CN105935591A - 铜镍纳米合金的应用 - Google Patents

铜镍纳米合金的应用 Download PDF

Info

Publication number
CN105935591A
CN105935591A CN201610231878.5A CN201610231878A CN105935591A CN 105935591 A CN105935591 A CN 105935591A CN 201610231878 A CN201610231878 A CN 201610231878A CN 105935591 A CN105935591 A CN 105935591A
Authority
CN
China
Prior art keywords
copper
nickel
target
nanoalloy
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610231878.5A
Other languages
English (en)
Other versions
CN105935591B (zh
Inventor
杨国伟
林昭勇
李丽华
余丽莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Priority to CN201610231878.5A priority Critical patent/CN105935591B/zh
Publication of CN105935591A publication Critical patent/CN105935591A/zh
Application granted granted Critical
Publication of CN105935591B publication Critical patent/CN105935591B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • B01J35/23
    • B01J35/39
    • B01J35/393
    • B01J35/51
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/002Alloys based on nickel or cobalt with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明公开了一种铜镍纳米合金的应用,具体为铜镍纳米合金作为光解水产氢助催化剂的应用。本发明在异丙醇和水溶液中直接利用脉冲激光烧蚀技术合成了铜镍纳米合金颗粒。此方法简易快速,在常温常压下即可完成,对操作环境没有苛刻的要求;此方法安全清洁,无需额外的化学添加剂,材料表面干净清洁。本发明直接从铜镍非合金相混合靶中制成了铜镍合金,有效地将金属合金化过程和“自上而下”纳米材料制备法结合起来。本发明在制备铜镍纳米合金的时候,通过改变液体环境即可实现一步法从同一块靶材制备出不同组分的铜镍纳米合金。本发明制备的铜镍纳米合金表现出优异的光解水产氢助催化性能,助催化效果优于单一组分的铜纳米颗粒和镍纳米颗粒。

Description

铜镍纳米合金的应用
技术领域
本发明涉及纳米材料应用于光解水产氢的新能源领域,尤其是指一种铜镍纳米合金的应用。
背景技术
能源,与信息、材料一起,并称为现代社会发展的三大支柱。21世纪以来,新能源更是成为新的研究热点。清洁、可持续的二次能源氢能是其中的典型代表之一。寻求廉价且环保的产氢技术是各国科学家共同关心的问题。利用太阳能实现从水中获取氢能是一项备受关注的产氢新技术。上世纪70年代发展起来的光电化学水分解系统(光电催化技术),是在光照的情况下,利用外加电场驱动阳极发生氢还原反应而得到氢能。随后发展起来的光催化技术则克服了光电催化消耗大量电能的缺点,真正实现了光解水产氢——太阳光照射分散于水中的光催化剂,利用运动至表面的光生电子直接还原水中的氢离子从而释放出氢能。
为了防止光生电子和空穴的复合,在光催化系统中,通常需要添加助催化剂。助催化剂的引入能有效捕获光生电子,实现电子空穴对有效分离的同时为还原反应的发生提供活性位点。贵金属铂是最常用的助催化剂,具有功函数大、性能稳定等优点。但是铂价格高昂而且稀缺,严重制约了它在实际生产中的大范围应用。因此,寻求廉价而有效的助催化剂是亟待攻克的技术重点与难点。大量的研究表明,铜是非常有希望的候选材料之一。但是目前为止,铜的助催化性能仍然无法与铂媲美,且铜的稳定性较差,在空气中很容易被氧化而失效。基于此,经过大量的调研,本发明着力于制备出铜镍纳米合金来提高单一成分的铜的综合性能,同时降低助催化剂的成本,具有较大的经济价值和现实意义。
发明内容
本发明的目的在于克服现有技术的不足,提供一种铜镍纳米合金的应用,且能够简易快速地制备该铜镍纳米合金,该合金组分可调,具有较好的稳定性,在表现出优异的光解水产氢助催化性能的同时降低助催化剂的成本。
为实现上述目的,本发明所提供的技术方案如下:
一种铜镍纳米合金的应用,具体为铜镍纳米合金作为光解水产氢助催化剂的应用。该铜镍纳米合金可根据制备条件的不同组分可调,包含以下按原子数百分比含量计的组分:Cu 83%,Ni 17%;Cu 63%,Ni 37%;Cu 54%,Ni 46%;Cu 41%,Ni 59%;Cu 22%,Ni 78%,不含其他杂质元素。为了方便,这五种不同组分的纳米合金,可以分别记为:Cu83Ni17、Cu63Ni37、Cu54Ni46、Cu41Ni59、Cu22Ni78
所述铜镍纳米合金的制备,包括以下步骤:
1)将靶材:一块铜靶、一块镍靶和两块铜镍非合金相混合靶,置于反应容器中,往反应容器中注入异丙醇或异丙醇与水的混合溶液,使得靶材浸没在液体中;
2)调节纳秒脉冲激光光路,使激光光束依次经过全反射镜和聚焦透镜后聚焦在靶材表面;
3)开启脉冲激光,在激光的作用下进行液相激光烧蚀反应;
4)反应结束后,关闭脉冲激光,取出反应后的液体,在烘箱中进行干燥,得到目标产物,即所需的铜镍纳米合金颗粒,该铜镍纳米合金颗粒除含铜、镍元素外,不含其他杂质元素。
步骤1)中的两块铜镍非合金相混合靶中铜镍原子数百分比含量分别为Cu50%,Ni 50%与Cu 20%,Ni 80%,分别记为Cu50Ni50、Cu20Ni80靶。
步骤1)中的铜靶、镍靶和铜镍非合金相混合靶均为圆形,纯度为99.99%,直径为3cm,厚度为0.5cm;液体体积为10mL,异丙醇、水按体积比为1:0.7或1:0.6或1:0.2;液体液面离靶材上表面垂直距离为0.8cm;
步骤2)中的激光聚焦至靶材表面的焦点直径为0.2cm;
步骤3)中的脉冲激光波长为532nm,脉宽为10ns,重复频率为10Hz,单脉冲能量为120mJ,激光烧蚀反应时间为60min;
步骤4)中的干燥温度为60℃,时间为10h;制得的铜镍纳米合金颗粒为球状,直径分布范围为30-60nm,主要集中在40nm。
本发明与现有技术相比,具有如下优点与有益效果:
1、本发明在异丙醇和水溶液中直接利用脉冲激光烧蚀技术合成了铜镍纳米合金颗粒。此方法简易快速,在常温常压下即可完成,对操作环境没有苛刻的要求;此方法安全清洁,无需额外的化学添加剂,材料表面干净清洁。
2、本发明直接从铜镍非合金相混合靶中制成了铜镍合金,有效地将金属合金化过程和“自上而下”纳米材料制备法结合起来。
3、本发明在制备铜镍纳米合金的时候,通过改变液体环境即可实现一步法从同一块靶材制备出不同组分的铜镍纳米合金。
4、本发明制备的铜镍纳米合金表现出优异的光解水产氢助催化性能,能有效地提高常见光催化剂二氧化钛的产氢性能,助催化效果优于单一组分的铜纳米颗粒和镍纳米颗粒。
5、本发明制备的不同组分的铜镍纳米合金颗粒负载至二氧化钛上表示出不同的最佳产氢速率。其中,Cu83Ni17和Cu54Ni46的最佳产氢速率可与常见贵金属助催化剂Pt媲美,Cu63Ni37的最佳产氢速率更是超越了Pt。
6、本发明制备的Cu63Ni37纳米合金颗粒最佳载量为7wt%。尽管Cu63Ni37的最佳载量比Pt的最佳载量(1wt%)大,但按照国内金属价格计算,其成本却显著地降低了500倍。
7、本发明制备的铜镍纳米合金颗粒抗氧化性好,能长期保持其助催化性能。
附图说明
图1为实施例1至7产物的X射线衍射分析图谱。
图2为实施例1至7产物的X射线衍射细节分析图谱和洛伦兹拟合图。
图3a为实施例3中产物Cu63Ni37纳米合金颗粒的透射电镜线扫图。
图3b为实施例3中产物Cu63Ni37纳米合金颗粒的铜元素分布成像图。
图3c为实施例3中产物Cu63Ni37纳米合金颗粒的镍元素分布成像图。
图4为实施例3中产物Cu63Ni37纳米合金颗粒的元素分布线扫图。
图5为实施例1至7产物负载至二氧化钛上的最佳产氢速率直方图,无负载的二氧化钛和负载了铂的二氧化钛的最佳产氢速率用来作对比。
具体实施方式
下面结合多个具体实施例对本发明作进一步说明。
原材料如下:
铜靶:圆形靶材,直径为3cm,厚度为0.5cm,纯度为99.99%。
镍靶:圆形靶材,直径为3cm,厚度为0.5cm,纯度为99.99%。
Cu50Ni50靶:铜、镍非合金相混合靶,铜、镍按原子数比为1:1混合,圆形靶材,直径为3cm,厚度为0.5cm,纯度为99.99%。
Cu20Ni80靶:铜、镍非合金相混合靶,铜、镍按原子数比为1:4混合,圆形靶材,直径为3cm,厚度为0.5cm,纯度为99.99%。
去离子水:经过二次净化,电阻率为18.4兆欧姆·厘米。
异丙醇:分析纯。
实施例1
1)用砂纸对铜靶表面进行抛光,同时去除铜靶置于空气中表面的部分氧化物。然后在去离子水中进行超声清洗15min,接着在丙酮中进行超声清洗15min,最后在无水乙醇中进行超声清洗15min。取出铜靶,将其置于烘箱中干燥后,浸泡于异丙醇中待用。
2)将铜靶从异丙醇中取去,自然风干后置于玻璃反应容器中,容器为圆柱状,底面直径为3.6cm,高度为15cm。往反应容器中注入10mL异丙醇,使异丙醇浸没铜靶。异丙醇液面离铜靶上表面垂直距离为0.8cm。
3)调节激光器出射光束,使激光光束依次经过全反射镜和聚焦透镜后聚焦至靶材表面上。采用Nd:YAG脉冲激光,激光波长为532nm,脉宽为10ns,重复频率为10Hz,单脉冲能量为120mJ。聚焦透镜焦距为30cm,激光在靶材表面的焦点直径为0.2cm。
4)开启脉冲激光,在激光的作用下使靶材与异丙醇接触表面产生高温高压高密度等离子体羽辉,羽辉在激光脉冲间隙中与异丙醇反应后迅速冷却而喷出分散于异丙醇中。
5)反应过程持续60min后,关闭脉冲激光。用滴管取出反应后的异丙醇,置于烧杯中,放入烘箱中进行干燥,干燥温度为60℃,时间为10h,便可得到所需的铜纳米颗粒。
实施例2
与实施例1不同的是本实施例将铜靶换成Cu50Ni50靶,10mL反应液体异丙醇换成10mL异丙醇与水混合溶液(体积比为1:0.7),其他制备条件保持与实施例1一致。激光烧蚀反应结束后,干燥得到所需的Cu83Ni17纳米合金颗粒。
实施例3
与实施例1不同的是本实施例将铜靶换成Cu50Ni50靶,10mL反应液体异丙醇换成10mL异丙醇与水混合溶液(体积比为1:0.2),其他制备条件保持与实施例1一致。激光烧蚀反应结束后,干燥得到所需的Cu63Ni37纳米合金颗粒。
实施例4
与实施例1不同的是本实施例将铜靶换成Cu50Ni50靶,其他制备条件保持与实施例1一致。激光烧蚀反应结束后,干燥得到所需的Cu54Ni46纳米合金颗粒。
实施例5
与实施例1不同的是本实施例将铜靶换成Cu20Ni80靶,10mL反应液体异丙醇换成10mL异丙醇与水混合溶液(体积比为1:0.6),其他制备条件保持与实施例1一致。激光烧蚀反应结束后,干燥得到所需的Cu41Ni59纳米合金颗粒。
实施例6
与实施例1不同的是本实施例将铜靶换成Cu20Ni80靶,其他制备条件保持与实施例1一致。激光烧蚀反应结束后,干燥得到所需的Cu22Ni78纳米合金颗粒。
实施例7
与实施例1不同的是本实施例将铜靶换成Ni靶,其他制备条件保持与实施例1一致。激光烧蚀反应结束后,干燥得到所需的镍纳米颗粒。
实施结果
将实施例1至7中的样品取样进行X射线衍射分析,分别标号为1#、2#、3#、4#、5#、6#和7#。如图1所示,根据PDF卡片库JCPDS 04-0836和JCPDS 04-0850可知,1#、7#样品分别为立方相的单质金属铜和镍。从左往后两个峰分别对应于材料的(111)和(200)晶面。观察可知,2#至6#样品衍射峰均位于1#、7#样品衍射峰中间,根据维加德定律(Vegard's law),2#至6#样品应为典型的铜镍合金。而根据维加德定律可以计算出各合金样品中铜和镍含量,如公式(1)、(2)所示。
C C u = 2 θ N i - 2 θ f i t 2 θ N i - 2 θ C u - - - ( 1 )
C N i = 2 θ f i t - 2 θ C u 2 θ N i - 2 θ C u - - - ( 2 )
公式(1)、(2)中CCu和CNi分别为合金样品中铜和镍的原子数百分比含量,θCu、θNi和θfit分别为铜(1#)、镍(7#)和合金样品(2#至6(1#))(111)晶面衍射峰的洛伦兹拟合峰位。而1#至7#样品(111)晶面衍射峰的洛伦兹拟合峰如图2所示。
考虑到X射线衍射测试(XRD)和洛伦兹拟合可能带来的误差,为了更准确判断样品中铜、镍的含量,我们进行了电感耦合等离子体质谱(ICP-MS)测试。测试结果统计在下表1中。
表1 样品中铜、镍含量测试结果统计表
由表1可知,XRD与ICP-MS测试结果非常接近,在误差允许范围内。考虑到ICP-MS测试结果的相对准确性,我们以ICP-MS测试结果为准,确定1#至7#样品的组分。
为了对合金纳米颗粒有更直观的了解,我们对3#样品Cu63Ni37纳米合金颗粒进行了透射电镜线扫图和元素分布成像分析,如图3a、3b、3c所示。所制得的Cu63Ni37纳米合金颗粒为球状,直径约40nm(图中标尺为20nm)。由图可知,铜元素和镍元素分布于整个颗粒上,是典型的合金相。与此同时,我们还对该颗粒进行了元素分布线扫图分析,如图4所示。可以很清楚地看到,铜、镍元素布满整个颗粒。除此之外,该样品并不含氧元素。由此可知,样品为立方相的铜镍合金颗粒且具有抗氧化能力。
我们将1#至7#样品分别负载至二氧化钛表面,并且在模拟太阳光的照射下,测试负载了1#至7#样品的二氧化钛的光解水产氢性能。作为对比,我们对无负载的二氧化钛和负载了铂的二氧化钛的产氢性能也进行了测试。根据测试结果,将各组实验中的最佳产氢速率统计于直方图中,如图5所示。由图可知,无论是负载了制备的1#至7#样品还是负载了铂的二氧化钛均表现出明显的性能提高,显著地优于无负载的二氧化钛。值得关注的是,Cu83Ni17和Cu54Ni46的最佳产氢速率可与常见贵金属助催化剂Pt媲美,Cu63Ni37的最佳产氢效率更是超越了Pt。为了便于比较,我们将负载了各种助催化剂的二氧化钛的最佳产氢速率和对应的载量统计于下表2中。
表2 光解水产氢相关数据统计表
由表2可知,对应于最佳的产氢速率,不同的助催化剂所需的载量是不同的。尽管我们所制备的样品在取得最佳产氢速率的情况下所需的载量大于铂,但是由于铂的价格高昂而铜、镍的价格较低廉(铂的价格约为铜的5000倍、镍的2000倍),我们的成本还是很大程度地降低了的。对于性能最佳的Cu63Ni37纳米合金助催化剂,其材料成本比起铂显著降低了500倍。
为了测试所制得的样品助催化性能的稳定性,我们将Cu63Ni37纳米合金与二氧化钛的复合样品放置于空气中(常温常压)30天,重新测试其产氢性能,仍保持其性能的91%。由此可见,我们所制得的样品稳定性较好。
以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (4)

1.铜镍纳米合金的应用,其特征在于:为铜镍纳米合金作为光解水产氢助催化剂的应用。
2.根据权利要求1所述的铜镍纳米合金的应用,其特征在于,所述铜镍纳米合金的制备,包括以下步骤:
1)将靶材:一块铜靶、一块镍靶和两块铜镍非合金相混合靶,置于反应容器中,往反应容器中注入异丙醇或异丙醇与水的混合溶液,使得靶材浸没在液体中;
2)调节纳秒脉冲激光光路,使激光光束依次经过全反射镜和聚焦透镜后聚焦在靶材表面;
3)开启脉冲激光,在激光的作用下进行液相激光烧蚀反应;
4)反应结束后,关闭脉冲激光,取出反应后的液体,在烘箱中进行干燥,得到目标产物,即所需的铜镍纳米合金颗粒,该铜镍纳米合金颗粒除含铜、镍元素外,不含其他杂质元素。
3.根据权利要求1所述的铜镍纳米合金的应用,其特征在于:步骤1)中的两块铜镍非合金相混合靶中铜镍原子数百分比含量分别为Cu 50%,Ni 50%与Cu 20%,Ni 80%,分别记为Cu50Ni50、Cu20Ni80靶。
4.根据权利要求1所述的铜镍纳米合金的应用,其特征在于:
步骤1)中的铜靶、镍靶和铜镍非合金相混合靶均为圆形,纯度为99.99%,直径为3cm,厚度为0.5cm;液体体积为10mL,异丙醇、水按体积比为1:0.7或1:0.6或1:0.2;液体液面离靶材上表面垂直距离为0.8cm;
步骤2)中的激光聚焦至靶材表面的焦点直径为0.2cm;
步骤3)中的脉冲激光波长为532nm,脉宽为10ns,重复频率为10Hz,单脉冲能量为120mJ,激光烧蚀反应时间为60min;
步骤4)中的干燥温度为60℃,时间为10h;制得的铜镍纳米合金颗粒为球状,直径分布范围为30-60nm。
CN201610231878.5A 2016-04-12 2016-04-12 铜镍纳米合金的应用 Active CN105935591B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610231878.5A CN105935591B (zh) 2016-04-12 2016-04-12 铜镍纳米合金的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610231878.5A CN105935591B (zh) 2016-04-12 2016-04-12 铜镍纳米合金的应用

Publications (2)

Publication Number Publication Date
CN105935591A true CN105935591A (zh) 2016-09-14
CN105935591B CN105935591B (zh) 2019-01-04

Family

ID=57151316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610231878.5A Active CN105935591B (zh) 2016-04-12 2016-04-12 铜镍纳米合金的应用

Country Status (1)

Country Link
CN (1) CN105935591B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107008468A (zh) * 2017-03-30 2017-08-04 华南理工大学 纳米铜‑氟掺杂二氧化锡光催化剂及其制备方法与应用
CN108355699A (zh) * 2018-03-01 2018-08-03 中国科学院理化技术研究所 一种碳负载镍铜二元氮化物催化剂及其制备方法和应用
CN109985630A (zh) * 2019-04-25 2019-07-09 燕山大学 一种铜镍电催化剂的制备方法
CN113897638A (zh) * 2021-08-26 2022-01-07 浙江众氢科技有限公司 一种高分散性金属催化材料的制备方法
CN114100682A (zh) * 2021-11-22 2022-03-01 四川启睿克科技有限公司 一种羽状叶异质结光催化剂及其制备方法
CN115318307A (zh) * 2022-08-29 2022-11-11 四川启睿克科技有限公司 引入电偶层设计高性能产氢助催化剂并构建雪花状CuNi@EDL/CdS催化剂的方法
CN115722184A (zh) * 2021-08-31 2023-03-03 中国石油化工股份有限公司 一种吸附脱硫剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101327946A (zh) * 2008-06-05 2008-12-24 中山大学 一种具有特殊形貌的微-纳颗粒及其制备方法与应用
US20100044209A1 (en) * 2007-02-20 2010-02-25 Yissum Research Development Company Of The Hebrew Univeristy Of Jerusalem Hybrid metal-semiconductor nanoparticles and methods for photo-inducing charge separation and applications thereof
CN102658076A (zh) * 2012-05-11 2012-09-12 中山大学 一种微纳米材料及其制备方法、装置、应用
CN104733424A (zh) * 2013-12-24 2015-06-24 瑞萨电子株式会社 半导体器件及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100044209A1 (en) * 2007-02-20 2010-02-25 Yissum Research Development Company Of The Hebrew Univeristy Of Jerusalem Hybrid metal-semiconductor nanoparticles and methods for photo-inducing charge separation and applications thereof
CN101327946A (zh) * 2008-06-05 2008-12-24 中山大学 一种具有特殊形貌的微-纳颗粒及其制备方法与应用
CN102658076A (zh) * 2012-05-11 2012-09-12 中山大学 一种微纳米材料及其制备方法、装置、应用
CN104733424A (zh) * 2013-12-24 2015-06-24 瑞萨电子株式会社 半导体器件及其制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUANMEI TIAN等: "Fabrication of an efficient noble metal-free TiO2-based photocatalytic system using Cu–Ni bimetallic deposit as an active center of H2 evolution from water", 《SOLAR ENERGY MATERIALS & SOLAR CELLS》 *
YUSUKE YAMADA: "Ni–Cu alloy nanoparticles loaded on various metal oxides acting as efficient catalysts for photocatalytic H2 evolution", 《RSC ADVANCES》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107008468A (zh) * 2017-03-30 2017-08-04 华南理工大学 纳米铜‑氟掺杂二氧化锡光催化剂及其制备方法与应用
CN108355699A (zh) * 2018-03-01 2018-08-03 中国科学院理化技术研究所 一种碳负载镍铜二元氮化物催化剂及其制备方法和应用
CN109985630A (zh) * 2019-04-25 2019-07-09 燕山大学 一种铜镍电催化剂的制备方法
CN113897638A (zh) * 2021-08-26 2022-01-07 浙江众氢科技有限公司 一种高分散性金属催化材料的制备方法
CN115722184A (zh) * 2021-08-31 2023-03-03 中国石油化工股份有限公司 一种吸附脱硫剂及其制备方法和应用
CN115722184B (zh) * 2021-08-31 2024-04-02 中国石油化工股份有限公司 一种吸附脱硫剂及其制备方法和应用
CN114100682A (zh) * 2021-11-22 2022-03-01 四川启睿克科技有限公司 一种羽状叶异质结光催化剂及其制备方法
CN114100682B (zh) * 2021-11-22 2023-09-15 四川启睿克科技有限公司 一种羽状叶异质结光催化剂及其制备方法
CN115318307A (zh) * 2022-08-29 2022-11-11 四川启睿克科技有限公司 引入电偶层设计高性能产氢助催化剂并构建雪花状CuNi@EDL/CdS催化剂的方法

Also Published As

Publication number Publication date
CN105935591B (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
CN105935591A (zh) 铜镍纳米合金的应用
CN101774023B (zh) 一种利用脉冲激光在液相环境中烧蚀制备单分散贵金属纳米颗粒的方法
CN101281133B (zh) 具有大面积微纳树状结构阵列的表面增强拉曼活性基底的制备方法
Yang et al. Rapid fabrication of high-entropy ceramic nanomaterials for catalytic reactions
Rui et al. Ternary oxide nanocrystals: universal laser‐hydrothermal synthesis, optoelectronic and electrochemical applications
Giziński et al. Nanostructured anodic copper oxides as catalysts in electrochemical and photoelectrochemical reactions
Verma et al. High performance asymmetric supercapacitor based on vertical nanowire arrays of a novel Ni@ Co–Fe LDH core@ shell as negative and Ni (OH) 2 as positive electrode
Nguyen et al. Preparation of platinum nanoparticles in liquids by laser ablation method
CN103789807B (zh) 贵金属纳米结构单元构筑的纳米管阵列及制备方法及其在有机分子检测中的应用
Eckert et al. Fast microwave-assisted hydrothermal synthesis of pure layered δ-MnO2 for multivalent ion intercalation
Todorova et al. Hydrogen gas phase and electrochemical hydriding of LaNi5− xMx (M= Sn, Co, Al) alloys
Wang et al. The optical and electrical performance of CuO synthesized by anodic oxidation based on copper foam
Fang et al. In-situ monitoring of dynamic behavior of catalyst materials and reaction intermediates in semiconductor catalytic processes
Zhang et al. Enhanced hydrogen storage kinetics of nanocrystalline and amorphous Mg2Ni-type alloy by melt spinning
Keita et al. Green wet chemical route for the synthesis of silver and palladium dendrites
Giziński et al. Controlling the Morphology of Barrel-Shaped Nanostructures Grown via CuZn Electro-Oxidation
Alex et al. Probing the Evolution of Active Sites in MoO2 for Hydrogen Generation in Acidic Medium
Tian et al. Growth and photocatalytic properties of NiO nanostructures prepared in acidic and alkaline solutions with same reagents
Bandara et al. Surface properties of sulphur based surface modified n-Cu2O thin films for enhanced liquefied petroleum gas sensing
Voronin et al. Laser-Induced Chemical Liquid-Phase Deposition Plasmonic Gold Nanoparticles on Porous TiO2 Film with Great Photoelectrochemical Performance
Sun et al. Formation of oxides and their role in the growth of Ag nanoplates on GaAs substrates
Ma et al. Bismuth− Antimony Alloy Embedded in Carbon Matrix for Ultra-Stable Sodium Storage
CN112771210A (zh) 具有铜铁矿氧化物abo2的用于析氢反应(her)的电催化剂
Gokon et al. Long-term thermal cycling test and heat-charging kinetics of Fe-substituted Mn2O3 for next-generation concentrated solar power using thermochemical energy storage at high temperatures
Wei et al. Precise real-time quantification for photocatalytic reaction: integration of the sensitive in-situ SERS sensor and high-efficiency photocatalyst

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant