CN105948746B - 一种压电陶瓷材料及其制备方法 - Google Patents

一种压电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN105948746B
CN105948746B CN201610271777.0A CN201610271777A CN105948746B CN 105948746 B CN105948746 B CN 105948746B CN 201610271777 A CN201610271777 A CN 201610271777A CN 105948746 B CN105948746 B CN 105948746B
Authority
CN
China
Prior art keywords
hours
preparation
electrode
piezoceramic material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610271777.0A
Other languages
English (en)
Other versions
CN105948746A (zh
Inventor
杨彦辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanyang Huiteng Intelligent Technology Co., Ltd.
Original Assignee
Nanyang Huiteng Intelligent Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanyang Huiteng Intelligent Technology Co Ltd filed Critical Nanyang Huiteng Intelligent Technology Co Ltd
Priority to CN201610271777.0A priority Critical patent/CN105948746B/zh
Publication of CN105948746A publication Critical patent/CN105948746A/zh
Application granted granted Critical
Publication of CN105948746B publication Critical patent/CN105948746B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种容量温度稳定性明显的铌镍锆钛酸铅基压电陶瓷材料及其制备方法,所述压电陶瓷材料的组成通式为:PbxBa1‑x(Ni1/ 3Nb2/3)y[Zr0.53/Ti0.47]zO3+aNb2O5。其中x、y、z均为摩尔比,0.92≤X≤0.94,0.026≤y≤0.028,0.972≤z≤0.974),a为重量比,以PbxBa1‑x(Ni1/ 3Nb2/3)y[Zr0.53/Ti0.47]zO3重量为1计,0.2%≤a≤0.35%。该类陶瓷具备高容量温度稳定性。可满足压电驱动器压电扬声器等的应用需要,极具应用前景。

Description

一种压电陶瓷材料及其制备方法
技术领域
本发明涉及一种压电陶瓷材料及其制备方法,属于功能陶瓷材料技术领域。
背景技术
压电陶瓷在电子功能材料领域中占据相当大的比重,近年来,为了满足不同的使用要求,材料研究工作者一方面从老材料中发掘新效应,开拓新应用;另一方面积极地开发新型的压电功能陶瓷。大量研究表明,各种弛豫铁电体固溶物与PZT陶瓷结合而形成的三元系、四元系压电陶瓷系统,以及对这些系统进行离子置换和掺杂改性,可获得高介电、高压电性能的陶瓷材料,并且多元系压电陶瓷的性能也可以在很大范围内调节,故而现在成了人们的研究重点,也使压电陶瓷的研究前景更为广阔。
随着技术的进步,压电微位移驱动器的应用范围逐步扩大,如在纳米工程,高精度定位及加工系统中,压电微位移驱动器有着非常重要的应用。这些系统对压电微位移器也有着非常高的要求,如大压电位移,低的驱动电压,高的温度稳定性等。压电陶瓷在不同温度下介电性能、谐振频率等会发生偏移,超过居里温度点还会出现压电性能消失的情况。因此,此类高性能微位移驱动器用压电陶瓷材料容量温度稳定性不得超过5000ppm,频率稳定稳定性在-40℃到85℃范围内变化不得超过0.4%。
为了达到较高的温度稳定性,提高微位移驱动器的精度,本发明采用PbxBa1-x(Ni1/3Nb2/3)y[Zr0.53/Ti0.47]zO3+aNb2O5,0.026≤y≤0.028,0.972≤z≤0.974的铌镍酸铅和锆钛酸铅比例、钡0.92≤X≤0.94的A位取代量以及铌0.3%≤a≤0.35%的掺杂有效改善了陶瓷具备高容量温度稳定性。可满足压电驱动器压电扬声器等的应用需要,极具应用前景。
实施例一:
在配料前准备好球磨罐及氧化锆球并清洗干净,按照1L尼龙罐1.5kgφ3锆球500g粉料比例配备待用。
步骤1)按照PbxBa1-x(Ni1/3Nb2/3)y[Zr0.53/Ti0.47]zO3+aNb2O5,其中x、y、z均为摩尔比,X=0.935,y=0.0275,z=0.9725,a为重量比,以PbxBa1-x(Ni1/3Nb2/3)y[Zr0.53/Ti0.47]zO3重量为1计,a=0.34%。
准备物料,并进行水分测试,测试数据用以修正称量重量。根据修正好的重量数据称重配料,配料时按照四氧化三铅(约1/2)、及锆、钛、铌、碳酸钡、另一半的四氧化三铅的顺序加入到球磨罐中。按照料:去离子水:无工业酒精=1:0.8:0.08(重量比)加相应的去离子水及无水乙醇到球磨桶中。用行星球磨机球磨2~3小时,倒出混合好的料于不锈钢盘中,开启箱电源,设定上下温度为120~150℃,前期每10~15分钟进行搅拌一次直至料浆烘至粘稠状,当料浆烘干至块状不黏手时即为烘干,关电源,自然冷却待烘干(料浆粒度达到:D50<0.55μm,D90<1.55μm)。将冷却后的不锈钢盘取出,在盘中初步捣碎料块后,刮下盘壁上粘料混均,加入打粉机粉碎。再将粉料装入匣钵中,每加入半勺,铺平,振实,即将加满时称重,料重控制在620±3g.压实后的料面距匣钵上沿1.5cm左右。装好的匣钵送入预烧炉中预烧。
步骤2)将装好的匣钵放入高温炉预烧,在800~900℃合成2~3小时,将合成好的粉体捣碎按照料:去离子水:无工业酒精=1:0.8:0.08(重量比)加相应的去离子水及无水乙醇到球磨桶中。用行星球磨机球磨2.5小时,倒出混合好的料于不锈钢盘中,开启箱电源,设定上下温度为135℃烘干,关电源,自然冷却待烘干(料浆粒度达到:D50<0.55μm,D90<1.55μm)。
步骤3)将烘干好的预烧粉加入8%(重量比)的PVA水溶液(PVA含量5%)。在10Mpa下压制成素坯,放入高温烧结炉中1300℃烧结2小时。取出后两面磨平,涂敷银电极并用120℃烘干后,放入高温炉设置温度为500℃保温十分钟。
步骤4)将上完银电极的压电陶瓷片在130℃温度下采用1100V/mm电压极化。
将极化好的陶瓷片在100℃老化10h,并测试数据得:Kp=0.75,C33=1800 tgθ=1.6%Qm=45 d33=500容量温度稳定性<2000ppm,-40℃到85℃,频率变化为0.3%。
实施例二:
在配料前准备好球磨罐及氧化锆球并清洗干净,按照1L尼龙罐1.5kgφ3锆球500g粉料比例配备待用。
步骤1)按照PbxBa1-x(Ni1/3Nb2/3)y[Zr0.53/Ti0.47]zO3+aNb2O5,其中x、y、z均为摩尔比,X=0.93,y=0.027,z=0.973,a为重量比,以PbxBa1-x(Ni1/3Nb2/3)y[Zr0.53/Ti0.47]zO3重量为1计,a=0.345%。
准备物料,并进行水分测试,测试数据用以修正称量重量。根据修正好的重量数据称重配料,配料时按照四氧化三铅(约1/2)、及锆、钛、铌、碳酸钡、另一半的四氧化三铅的顺序加入到球磨罐中。按照料:去离子水:无工业酒精=1:0.8:0.08(重量比)加相应的去离子水及无水乙醇到球磨桶中。用行星球磨机球磨3小时,倒出混合好的料于不锈钢盘中,开启箱电源,设定上下温度为120~150℃,前期每10~15分钟进行搅拌一次直至料浆烘至粘稠状,当料浆烘干至块状不黏手时即为烘干,关电源,自然冷却待烘干(料浆粒度达到:D50<0.55μm,D90<1.55μm)。将冷却后的不锈钢盘取出,在盘中初步捣碎料块后,刮下盘壁上粘料混均,加入打粉机粉碎。再将粉料装入匣钵中,每加入半勺,铺平,振实,即将加满时称重,料重控制在620±3g.压实后的料面距匣钵上沿1.5cm左右。装好的匣钵送入预烧炉中预烧。
步骤2)将装好的匣钵放入高温炉预烧,在800~900℃合成2~3小时,将合成好的粉体捣碎按照料:去离子水:无工业酒精=1:0.8:0.08(重量比)加相应的去离子水及无水乙醇到球磨桶中。用行星球磨机球磨2.5小时,倒出混合好的料于不锈钢盘中,开启箱电源,设定上下温度为135℃烘干,关电源,自然冷却待烘干(料浆粒度达到:D50<0.55μm,D90<1.55μm)。
步骤3)将烘干好的预烧粉加入8%(重量比)的PVA水溶液(PVA含量5%)。在8Mpa下压制成素坯,放入高温烧结炉中1250℃烧结2小时。取出后两面磨平,涂敷银钯电极并用120℃烘干后,放入高温炉设置温度为500℃保温十分钟。
步骤4)将上完银电极的压电陶瓷片在130℃温度下采用1000V/mm电压极化。
将极化好的陶瓷片在100℃老化10h,并测试数据得:Kp=0.73,C33=1900 tgθ=1.7%Qm=48 d33=550容量温度稳定性<2200ppm,-40℃到85℃,频率变化为0.35%。
实施例三:
在配料前准备好球磨罐及氧化锆球并清洗干净,按照1L尼龙罐1.5kgφ3锆球500g粉料比例配备待用。
步骤1)按照PbxBa1-x(Ni1/3Nb2/3)y[Zr0.53/Ti0.47]zO3+aNb2O5,其中x、y、z均为摩尔比,X=0.94,y=0.028,z=0.972,a为重量比,以PbxBa1-x(Ni1/3Nb2/3)y[Zr0.53/Ti0.47]zO3重量为1计,a=0.35%。
准备物料,并进行水分测试,测试数据用以修正称量重量。根据修正好的重量数据称重配料,配料时按照四氧化三铅(约1/2)、及锆、钛、铌、碳酸钡、另一半的四氧化三铅的顺序加入到球磨罐中。按照料:去离子水:无工业酒精=1:0.8:0.08(重量比)加相应的去离子水及无水乙醇到球磨桶中。用行星球磨机球磨2~3小时,倒出混合好的料于不锈钢盘中,开启箱电源,设定上下温度为120~150℃,前期每10~15分钟进行搅拌一次直至料浆烘至粘稠状,当料浆烘干至块状不黏手时即为烘干,关电源,自然冷却待烘干(料浆粒度达到:D50<0.55μm,D90<1.55μm)。将冷却后的不锈钢盘取出,在盘中初步捣碎料块后,刮下盘壁上粘料混均,加入打粉机粉碎。再将粉料装入匣钵中,每加入半勺,铺平,振实,即将加满时称重,料重控制在620±3g.压实后的料面距匣钵上沿1.5cm左右。装好的匣钵送入预烧炉中预烧。
步骤2)将装好的匣钵放入高温炉预烧,在800~900℃合成2~3小时,将合成好的粉体捣碎按照料:去离子水:无工业酒精=1:0.8:0.08(重量比)加相应的去离子水及无水乙醇到球磨桶中。用行星球磨机球磨2.5小时,倒出混合好的料于不锈钢盘中,开启箱电源,设定上下温度为135℃烘干,关电源,自然冷却待烘干(料浆粒度达到:D50<0.55μm,D90<1.55μm)。
步骤3)将烘干好的预烧粉加入8%(重量比)的PVA水溶液(PVA含量5%)。在15Mpa下压制成素坯,放入高温烧结炉中1350℃烧结2小时。取出后两面磨平,涂敷银电极并用120℃烘干后,放入高温炉设置温度为500℃保温十分钟。
步骤4)将上完银电极的压电陶瓷片在130℃温度下采用1100V/mm电压极化。
将极化好的陶瓷片在100℃老化10h,并测试数据得:Kp=0.76,C33=1800 tgθ=1.6%Qm=42 d33=530容量温度稳定性<2100ppm,-40℃到85℃,频率变化为0.28%。

Claims (4)

1.一种压电陶瓷材料,其特征在于:组成式为Pb0.94Ba0.06(Ni1/3Nb2/3)0.026[Zr0.53/Ti0.47]0.974O3+aNb2O5或者为Pb0.93Ba0.07(Ni1/3Nb2/3)0.027[Zr0.53/Ti0.47]0.973O3+aNb2O5,0.34%≤a≤0.35%。
2.一种权利要求1所述压电陶瓷材料制备方法,其特征在于制备方法包括:
步骤1)将原材料Pb3O4、TiO2、ZrO2、BaCO3、NiO、Nb2O5按照所述化学计量比称量,首先加入一半左右Pb3O4,加完其他材料后再加入剩余Pb3O4,最后加入去离子水,球磨2~3小时倒出烘干;
步骤2)将混合均匀的粉体倒入氧化铝匣钵振实,在800~900℃合成2~4小时,将合成好的粉体捣碎加入去离子水球磨2~3小时倒出烘干;
步骤3)将烘干的粉体中加入PVA压制素坯,压制素坯压力为5~15Mpa,压制成素坯在1200℃~1350℃烧结2~3小时,双面磨平,表面覆盖电极;
步骤4)将覆盖电极的压电陶瓷极化,极化电压为900V/mm~1500V/mm,极化温度为120℃~140℃,获得具备高容量温度稳定性的压电陶瓷。
3.如权利要求2所述的制备方法,其特征在于步骤3)表面覆盖电极为银电极、银钯或银铂电极中的一种。
4.如权利要求2所述的制备方法,其特征在于极化好的压电陶瓷材料需要在100℃老化8~12h。
CN201610271777.0A 2016-04-28 2016-04-28 一种压电陶瓷材料及其制备方法 Active CN105948746B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610271777.0A CN105948746B (zh) 2016-04-28 2016-04-28 一种压电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610271777.0A CN105948746B (zh) 2016-04-28 2016-04-28 一种压电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105948746A CN105948746A (zh) 2016-09-21
CN105948746B true CN105948746B (zh) 2019-07-19

Family

ID=56916954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610271777.0A Active CN105948746B (zh) 2016-04-28 2016-04-28 一种压电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105948746B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110955041A (zh) * 2020-01-10 2020-04-03 太原理工大学 一种基于sebs薄膜的全固态可变焦压电驱动式微透镜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101941840A (zh) * 2010-10-09 2011-01-12 天津大学 制备铌镍-锆钛酸铅压电陶瓷的b位氧化物前驱体方法
CN102584229A (zh) * 2012-01-14 2012-07-18 天津大学 添加碳酸钡的铌锑酸铅-锆钛酸铅压电陶瓷及其制备方法
CN103964846A (zh) * 2014-04-29 2014-08-06 常州市斯威芙特制针科技有限公司 压电双晶片用压电陶瓷材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101941840A (zh) * 2010-10-09 2011-01-12 天津大学 制备铌镍-锆钛酸铅压电陶瓷的b位氧化物前驱体方法
CN102584229A (zh) * 2012-01-14 2012-07-18 天津大学 添加碳酸钡的铌锑酸铅-锆钛酸铅压电陶瓷及其制备方法
CN103964846A (zh) * 2014-04-29 2014-08-06 常州市斯威芙特制针科技有限公司 压电双晶片用压电陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN105948746A (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
Bai et al. Temperature-insensitive large strain response with a low hysteresis behavior in BNT-based ceramics
CN102219514B (zh) 一种弛豫型铁掺杂压电陶瓷材料及制备方法
JP4510966B2 (ja) 圧電体セラミックス
Fan et al. Large electric-field-induced strain in B-site complex-ion (Fe0. 5Nb0. 5) 4+-doped Bi1/2 (Na0. 82K0. 12) 1/2TiO3 lead-free piezoceramics
Li et al. Large strain response in Bi4Ti3O12 modified BNT-BT piezoelectric ceramics
Li et al. Piezoelectric and ferroelectric properties of Na0. 5Bi0. 5TiO3–K0. 5Bi0. 5TiO3–BaTiO3 piezoelectric ceramics
Zhao et al. Improved temperature stability and high piezoelectricity in lead-free barium titanate-based ceramics
US7911117B2 (en) Piezoelectric/electrostrictive body, and piezoelectric/electrostrictive element
Du et al. Effects of Fe2O3 doping on the microstructure and piezoelectric properties of 0.55 Pb (Ni1/3Nb2/3) O3–0.45 Pb (Zr0. 3Ti0. 7) O3 ceramics
Kalem et al. Dielectric and piezoelectric properties of PMN-PT ceramics doped with strontium
Somwan et al. Dielectric, ferroelectric and induced strain behavior of PLZT 9/65/35 ceramics modified by Bi2O3 and CuO co-doping
Perumal et al. Investigations on electrical and energy storage behaviour of PZN-PT, PMN-PT, PZN–PMN-PT piezoelectric solid solutions
CN102924082A (zh) 锰掺杂铌镍-锆钛酸铅压电陶瓷及其制备方法
CN103641476B (zh) 陶瓷材料、烧结体及制备方法、压电陶瓷器件、压电双晶片及改善其温度稳定性的胶合方法
Wang et al. Pb (In1/2Nb1/2) O3-PbZrO3-PbTiO3 ternary ceramics with temperature-insensitive and superior piezoelectric property
CN108238795A (zh) 一种具有高居里温度的新型三元铁电陶瓷系统及其制备方法和应用
CN104230333B (zh) 一种高温压电陶瓷材料及其制备方法
CN105948746B (zh) 一种压电陶瓷材料及其制备方法
Leng et al. Optimizing piezoelectric properties and temperature stability via Nb2O5 doping in PZT-based ceramics
KR100481226B1 (ko) 세라믹 액츄에이터용 압전 세라믹 조성물 및 압전 세라믹 제조방법
Dumitru et al. Investigations on the doping effects on the properties of piezoelectric ceramics
Li et al. Microstructure and electrical properties of Pb (Zr0. 5Ti0. 5) O3-Pb (Zn1/3Nb2/3) O3-Pb (Ni1/3Nb2/3) O3+ xS3Ti2O7 ceramics
CN105924166B (zh) 一种压电陶瓷材料及其制备方法
Zhao et al. Improved Piezoelectricity in (K 0.44 Na 0.52 Li 0.04)(Nb 0.91 Ta 0.05 Sb 0.04) O 3-x Bi 0.25 Na 0.25 NbO 3 Lead-Free Piezoelectric Ceramics
CN103539448A (zh) 压电陶瓷材料、压电陶瓷器件及其制备方法、抗老化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20190626

Address after: 473500 1st floor, Building 2, Xianglong Photoelectric Park, Wolong District, Nanyang City, Henan Province

Applicant after: Nanyang Huiteng Intelligent Technology Co., Ltd.

Address before: 473500 East District of Xinye County Industrial Agglomeration Area, Nanyang City, Henan Province

Applicant before: Yang Yanhui

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant