CN105964282B - 一锅球磨固相法制备CuI-Fe3O4磁性纳米复合物的方法 - Google Patents

一锅球磨固相法制备CuI-Fe3O4磁性纳米复合物的方法 Download PDF

Info

Publication number
CN105964282B
CN105964282B CN201610476247.XA CN201610476247A CN105964282B CN 105964282 B CN105964282 B CN 105964282B CN 201610476247 A CN201610476247 A CN 201610476247A CN 105964282 B CN105964282 B CN 105964282B
Authority
CN
China
Prior art keywords
magnetic
cui
solid phase
nanocomposites
magnetic nanocomposites
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610476247.XA
Other languages
English (en)
Other versions
CN105964282A (zh
Inventor
李龙凤
张茂林
肖培培
付先亮
刘明珠
陈铁旦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaibei Normal University
Original Assignee
Huaibei Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaibei Normal University filed Critical Huaibei Normal University
Priority to CN201610476247.XA priority Critical patent/CN105964282B/zh
Publication of CN105964282A publication Critical patent/CN105964282A/zh
Application granted granted Critical
Publication of CN105964282B publication Critical patent/CN105964282B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开了一锅球磨固相法制备CuI‑Fe3O4磁性纳米复合物的方法,其特征在于:在室温下将五水合硫酸铜、碘化钾、亚硫酸钠和磁性Fe3O4纳米粉一锅混合,通过机械球磨引发混合原料的固相反应,制备出CuI‑Fe3O4磁性纳米复合物。本发明反应原料一锅法室温固相球磨反应制备CuI‑Fe3O4磁性纳米复合物的技术,制备过程简单、易于控制;避免使用表面活性剂、模板剂和溶剂,提高了产物纯度,也符合材料合成绿色化的要求;本发明提供的CuI‑Fe3O4磁性纳米复合物的制备方法,适合于大规模生产。

Description

一锅球磨固相法制备CuI-Fe3O4磁性纳米复合物的方法
技术领域
本发明属于纳米材料及其制备领域,特别涉及一种CuI-Fe3O4磁性纳米复合物的制备方法。
背景技术
CuI是一种用途十分广泛的物质,在有机催化、太阳能电池、二极管发光、树脂改性、人工降雨等领域有着重要的应用。其中,CuI作为催化剂,可以催化一系列卤代烃参与的偶联反应,例如Heck反应、Suzuki反应及Ullmann反应等。目前,CuI的制备方法较多。比如:元素直接反应法(Yaqing Liu,et.al.Synthesis of nano-CuI and its catalyticactivity in the thermal decomposition of ammonium perchlorate,Res.Chem.Intermed.,2015,41:3885–3892),电沉积法(Takeshi Takeda,et.al.Copper(I)iodide-catalyzed regioselective allylation of α-(2-pyridylthio)allylstannanes.A new route toδ,ε-unsaturated ketones,Tetrahedron Lett.,1997,38,2879–2882),水热法(L.P.Zhang,et.al.Growth and shape evolution of octahedralCuI crystal by a SC-assisted hydrothermal method,Mater.Res.Bull.,2006,41,905–908),脉冲激光沉积法(P.M.Sirimanne,et.al.Characterization of transparentconducting CuI thin films prepared by pulse laser deposition technique,Chem.Phys.Lett.,2002,366,485–489),真空蒸发(K.Tennakone, et.al.Deposition ofthin conducting films of CuI on glass,Sol.Energy Mater.Sol.Cells,1998, 55,283–289),等等。现有的制备方法虽然可以制备出CuI,但仍然存在一些不足,如:在制备过程中,有的需要使用复杂昂贵的设备、有的需要使用添加剂、有的需要高温条件、有的产生毒性较大的副产物,特别是液相法制备过程中产物粒子容易发生团聚,CuI超细纳米粉较难制备。
此外,纳米催化材料由于粒径过小,实际使用过程中难以回收,导致催化剂的回收再利用存在困难,从而增加了催化剂的用量和生产成本。同时,催化剂的直接排放也造成了环境污染。为降低生产成本、减少环境污染,人们一直在寻求催化剂回收、循环再利用的方法。众所周知,通过磁性分离将纳米粉末催化剂从反应体系中分离,是一种回收再利用催化剂的有效方法。要成功实施磁性分离,必须赋予纳米粉末催化剂一定的磁性。目前,Fe3O4作为常用的磁性载体材料,已经广泛地应用于磁性纳米复合材料的制备中,比如:朱道政等人采用溶剂热醇还原法,制备出绒球状的多孔Fe3O4@Cu2O核壳纳米复合物(朱道政等, Fe3O4@Cu2O多孔纳米微球的制备及可见光光催化性能研究,安徽大学学报(自然科学版), 2013,37(5):73-79);Li等人通过葡萄糖还原法制备出豆荚状核壳结构的Fe3O4@C@Cu2O磁性纳米复合物(S.K.Li等,Magnetic Fe3O4@C@Cu2O composites with bean-like core/shellnanostructures:Synthesis,properties and application in recyclablephotocatalytic degradation of dye pollutants.Journal of Materials Chemistry,2011,21:7459-7466)。
发明内容
本发明的目的在于提供一种CuI-Fe3O4磁性纳米复合物的制备方法,具有简单易行、节约成本、节能环保的优点。
本发明实现发明目的,采用如下技术方案:
本发明一锅球磨固相法制备CuI-Fe3O4磁性纳米复合物的方法,其特点在于:在室温下将五水合硫酸铜、碘化钾、亚硫酸钠和磁性Fe3O4纳米粉(粒径在80~100nm)一锅混合,通过机械球磨引发混合原料的固相反应,制备出CuI-Fe3O4磁性纳米复合物。具体包括如下步骤:
将五水合硫酸铜、碘化钾和亚硫酸钠按照2∶2∶1.2的摩尔比混合均匀,再按每0.01摩尔五水合硫酸铜加入8g磁性Fe3O4纳米粉的加入量,向其中加入磁性Fe3O4纳米粉,获得混合原料;将混合原料放入球磨锆罐中在QM-3SP04行星式高能球磨机中于480rpm下进行球磨固相反应;球磨反应1~8小时后,将球磨反应所得产物用蒸馏水进行洗涤,离心分离并在60℃和0.1MPa真空度下真空干燥2小时,即得到CuI-Fe3O4磁性纳米复合物。
与现有技术相比,本发明的积极效果是:
本发明提供了反应原料一锅法室温固相球磨反应制备CuI-Fe3O4磁性纳米复合物的技术,制备过程简单、易于控制;避免使用表面活性剂、模板剂和溶剂,提高了产物纯度,也符合材料合成绿色化的要求;本发明提供的CuI-Fe3O4磁性纳米复合物的制备方法,适合于大规模生产。
附图说明
图1为实施例1、2、3和4制备的CuI-Fe3O4磁性纳米复合物的XRD图;
图2为原料Fe3O4纳米粒子的TEM图像;
图3为实施例2制备的CuI-Fe3O4磁性纳米复合物的TEM图像。
具体实施方式
以下提供本发明CuI-Fe3O4磁性纳米复合物制备的具体实施方式。
实施例1
本实施例按如下步骤制备CuI-Fe3O4磁性纳米复合物:
按照2∶2∶1.2的摩尔比称取0.02摩尔分析纯的五水合硫酸铜、0.02摩尔分析纯的碘化钾、0.012摩尔分析纯的亚硫酸钠,加入配备50个直径6mm氧化锆磨球和8个直径10mm氧化锆磨球的50mL氧化锆球磨罐中,再向其中加入16g磁性Fe3O4纳米粉,在QM-3SP04 行星式高能球磨机中于480rpm下连续研磨1小时;用蒸馏水对产物进行洗涤,离心分离并在60℃和0.1MPa真空度下真空干燥2小时,得到CuI-Fe3O4磁性纳米复合物。
对产品进行X-射线衍射分析,通过Scherrer公式进行计算,CuI-Fe3O4磁性纳米复合物中 CuI平均晶粒尺寸为10.1nm。
实施例2
本实施例按如下步骤制备CuI-Fe3O4磁性纳米复合物:
按照2∶2∶1.2的摩尔比称取0.02摩尔分析纯的五水合硫酸铜、0.02摩尔分析纯的碘化钾、0.012摩尔分析纯的亚硫酸钠,加入配备50个直径6mm氧化锆磨球和8个直径10mm氧化锆磨球的50mL氧化锆球磨罐中,再向其中加入16g磁性Fe3O4纳米粉,在QM-3SP04 行星式高能球磨机中于480rpm下连续研磨2小时;用蒸馏水对产物进行洗涤,离心分离并在60℃和0.1MPa真空度下真空干燥2小时,得到CuI-Fe3O4磁性纳米复合物。
对产品进行X-射线衍射分析,通过Scherrer公式进行计算,CuI-Fe3O4磁性纳米复合物中 CuI平均晶粒尺寸为10.7nm。
实施例3
本实施例按如下步骤制备CuI-Fe3O4磁性纳米复合物:
按照2∶2∶1.2的摩尔比称取0.02摩尔分析纯的五水合硫酸铜、0.02摩尔分析纯的碘化钾、0.012摩尔分析纯的亚硫酸钠,加入配备50个直径6mm氧化锆磨球和8个直径10mm氧化锆磨球的50mL氧化锆球磨罐中,再向其中加入16g磁性Fe3O4纳米粉,在QM-3SP04 行星式高能球磨机中于480rpm下连续研磨4小时;用蒸馏水对产物进行洗涤,离心分离并在60℃和0.1MPa真空度下真空干燥2小时,得到了CuI-Fe3O4磁性纳米复合物。
对产品进行X-射线衍射分析,通过Scherrer公式进行计算,CuI-Fe3O4磁性纳米复合物中 CuI平均晶粒尺寸为11.7nm。
实施例4
本实施例按如下步骤制备CuI-Fe3O4磁性纳米复合物:
按照2∶2∶1.2的摩尔比称取0.02摩尔分析纯的五水合硫酸铜、0.02摩尔分析纯的碘化钾、0.012摩尔分析纯的亚硫酸钠,加入配备50个直径6mm氧化锆磨球和8个直径10mm氧化锆磨球的50mL氧化锆球磨罐中,再向其中加入16g磁性Fe3O4纳米粉,在QM-3SP04 行星式高能球磨机中于480rpm下连续研磨8小时,用蒸馏水对产物进行洗涤,离心分离并在60℃和0.1MPa真空度下真空干燥2小时,得到CuI-Fe3O4磁性纳米复合物。
对产品进行X-射线衍射分析,通过Scherrer公式进行计算,CuI-Fe3O4磁性纳米复合物中 CuI平均晶粒尺寸为12.9nm。
性能测试:
1、X-射线衍射分析(XRD分析):
分别将实施例1、2、3和4制得的CuI-Fe3O4磁性纳米复合物进行XRD分析,结果见图1。由Scherrer公式计算得到:当球磨时间内分别为1h、2h、4h、8h时,所得CuI-Fe3O4磁性纳米复合物中CuI粒子的平均晶粒尺寸分别为10.1nm、10.7nm、11.7nm、12.9nm,表明随着球磨时间的延长,产物CuI的平均晶粒大小稍稍增大。因此,在制备过程中,球磨时间的长短对CuI-Fe3O4磁性纳米复合物中CuI粒子的平均晶粒尺寸影响不大。
2、透射电子显微镜分析(TEM分析):
分别将Fe3O4纳米粒子原料和实施例2制得的CuI-Fe3O4磁性纳米复合物进行TEM分析,结果见图2、图3。可以看出Fe3O4颗粒的形状为立方体或近似球形,粒径大约是80~100nm,表面较光滑。而实施例2制得的CuI-Fe3O4磁性纳米复合物的表面要比Fe3O4原料粗糙得多,表面存在大量CuI纳米微粒,表明成功地合成了CuI-Fe3O4磁性纳米复合物。

Claims (2)

1.一锅球磨固相法制备CuI-Fe3O4磁性纳米复合物的方法,其特征在于:在室温下将五水合硫酸铜、碘化钾、亚硫酸钠和磁性Fe3O4纳米粉一锅混合,通过机械球磨引发混合原料的固相反应,制备出CuI-Fe3O4磁性纳米复合物;具体包括如下步骤:
将五水合硫酸铜、碘化钾和亚硫酸钠按照2∶2∶1.2的摩尔比混合均匀,再按每0.01摩尔五水合硫酸铜加入8g磁性Fe3O4纳米粉的加入量,向其中加入磁性Fe3O4纳米粉,获得混合原料;
将混合原料在球磨机中于480rpm下进行球磨固相反应;
反应1~8小时后,将球磨反应所得产物用蒸馏水进行洗涤,离心分离,然后在60℃、0.1MPa真空度下真空干燥2小时,即得到CuI-Fe3O4磁性纳米复合物。
2.根据权利要求1所述的方法,其特征在于:所述的磁性Fe3O4纳米粉的粒径在80~100nm。
CN201610476247.XA 2016-06-23 2016-06-23 一锅球磨固相法制备CuI-Fe3O4磁性纳米复合物的方法 Active CN105964282B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610476247.XA CN105964282B (zh) 2016-06-23 2016-06-23 一锅球磨固相法制备CuI-Fe3O4磁性纳米复合物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610476247.XA CN105964282B (zh) 2016-06-23 2016-06-23 一锅球磨固相法制备CuI-Fe3O4磁性纳米复合物的方法

Publications (2)

Publication Number Publication Date
CN105964282A CN105964282A (zh) 2016-09-28
CN105964282B true CN105964282B (zh) 2018-07-06

Family

ID=57020604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610476247.XA Active CN105964282B (zh) 2016-06-23 2016-06-23 一锅球磨固相法制备CuI-Fe3O4磁性纳米复合物的方法

Country Status (1)

Country Link
CN (1) CN105964282B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3895734B1 (en) * 2020-04-13 2023-01-25 ZTI Biosciences Co., Ltd. Iron oxide magnetic particles comprising copper(i)halides

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103240089A (zh) * 2013-05-21 2013-08-14 淮北师范大学 纳米Cu2O光催化剂的固相机械化学制备方法
CN103435090A (zh) * 2013-08-02 2013-12-11 浙江理工大学 一种纳米氯化亚铜的研磨生产方法
CN105289663A (zh) * 2015-10-23 2016-02-03 同济大学 一种可磁性回收的GO/Fe3O4-CuI催化剂及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016026A2 (en) * 2000-08-25 2002-02-28 Apyron Technologies, Inc. Adsorbent and/or catalyst compounds promoted with halide ions and methods of making and using thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103240089A (zh) * 2013-05-21 2013-08-14 淮北师范大学 纳米Cu2O光催化剂的固相机械化学制备方法
CN103435090A (zh) * 2013-08-02 2013-12-11 浙江理工大学 一种纳米氯化亚铜的研磨生产方法
CN105289663A (zh) * 2015-10-23 2016-02-03 同济大学 一种可磁性回收的GO/Fe3O4-CuI催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CuI制备方法的绿色研究;过静雯 等;《井冈山师范学院学报(自然科学)》;20050630;第26卷(第3期);第30-32页 *
Porous Fe3O4/CuI/PANI nanosheets with excellent microwave absorption and hydrophobic property;Liu Liu et al.;《Materials Research Bulletin》;20140207;第53卷;第58-64页 *

Also Published As

Publication number Publication date
CN105964282A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
Liu et al. Boron doped C3N4 nanodots/nonmetal element (S, P, F, Br) doped C3N4 nanosheets heterojunction with synergistic effect to boost the photocatalytic hydrogen production performance
Yu et al. Integrating plasmonic Au nanorods with dendritic like α-Bi2O3/Bi2O2CO3 heterostructures for superior visible-light-driven photocatalysis
Zhao et al. Synergistic effect of surface plasmon resonance, Ti3+ and oxygen vacancy defects on Ag/MoS2/TiO2-x ternary heterojunctions with enhancing photothermal catalysis for low-temperature wastewater degradation
Chen et al. Room temperature synthesized BaTiO3 for photocatalytic hydrogen evolution
Dong et al. Synthesis of g-C3N4/BiVO4 heterojunction composites for photocatalytic degradation of nonylphenol ethoxylate
Rajbongshi et al. ZnO and Co-ZnO nanorods—Complementary role of oxygen vacancy in photocatalytic activity of under UV and visible radiation flux
Janbandhu et al. CdS/TiO2 heterojunction in glass matrix: synthesis, characterization, and application as an improved photocatalyst
Zhang et al. Preparation and photocatalytic activity of hollow ZnO and ZnO–CuO composite spheres
Jo et al. Magnetically responsive SnFe2O4/g-C3N4 hybrid photocatalysts with remarkable visible-light-induced performance for degradation of environmentally hazardous substances and sustainable hydrogen production
CN101746824B (zh) 一种表面活性剂辅助的制备空心球状多孔BiVO4的方法
Lv et al. Fabrication of magnetically recyclable yolk-shell Fe 3 O 4@ TiO 2 nanosheet/Ag/gC 3 N 4 microspheres for enhanced photocatalytic degradation of organic pollutants
CN101717116B (zh) 一种制备花状BiVO4的表面活性剂辅助醇-水热法
Zhang et al. Controlled fabrication of nanosized TiO2 hollow sphere particles via acid catalytic hydrolysis/hydrothermal treatment
Dong et al. A green and facile synthesis for rGO/Ag nanocomposites using one-step chemical co-reduction route at ambient temperature and combined first principles theoretical analyze
Jiang et al. Reduced graphene oxide as co-catalyst for enhanced visible light photocatalytic activity of BiOBr
Zhu et al. Room-temperature synthesis of cuprous oxide and its heterogeneous nanostructures for photocatalytic applications
CN105148955A (zh) 一种多壁碳纳米管负载银/磷酸银核壳结构复合光催化剂的制备方法
Chen et al. One-step synthesis of novel hierarchical flower-like SnO2 nanostructures with enhanced photocatalytic activity
CN104525223A (zh) 一种高度均匀分散硫化锌石墨烯复合材料的制备方法
Wang et al. Self-templated formation of AgCl/TiO2 hollow octahedra for improved visible-light photocatalytic activity
Wang et al. Synthesizing pyridinic-N dominate-doped graphene/BiVO4 nanocomposite as a superior photocatalyst for degradation under visible-irradiation
Zhang et al. Amorphous carbon layer: An effective assistant for realizing near-infrared-activated photocatalysis
Qiao et al. Synthesis of MOF/MoS2 composite photocatalysts with enhanced photocatalytic performance for hydrogen evolution from water splitting
Keerthana Vanadium sulfide decorated graphitic carbon nitride nanocomposite for the enhanced photocatalytic activity towards organic pollutants
Zou et al. Oxalic acid modified hexagonal ZnIn2S4 combined with bismuth oxychloride to fabricate a hierarchical dual Z-scheme heterojunction: Accelerating charge transfer to improve photocatalytic activity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant