CN105964282B - 一锅球磨固相法制备CuI-Fe3O4磁性纳米复合物的方法 - Google Patents
一锅球磨固相法制备CuI-Fe3O4磁性纳米复合物的方法 Download PDFInfo
- Publication number
- CN105964282B CN105964282B CN201610476247.XA CN201610476247A CN105964282B CN 105964282 B CN105964282 B CN 105964282B CN 201610476247 A CN201610476247 A CN 201610476247A CN 105964282 B CN105964282 B CN 105964282B
- Authority
- CN
- China
- Prior art keywords
- magnetic
- cui
- solid phase
- nanocomposites
- magnetic nanocomposites
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/128—Halogens; Compounds thereof with iron group metals or platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Compounds Of Iron (AREA)
Abstract
本发明公开了一锅球磨固相法制备CuI‑Fe3O4磁性纳米复合物的方法,其特征在于:在室温下将五水合硫酸铜、碘化钾、亚硫酸钠和磁性Fe3O4纳米粉一锅混合,通过机械球磨引发混合原料的固相反应,制备出CuI‑Fe3O4磁性纳米复合物。本发明反应原料一锅法室温固相球磨反应制备CuI‑Fe3O4磁性纳米复合物的技术,制备过程简单、易于控制;避免使用表面活性剂、模板剂和溶剂,提高了产物纯度,也符合材料合成绿色化的要求;本发明提供的CuI‑Fe3O4磁性纳米复合物的制备方法,适合于大规模生产。
Description
技术领域
本发明属于纳米材料及其制备领域,特别涉及一种CuI-Fe3O4磁性纳米复合物的制备方法。
背景技术
CuI是一种用途十分广泛的物质,在有机催化、太阳能电池、二极管发光、树脂改性、人工降雨等领域有着重要的应用。其中,CuI作为催化剂,可以催化一系列卤代烃参与的偶联反应,例如Heck反应、Suzuki反应及Ullmann反应等。目前,CuI的制备方法较多。比如:元素直接反应法(Yaqing Liu,et.al.Synthesis of nano-CuI and its catalyticactivity in the thermal decomposition of ammonium perchlorate,Res.Chem.Intermed.,2015,41:3885–3892),电沉积法(Takeshi Takeda,et.al.Copper(I)iodide-catalyzed regioselective allylation of α-(2-pyridylthio)allylstannanes.A new route toδ,ε-unsaturated ketones,Tetrahedron Lett.,1997,38,2879–2882),水热法(L.P.Zhang,et.al.Growth and shape evolution of octahedralCuI crystal by a SC-assisted hydrothermal method,Mater.Res.Bull.,2006,41,905–908),脉冲激光沉积法(P.M.Sirimanne,et.al.Characterization of transparentconducting CuI thin films prepared by pulse laser deposition technique,Chem.Phys.Lett.,2002,366,485–489),真空蒸发(K.Tennakone, et.al.Deposition ofthin conducting films of CuI on glass,Sol.Energy Mater.Sol.Cells,1998, 55,283–289),等等。现有的制备方法虽然可以制备出CuI,但仍然存在一些不足,如:在制备过程中,有的需要使用复杂昂贵的设备、有的需要使用添加剂、有的需要高温条件、有的产生毒性较大的副产物,特别是液相法制备过程中产物粒子容易发生团聚,CuI超细纳米粉较难制备。
此外,纳米催化材料由于粒径过小,实际使用过程中难以回收,导致催化剂的回收再利用存在困难,从而增加了催化剂的用量和生产成本。同时,催化剂的直接排放也造成了环境污染。为降低生产成本、减少环境污染,人们一直在寻求催化剂回收、循环再利用的方法。众所周知,通过磁性分离将纳米粉末催化剂从反应体系中分离,是一种回收再利用催化剂的有效方法。要成功实施磁性分离,必须赋予纳米粉末催化剂一定的磁性。目前,Fe3O4作为常用的磁性载体材料,已经广泛地应用于磁性纳米复合材料的制备中,比如:朱道政等人采用溶剂热醇还原法,制备出绒球状的多孔Fe3O4@Cu2O核壳纳米复合物(朱道政等, Fe3O4@Cu2O多孔纳米微球的制备及可见光光催化性能研究,安徽大学学报(自然科学版), 2013,37(5):73-79);Li等人通过葡萄糖还原法制备出豆荚状核壳结构的Fe3O4@C@Cu2O磁性纳米复合物(S.K.Li等,Magnetic Fe3O4@C@Cu2O composites with bean-like core/shellnanostructures:Synthesis,properties and application in recyclablephotocatalytic degradation of dye pollutants.Journal of Materials Chemistry,2011,21:7459-7466)。
发明内容
本发明的目的在于提供一种CuI-Fe3O4磁性纳米复合物的制备方法,具有简单易行、节约成本、节能环保的优点。
本发明实现发明目的,采用如下技术方案:
本发明一锅球磨固相法制备CuI-Fe3O4磁性纳米复合物的方法,其特点在于:在室温下将五水合硫酸铜、碘化钾、亚硫酸钠和磁性Fe3O4纳米粉(粒径在80~100nm)一锅混合,通过机械球磨引发混合原料的固相反应,制备出CuI-Fe3O4磁性纳米复合物。具体包括如下步骤:
将五水合硫酸铜、碘化钾和亚硫酸钠按照2∶2∶1.2的摩尔比混合均匀,再按每0.01摩尔五水合硫酸铜加入8g磁性Fe3O4纳米粉的加入量,向其中加入磁性Fe3O4纳米粉,获得混合原料;将混合原料放入球磨锆罐中在QM-3SP04行星式高能球磨机中于480rpm下进行球磨固相反应;球磨反应1~8小时后,将球磨反应所得产物用蒸馏水进行洗涤,离心分离并在60℃和0.1MPa真空度下真空干燥2小时,即得到CuI-Fe3O4磁性纳米复合物。
与现有技术相比,本发明的积极效果是:
本发明提供了反应原料一锅法室温固相球磨反应制备CuI-Fe3O4磁性纳米复合物的技术,制备过程简单、易于控制;避免使用表面活性剂、模板剂和溶剂,提高了产物纯度,也符合材料合成绿色化的要求;本发明提供的CuI-Fe3O4磁性纳米复合物的制备方法,适合于大规模生产。
附图说明
图1为实施例1、2、3和4制备的CuI-Fe3O4磁性纳米复合物的XRD图;
图2为原料Fe3O4纳米粒子的TEM图像;
图3为实施例2制备的CuI-Fe3O4磁性纳米复合物的TEM图像。
具体实施方式
以下提供本发明CuI-Fe3O4磁性纳米复合物制备的具体实施方式。
实施例1
本实施例按如下步骤制备CuI-Fe3O4磁性纳米复合物:
按照2∶2∶1.2的摩尔比称取0.02摩尔分析纯的五水合硫酸铜、0.02摩尔分析纯的碘化钾、0.012摩尔分析纯的亚硫酸钠,加入配备50个直径6mm氧化锆磨球和8个直径10mm氧化锆磨球的50mL氧化锆球磨罐中,再向其中加入16g磁性Fe3O4纳米粉,在QM-3SP04 行星式高能球磨机中于480rpm下连续研磨1小时;用蒸馏水对产物进行洗涤,离心分离并在60℃和0.1MPa真空度下真空干燥2小时,得到CuI-Fe3O4磁性纳米复合物。
对产品进行X-射线衍射分析,通过Scherrer公式进行计算,CuI-Fe3O4磁性纳米复合物中 CuI平均晶粒尺寸为10.1nm。
实施例2
本实施例按如下步骤制备CuI-Fe3O4磁性纳米复合物:
按照2∶2∶1.2的摩尔比称取0.02摩尔分析纯的五水合硫酸铜、0.02摩尔分析纯的碘化钾、0.012摩尔分析纯的亚硫酸钠,加入配备50个直径6mm氧化锆磨球和8个直径10mm氧化锆磨球的50mL氧化锆球磨罐中,再向其中加入16g磁性Fe3O4纳米粉,在QM-3SP04 行星式高能球磨机中于480rpm下连续研磨2小时;用蒸馏水对产物进行洗涤,离心分离并在60℃和0.1MPa真空度下真空干燥2小时,得到CuI-Fe3O4磁性纳米复合物。
对产品进行X-射线衍射分析,通过Scherrer公式进行计算,CuI-Fe3O4磁性纳米复合物中 CuI平均晶粒尺寸为10.7nm。
实施例3
本实施例按如下步骤制备CuI-Fe3O4磁性纳米复合物:
按照2∶2∶1.2的摩尔比称取0.02摩尔分析纯的五水合硫酸铜、0.02摩尔分析纯的碘化钾、0.012摩尔分析纯的亚硫酸钠,加入配备50个直径6mm氧化锆磨球和8个直径10mm氧化锆磨球的50mL氧化锆球磨罐中,再向其中加入16g磁性Fe3O4纳米粉,在QM-3SP04 行星式高能球磨机中于480rpm下连续研磨4小时;用蒸馏水对产物进行洗涤,离心分离并在60℃和0.1MPa真空度下真空干燥2小时,得到了CuI-Fe3O4磁性纳米复合物。
对产品进行X-射线衍射分析,通过Scherrer公式进行计算,CuI-Fe3O4磁性纳米复合物中 CuI平均晶粒尺寸为11.7nm。
实施例4
本实施例按如下步骤制备CuI-Fe3O4磁性纳米复合物:
按照2∶2∶1.2的摩尔比称取0.02摩尔分析纯的五水合硫酸铜、0.02摩尔分析纯的碘化钾、0.012摩尔分析纯的亚硫酸钠,加入配备50个直径6mm氧化锆磨球和8个直径10mm氧化锆磨球的50mL氧化锆球磨罐中,再向其中加入16g磁性Fe3O4纳米粉,在QM-3SP04 行星式高能球磨机中于480rpm下连续研磨8小时,用蒸馏水对产物进行洗涤,离心分离并在60℃和0.1MPa真空度下真空干燥2小时,得到CuI-Fe3O4磁性纳米复合物。
对产品进行X-射线衍射分析,通过Scherrer公式进行计算,CuI-Fe3O4磁性纳米复合物中 CuI平均晶粒尺寸为12.9nm。
性能测试:
1、X-射线衍射分析(XRD分析):
分别将实施例1、2、3和4制得的CuI-Fe3O4磁性纳米复合物进行XRD分析,结果见图1。由Scherrer公式计算得到:当球磨时间内分别为1h、2h、4h、8h时,所得CuI-Fe3O4磁性纳米复合物中CuI粒子的平均晶粒尺寸分别为10.1nm、10.7nm、11.7nm、12.9nm,表明随着球磨时间的延长,产物CuI的平均晶粒大小稍稍增大。因此,在制备过程中,球磨时间的长短对CuI-Fe3O4磁性纳米复合物中CuI粒子的平均晶粒尺寸影响不大。
2、透射电子显微镜分析(TEM分析):
分别将Fe3O4纳米粒子原料和实施例2制得的CuI-Fe3O4磁性纳米复合物进行TEM分析,结果见图2、图3。可以看出Fe3O4颗粒的形状为立方体或近似球形,粒径大约是80~100nm,表面较光滑。而实施例2制得的CuI-Fe3O4磁性纳米复合物的表面要比Fe3O4原料粗糙得多,表面存在大量CuI纳米微粒,表明成功地合成了CuI-Fe3O4磁性纳米复合物。
Claims (2)
1.一锅球磨固相法制备CuI-Fe3O4磁性纳米复合物的方法,其特征在于:在室温下将五水合硫酸铜、碘化钾、亚硫酸钠和磁性Fe3O4纳米粉一锅混合,通过机械球磨引发混合原料的固相反应,制备出CuI-Fe3O4磁性纳米复合物;具体包括如下步骤:
将五水合硫酸铜、碘化钾和亚硫酸钠按照2∶2∶1.2的摩尔比混合均匀,再按每0.01摩尔五水合硫酸铜加入8g磁性Fe3O4纳米粉的加入量,向其中加入磁性Fe3O4纳米粉,获得混合原料;
将混合原料在球磨机中于480rpm下进行球磨固相反应;
反应1~8小时后,将球磨反应所得产物用蒸馏水进行洗涤,离心分离,然后在60℃、0.1MPa真空度下真空干燥2小时,即得到CuI-Fe3O4磁性纳米复合物。
2.根据权利要求1所述的方法,其特征在于:所述的磁性Fe3O4纳米粉的粒径在80~100nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610476247.XA CN105964282B (zh) | 2016-06-23 | 2016-06-23 | 一锅球磨固相法制备CuI-Fe3O4磁性纳米复合物的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610476247.XA CN105964282B (zh) | 2016-06-23 | 2016-06-23 | 一锅球磨固相法制备CuI-Fe3O4磁性纳米复合物的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105964282A CN105964282A (zh) | 2016-09-28 |
CN105964282B true CN105964282B (zh) | 2018-07-06 |
Family
ID=57020604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610476247.XA Active CN105964282B (zh) | 2016-06-23 | 2016-06-23 | 一锅球磨固相法制备CuI-Fe3O4磁性纳米复合物的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105964282B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3895734B1 (en) * | 2020-04-13 | 2023-01-25 | ZTI Biosciences Co., Ltd. | Iron oxide magnetic particles comprising copper(i)halides |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103240089A (zh) * | 2013-05-21 | 2013-08-14 | 淮北师范大学 | 纳米Cu2O光催化剂的固相机械化学制备方法 |
CN103435090A (zh) * | 2013-08-02 | 2013-12-11 | 浙江理工大学 | 一种纳米氯化亚铜的研磨生产方法 |
CN105289663A (zh) * | 2015-10-23 | 2016-02-03 | 同济大学 | 一种可磁性回收的GO/Fe3O4-CuI催化剂及其制备方法和应用 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002016026A2 (en) * | 2000-08-25 | 2002-02-28 | Apyron Technologies, Inc. | Adsorbent and/or catalyst compounds promoted with halide ions and methods of making and using thereof |
-
2016
- 2016-06-23 CN CN201610476247.XA patent/CN105964282B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103240089A (zh) * | 2013-05-21 | 2013-08-14 | 淮北师范大学 | 纳米Cu2O光催化剂的固相机械化学制备方法 |
CN103435090A (zh) * | 2013-08-02 | 2013-12-11 | 浙江理工大学 | 一种纳米氯化亚铜的研磨生产方法 |
CN105289663A (zh) * | 2015-10-23 | 2016-02-03 | 同济大学 | 一种可磁性回收的GO/Fe3O4-CuI催化剂及其制备方法和应用 |
Non-Patent Citations (2)
Title |
---|
CuI制备方法的绿色研究;过静雯 等;《井冈山师范学院学报(自然科学)》;20050630;第26卷(第3期);第30-32页 * |
Porous Fe3O4/CuI/PANI nanosheets with excellent microwave absorption and hydrophobic property;Liu Liu et al.;《Materials Research Bulletin》;20140207;第53卷;第58-64页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105964282A (zh) | 2016-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Boron doped C3N4 nanodots/nonmetal element (S, P, F, Br) doped C3N4 nanosheets heterojunction with synergistic effect to boost the photocatalytic hydrogen production performance | |
Yu et al. | Integrating plasmonic Au nanorods with dendritic like α-Bi2O3/Bi2O2CO3 heterostructures for superior visible-light-driven photocatalysis | |
Zhao et al. | Synergistic effect of surface plasmon resonance, Ti3+ and oxygen vacancy defects on Ag/MoS2/TiO2-x ternary heterojunctions with enhancing photothermal catalysis for low-temperature wastewater degradation | |
Chen et al. | Room temperature synthesized BaTiO3 for photocatalytic hydrogen evolution | |
Dong et al. | Synthesis of g-C3N4/BiVO4 heterojunction composites for photocatalytic degradation of nonylphenol ethoxylate | |
Rajbongshi et al. | ZnO and Co-ZnO nanorods—Complementary role of oxygen vacancy in photocatalytic activity of under UV and visible radiation flux | |
Janbandhu et al. | CdS/TiO2 heterojunction in glass matrix: synthesis, characterization, and application as an improved photocatalyst | |
Zhang et al. | Preparation and photocatalytic activity of hollow ZnO and ZnO–CuO composite spheres | |
Jo et al. | Magnetically responsive SnFe2O4/g-C3N4 hybrid photocatalysts with remarkable visible-light-induced performance for degradation of environmentally hazardous substances and sustainable hydrogen production | |
CN101746824B (zh) | 一种表面活性剂辅助的制备空心球状多孔BiVO4的方法 | |
Lv et al. | Fabrication of magnetically recyclable yolk-shell Fe 3 O 4@ TiO 2 nanosheet/Ag/gC 3 N 4 microspheres for enhanced photocatalytic degradation of organic pollutants | |
CN101717116B (zh) | 一种制备花状BiVO4的表面活性剂辅助醇-水热法 | |
Zhang et al. | Controlled fabrication of nanosized TiO2 hollow sphere particles via acid catalytic hydrolysis/hydrothermal treatment | |
Dong et al. | A green and facile synthesis for rGO/Ag nanocomposites using one-step chemical co-reduction route at ambient temperature and combined first principles theoretical analyze | |
Jiang et al. | Reduced graphene oxide as co-catalyst for enhanced visible light photocatalytic activity of BiOBr | |
Zhu et al. | Room-temperature synthesis of cuprous oxide and its heterogeneous nanostructures for photocatalytic applications | |
CN105148955A (zh) | 一种多壁碳纳米管负载银/磷酸银核壳结构复合光催化剂的制备方法 | |
Chen et al. | One-step synthesis of novel hierarchical flower-like SnO2 nanostructures with enhanced photocatalytic activity | |
CN104525223A (zh) | 一种高度均匀分散硫化锌石墨烯复合材料的制备方法 | |
Wang et al. | Self-templated formation of AgCl/TiO2 hollow octahedra for improved visible-light photocatalytic activity | |
Wang et al. | Synthesizing pyridinic-N dominate-doped graphene/BiVO4 nanocomposite as a superior photocatalyst for degradation under visible-irradiation | |
Zhang et al. | Amorphous carbon layer: An effective assistant for realizing near-infrared-activated photocatalysis | |
Qiao et al. | Synthesis of MOF/MoS2 composite photocatalysts with enhanced photocatalytic performance for hydrogen evolution from water splitting | |
Keerthana | Vanadium sulfide decorated graphitic carbon nitride nanocomposite for the enhanced photocatalytic activity towards organic pollutants | |
Zou et al. | Oxalic acid modified hexagonal ZnIn2S4 combined with bismuth oxychloride to fabricate a hierarchical dual Z-scheme heterojunction: Accelerating charge transfer to improve photocatalytic activity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |