时通入电解质水溶液和质量比为0.1%的氧化降粘剂,使高粘度返排液粘度从20mPa·s降至1.5mPa·s以下;
所述填充材料选择新型催化铁-碳合金,结构为不规则微孔晶体,孔隙率达到75%,比表面积达到1.3m2/g,为了提高铁碳床反应效率,添加质量百分比为8%的钌粉;所述电解质水溶液为步骤4)中高粘度返排液和酸性返排液按照掺混比例均匀混合成的液体;所述的氧化降粘剂为过氧化氢。
本实施例中,在所需的容器中填满填充材料,然后向填充材料中通入电解质水溶液和氧化降粘剂,实现高粘度返排液粘度从20mPa·s降至1.5mPa·s以下。
填充材料选择新型催化铁-碳合金,结构为不规则微孔晶体,孔隙率达到75%,比表面积达到1.3m2/g,为了提高铁碳床反应效率,添加8%的钌粉。
微电解反应需要酸性电解质水溶液,最佳环境pH值为3~5,构建原料为高粘度返排液和酸性返排液按照掺混比例均匀混合成的pH值为3~5的偏酸液体。
氧化降粘剂为0.1%的过氧化氢,在微电解酸性环境中与Fe2+生成羟基自由基,具有强氧化性,将返排液中的大分子有机物降解形成小分子有机物,实现高粘度返排液粘度从20mPa·s降至1.5mPa·s以下。
所述步骤6)中的两极中和的pH调节剂采用NaOH与CaO复合碱,配方比例为2:1。
所述步骤6)中的两级中和为第一级添加CaO中和调节pH值至5,第二级添加NaOH中和调节pH值至8。
所述步骤7)中的混凝过滤中絮凝剂溶液由聚合硅酸铝铁、酸性膨润土、水组合而成,质量百分比为2:1:20。
所述步骤7)中的助凝剂为水解聚丙烯酰胺粉剂。
所述步骤8)中,水质测试的具体方法为待清水罐静置10min后,分别取顶层、中层和下层水样,采用品式粘度计、pH测试仪、导电率测试仪、水质快速测试仪现场快速测定仪器进行试验测试,使水质满足要求。
所述管道粗滤中,去除25mm以上树枝和杂物,酸性返排液与高粘度返排液分别通过管道进行输送,按照管道过滤器进行简易格栅粗过滤,分离后杂物通过手动清理。
所述重力沉砂中,本步骤去除粒径0.15mm以上的砂粒,酸性返排液与高粘度返排液分别提升至不同的重力沉砂池,水力停留时间大于90s,以确保砂粒充分沉降,定期回收沉淀物。
所述平流隔油中,本步骤去除粒径60μm以上、密度小于1.0g/cm3的浮油和分散油,酸性返排液与高粘度返排液分别提升至不同的平流隔油池,有效停留时间不小于2h,定期刮油回收。
所述比例掺混中,本步骤确保酸性返排液与高粘度返排液同步均匀混合,通过测定酸性返排液与高粘度返排液的pH值确定掺混比例,输送系统的管径相同、流量可调,根据流量比确定各自的泵送速度,比例混合单元具有两进一出、采用逆向流和重力流的自扰动实现均匀混合。通过比例掺混形成pH值为3~5的偏酸液体,构建微电解高效降粘的酸性电解质环境,替代传统添加工业酸构建酸性电解质环境的做法,有效降低酸性返排液腐蚀性,实现了酸性返排液与高粘度返排液同步处理。
通过试验测定,当混合液的pH值为4时,CQML-18井筒酸化作业返排液和CQCH-05井筒二次压裂改造作业返排液的掺混比例为1:4,则输送系统的流量比为1:4,流速控制比为1:4。
所述两级中和中,本步骤去除酸性返排液与高粘度返排液降粘后混合液中的大量Ca2+、Mg2+、Fe2+、Fe3+等离子,pH调节剂采用NaOH与CaO的复合碱,配方比例为2:1,两级中和工艺为第一级添加CaO调节pH值至5,第二级添加NaOH调节pH值至8左右,反应时间5~20min。采用复合碱和两级中和工艺可节省pH调节剂20%,减少Ca2+引入量,除铁效果显著,产生的Ca(OH)2具有絮凝作用,减少后端处理剂加量,同时满足钻井液配液的pH值为6~9要求。
所述混凝过滤中,本步骤去除废液中固相颗粒物与有机物,使得出水悬浮物浓度≤5mg/L,固体颗粒直径≤3μm,根据水质检测结果确定絮凝剂、助凝剂的加量。絮凝剂溶液由聚合硅酸铝铁、酸性膨润土、水组合而成,质量百分比为2:1:20;助凝剂为水解聚丙烯酰胺粉剂。搅拌反应时间10min后静置,混凝沉降时间30min,过滤上清液后泵入清水罐存储,底部沉降污泥回收处理。
所述水质测试中,本步骤主要测试处理后水质的粘度、pH、矿化度、CL-、SO4 2-、Ca2++Mg2+及起泡剂含量,具体方法为待清水罐静置10min后,分别取顶层、中层和下层水样,采用品式粘度计、pH测试仪、导电率测试仪、水质快速测试仪现场快速测定仪器进行试验测试。
油田措施井筒返排液中存在大量的胶体物质,大分子化合物,增加了流体稳定性,按粘度大小可分为低粘度返排液、粘度小于5mPa·s,中粘度返排液、粘度介于5mPa·s与20mPa·s之间,高粘度返排液、粘度大于20mPa·s。本发明能有效的处理高粘度返排液与酸性返排液混合后进行配液。
实施例3:
基于上述实施例的基础上,本实施例中以长庆油田CQML-18井筒酸化作业返排液和CQCH-05井筒二次压裂改造作业返排液比例掺混同步处理实施过程为例。处理前两种返排液的水质特征如下表所示。
CQML-18井筒酸化作业返排液和CQCH-05井筒二次压裂改造作业返排液比例掺混同步处理后的水质特征如下表所示,结果显示本发明能够满足油田措施井筒返排液处理后用于钻井液配液的回用目的。
以长庆油田CQJY-27井筒酸化作业返排液和CQAS-15井筒前置酸压裂改造作业返排液比例掺混同步处理实施过程为例。处理前两种返排液的水质特征如下表所示。
具体步骤与实施例1相同,步骤4)中通过试验测定,当混合液的pH值为3时,CQJY-27井筒酸化作业返排液和CQAS-15井筒前置酸压裂改造作业返排液的掺混比例为1:2,则输送系统的流量比为1:2,流速控制比为1:2。
CQJY-27井筒酸化作业返排液和CQAS-15井筒前置酸压裂改造作业返排液比例掺混同步处理后的水质特征如下表所示,结果也显示本发明能够满足油田措施井筒返排液处理后用于钻井液配液的回用目的。
所述的根据微电解特性,利用“以废制废”原则,结合油田措施井筒返排液特点,通过比例掺混酸性返排液与高粘度返排液形成pH值为3-5的偏酸液体,构建微电解高效降粘的酸性电解质环境,替代了传统的添加工业酸构建酸性电解质环境的做法,同时有效降低酸性返排液的腐蚀性,实现了酸性返排液与高粘度返排液同步处理,解决了高粘度返排液和酸性返排液单独处理成本高、工艺复杂的难题。
以上例举仅仅是对本发明的举例说明,并不构成对本发明的保护范围的限制,凡是与本发明相同或相似的设计均属于本发明的保护范围之内。

Claims (8)

1.一种油田措施井筒返排液处理后用于钻井液配液的方法,其特征在于:包括以下步骤:
1)管道粗滤:
酸性返排液与高粘度返排液分别通过管道进行输送,按照管道过滤器进行简易格栅粗过滤,去除25mm以上树枝和杂物,分离后杂物通过手动清理;
2)重力沉砂:
酸性返排液与高粘度返排液分别提升至不同的重力沉砂池,水力停留时间大于90s,以确保砂粒充分沉降,去除粒径0.15mm以上的砂粒,定期回收沉淀物;
3)平流隔油:
酸性返排液与高粘度返排液分别提升至不同的平流隔油池,有效停留时间不小于2h,去除粒径60μm以上、密度小于1.0g/cm3的浮油和分散油,定期刮油回收;
4)比例掺混:
酸性返排液与高粘度返排液同步均匀混合,通过比例掺混形成pH值为3~5的偏酸液体,构建微电解高效降粘的酸性电解质环境;
5)微电解氧化:
酸性返排液与高粘度返排液掺混后粘度从20mPa·s降至1.5mPa·s以下;
6)两级中和:
酸性返排液与高粘度返排液降粘后混合液通过pH调节剂调节pH值至8左右,反应时间5~20min;
7)混凝过滤:
通过水质检测结果确定絮凝剂、助凝剂的加量,去除废液中固相颗粒物与有机物,搅拌反应时间10min后静置,混凝沉降时间30min,过滤上清液后泵入清水罐存储,底部沉降污泥回收处理,使得出水悬浮物浓度≤5mg/L,固体颗粒直径≤3μm;
8)水质测试:
测试处理后水质的粘度、pH、矿化度、CL-、SO4 2-、Ca2++Mg2+及起泡剂含量,水质要求目标值为:粘度<1.5 mPa·s、pH值为6~9,矿化度<4000mg/L,CL-<3000mg/L,SO4 2-<200mg/L,Ca2++Mg2+<400mg/L,起泡剂<5mg/L。
2.根据权利要求1所述的一种油田措施井筒返排液处理后用于钻井液配液的方法,其特征在于:所述步骤4)中,通过测定酸性返排液与高粘度返排液的pH值确定掺混比例,掺混成pH值为3~5的偏酸液体;具体步骤为:
第一步进行高粘度返排液和酸性返排液酸碱度测定;采取返排液样品各100mL,使用pH测试仪分别测定样品酸碱值;记录高粘度返排液样品pH值=a,酸性返排液样品pH值=b;计算两种返排液酸碱度比值=a:b;
第二步进行高粘度返排液和酸性返排液混合样预处理;根据酸碱度比值量取AmL高粘度返排液和BmL酸性返排液样品,混合搅拌均匀后静置10min,要求A:B=a:b;
第三步进行高粘度返排液和酸性返排液掺混比例标定;使用pH测试仪测定混合液酸碱值:
当pH值=3~5时,则高粘度返排液和酸性返排液样品的掺混比例为A:B;
当pH值>5时,少量多次加入酸性返排液样品均匀搅拌微调至pH值=3~5,计量酸性返排液二次加入总量为CmL,则高粘度返排液和酸性返排液样品的掺混比例为A:(B+C);
当pH值<3时,少量多次加入高粘度返排液样品均匀搅拌微调至pH值=3~5,计量高粘度返排液二次加入总量为DmL,则高粘度返排液和酸性返排液样品的掺混比例为(A+D):B;
第四步进行高粘度返排液和酸性返排液比例输送控制;两种返排液流经平流隔油-比例掺混工艺流程时要求输送管径相同,输送流量可调;比例输送控制通过调节泵送流速实现,高粘度返排液和酸性返排液泵送流速比=掺混比例。
3.根据权利要求1所述的一种油田措施井筒返排液处理后用于钻井液配液的方法,其特征在于:所述步骤5)中,微电解氧化中包括填充材料、电解质水溶液和氧化降粘剂;
在所述的填充材料中同时通入电解质水溶液和质量比为0.1%的氧化降粘剂,使高粘度返排液粘度从20mPa·s降至1.5mPa·s以下;
所述填充材料选择新型催化铁-碳合金,结构为不规则微孔晶体,孔隙率达到75%,比表面积达到1.3m2/g;所述电解质水溶液为步骤4)中高粘度返排液和酸性返排液按照掺混比例均匀混合成的液体;所述的氧化降粘剂为过氧化氢。
4.根据权利要求1所述的一种油田措施井筒返排液处理后用于钻井液配液的方法,其特征在于:所述步骤6)中的两极中和的pH调节剂采用NaOH与CaO复合碱,配方比例为2:1。
5.根据权利要求4所述的一种油田措施井筒返排液处理后用于钻井液配液的方法,其特征在于:所述步骤6)中的两级中和为第一级添加CaO中和调节pH值至5,第二级添加NaOH中和调节pH值至8。
6.根据权利要求1所述的一种油田措施井筒返排液处理后用于钻井液配液的方法,其特征在于:所述步骤7)中的混凝过滤中絮凝剂溶液由聚合硅酸铝铁、酸性膨润土、水组合而成,质量百分比为2:1:20。
7.根据权利要求1所述的一种油田措施井筒返排液处理后用于钻井液配液的方法,其特征在于:所述步骤7)中的助凝剂为水解聚丙烯酰胺粉剂。
8.根据权利要求1所述的一种油田措施井筒返排液处理后用于钻井液配液的方法,其特征在于:所述步骤8)中,水质测试的具体方法为待清水罐静置10min后,分别取顶层、中层和下层水样,采用品式粘度计、pH测试仪、导电率测试仪、水质快速测试仪现场快速测定仪器进行试验测试,使水质满足要求。
CN201610402048.4A 2016-06-08 2016-06-08 一种油田措施井筒返排液处理后用于钻井液配液的方法 Active CN105967401B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610402048.4A CN105967401B (zh) 2016-06-08 2016-06-08 一种油田措施井筒返排液处理后用于钻井液配液的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610402048.4A CN105967401B (zh) 2016-06-08 2016-06-08 一种油田措施井筒返排液处理后用于钻井液配液的方法

Publications (2)

Publication Number Publication Date
CN105967401A true CN105967401A (zh) 2016-09-28
CN105967401B CN105967401B (zh) 2019-01-18

Family

ID=57010911

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610402048.4A Active CN105967401B (zh) 2016-06-08 2016-06-08 一种油田措施井筒返排液处理后用于钻井液配液的方法

Country Status (1)

Country Link
CN (1) CN105967401B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106430740A (zh) * 2016-12-08 2017-02-22 中国石油天然气股份有限公司 一种适合油田聚驱配注管道冲洗废液处理的工艺
CN107365008A (zh) * 2017-08-04 2017-11-21 中国石油天然气股份有限公司 一种车载式压裂返排废弃液处理系统
CN107473491A (zh) * 2017-08-10 2017-12-15 成都之和环保科技有限公司 一种一体化洗矿废水处理设备及其操作工艺
CN109851105A (zh) * 2019-02-25 2019-06-07 中国石油天然气股份有限公司 一种措施废液多级处理方法及其处理系统
CN110563194A (zh) * 2019-08-20 2019-12-13 中国石油集团川庆钻探工程有限公司工程技术研究院 一种用于配制钻井液的压裂返排液预处理剂及预处理方法
CN112723605A (zh) * 2021-01-08 2021-04-30 长庆工程设计有限公司 一种措施返排液分类收集预处理装置及方法
CN112983318A (zh) * 2019-12-17 2021-06-18 中国石油天然气股份有限公司 用于钻井废弃物的处理装置及处理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318748A (zh) * 2008-07-15 2008-12-10 濮阳市天地人环保工程技术有限公司 一种用于油气田钻采废液集中处理的工艺技术
CN105110522A (zh) * 2015-08-28 2015-12-02 天津市振津石油天然气工程有限公司 一种油田压裂、酸化废水处理撬装装置及处理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318748A (zh) * 2008-07-15 2008-12-10 濮阳市天地人环保工程技术有限公司 一种用于油气田钻采废液集中处理的工艺技术
CN105110522A (zh) * 2015-08-28 2015-12-02 天津市振津石油天然气工程有限公司 一种油田压裂、酸化废水处理撬装装置及处理方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106430740A (zh) * 2016-12-08 2017-02-22 中国石油天然气股份有限公司 一种适合油田聚驱配注管道冲洗废液处理的工艺
CN107365008A (zh) * 2017-08-04 2017-11-21 中国石油天然气股份有限公司 一种车载式压裂返排废弃液处理系统
CN107473491A (zh) * 2017-08-10 2017-12-15 成都之和环保科技有限公司 一种一体化洗矿废水处理设备及其操作工艺
CN109851105A (zh) * 2019-02-25 2019-06-07 中国石油天然气股份有限公司 一种措施废液多级处理方法及其处理系统
CN109851105B (zh) * 2019-02-25 2022-02-01 中国石油天然气股份有限公司 一种措施废液多级处理方法及其处理系统
CN110563194A (zh) * 2019-08-20 2019-12-13 中国石油集团川庆钻探工程有限公司工程技术研究院 一种用于配制钻井液的压裂返排液预处理剂及预处理方法
CN112983318A (zh) * 2019-12-17 2021-06-18 中国石油天然气股份有限公司 用于钻井废弃物的处理装置及处理方法
CN112983318B (zh) * 2019-12-17 2023-05-26 中国石油天然气股份有限公司 用于钻井废弃物的处理装置及处理方法
CN112723605A (zh) * 2021-01-08 2021-04-30 长庆工程设计有限公司 一种措施返排液分类收集预处理装置及方法

Also Published As

Publication number Publication date
CN105967401B (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
CN105967401A (zh) 一种油田措施井筒返排液处理后用于钻井液配液的方法
CN101318748B (zh) 一种用于油气田钻采废液集中处理的工艺
CN106242132A (zh) 一种压裂返排液的处理方法
CN104176881B (zh) 一种压裂返排液达标排放及复配压裂液的处理工艺
CN105293790B (zh) 油田含油综合污水处理方法
CN110318696B (zh) 一种水基废弃钻井液无害化处理工艺
WO2011133159A2 (en) Wastewater purification system and method
CN101113040A (zh) 一种新的油田钻井废水处理方法
CN102079597B (zh) 一种去除污水中铜离子的方法
CN207276369U (zh) 一种压裂返排液外排处理装置
CN104445753B (zh) 一种石油天然气钻井废水处理工艺
CN105064970A (zh) 一种油气井压裂返排液处理方法
CN101786769A (zh) 一种油田污水处理工艺
CN111704263A (zh) 一种水基压裂返排液资源化利用方法
CN204958596U (zh) 一种压裂返排液高效处理装置
CN106277430A (zh) 一种适用于气井的压裂返排液处理与循环利用方法
CN104804719B (zh) 一种利用压裂返排液配制压裂液的方法
CA2657072C (en) Waste water treatment method
CN101053799A (zh) 处理含油泥砂的破乳剂的制备及其处理方法
CN101585610A (zh) 一种药剂可循环使用的水处理方法及其系统
CN103951139A (zh) 一种油田污水处理工艺
CN204661474U (zh) 一种撬装页岩油气压裂返排液处理装置
CN104692555B (zh) 一种压裂返排液回收处理再利用方法以及装置
CN104773880A (zh) 钻井污水处理工艺及设备
CN1569695A (zh) 一种用于油田钻井废水处理的集成化工艺和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant