CN105931971B - 一种场效应晶体管的制备方法 - Google Patents

一种场效应晶体管的制备方法 Download PDF

Info

Publication number
CN105931971B
CN105931971B CN201610548403.9A CN201610548403A CN105931971B CN 105931971 B CN105931971 B CN 105931971B CN 201610548403 A CN201610548403 A CN 201610548403A CN 105931971 B CN105931971 B CN 105931971B
Authority
CN
China
Prior art keywords
shellac
layer
effect transistor
field
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610548403.9A
Other languages
English (en)
Other versions
CN105931971A (zh
Inventor
于军胜
庄昕明
韩世蛟
郑华靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Yourun Microelectronics Co ltd
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201610548403.9A priority Critical patent/CN105931971B/zh
Publication of CN105931971A publication Critical patent/CN105931971A/zh
Application granted granted Critical
Publication of CN105931971B publication Critical patent/CN105931971B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种场效应晶体管的制备方法,场效应晶体管从下到上依次为衬底、栅电极、介电层、半导体层、源电极和漏电极,封装层。本发明利用虫胶具有粘着性的特点,对介电材料进行物理剥离,从而形成稳定几个分子层厚度的介电层,减少了介电层的溶液法制备步骤,有效杜绝了有毒试剂的使用,并提高了稳定性。同时将虫胶作为衬底和封装层,利用其良好的致密性和抗紫外线抗辐射等特点,阻隔水氧对整个器件的侵蚀以及紫外线和电磁辐射对器件的干扰,从而提高整个器件的稳定性和寿命。该场效应晶体管采用一种可剥离介电层以及生物材料作为衬底和封装,更加容易制备,成本更低,将场效应晶体管应用范围拓宽,适合于可穿戴式设备与生物电子领域。适宜大规模量产。

Description

一种场效应晶体管的制备方法
技术领域
本发明属于电子技术领域,特别涉及一种场效应晶体管的制备方法。
背景技术
场效应晶体管的性能及制作技术日益发展,很多新材料的迁移率超过了非晶硅,并且被广泛应用于电子纸、传感器身份识别卡以及智能卡等记忆器件等方面。与传统的硅基MOSFET相比,新材料场效应晶体管的器件制备过程以低温沉积或溶液(喷黑打印、旋涂、滴注等)等简单的工艺代替了传统的高温真空沉积等方法制作器件的复杂过程。此外,新材料本身所具备质轻、价廉、具有柔性、制备方法简单、种类多、性能可通过分子设计进行调整等优势。因此,新型半导体材料无论从材料合成以及器件的制备等方面具有非常大的降低成本的潜力
然而现有的场效应晶体管能在大气环境中稳定工作的,多为硅基场效应管,大量使用时会对环境造成污染,制备过程复杂,造价昂贵,且不易实现柔性、大面积器件;同时,介电层作为场效应管重要组成部分,现有溶液法制备过程中,大量使用了氯苯、甲苯、氯仿以及苯甲醚等有毒试剂,采用水、醇溶剂体系的介电层材料是绿色生产的首要因素,然而现有的溶于水或者醇中的介电层材料,存在大气环境下有电学性能不稳定的缺点。
发明内容
本发明目的在于提供一种制备工艺简单,生产成本低廉,绿色环保,可在大气环境下稳定,高寿命的一种场效应晶体管的制备方法。
本发明的技术方案为:
一种场效应晶体管的制备方法,该场效应晶体管从下到上依次为衬底、栅电极、介电层、半导体层、源电极和漏电极、封装层,所述介电层为二维可剥离的介电材料,所述栅电极、源电极和漏电极为金属纳米线复合材料,所述二维可剥离的介电材料为丝素蛋白、云母或六方氮化硼中的一种,所述金属纳米线复合材料由以下重量百分比的材料构成:金属纳米线40%~80%,虫胶10%~30%,水溶性粘合剂10%~30%;
制备方法如下:
①先对二维可剥离的介电材料进行彻底的清洗,清洗后干燥;
②在介电材料表面涂覆金属纳米线复合材料作为栅电极,并对其进行固化;
③在栅电极上面制备虫胶层,并迅速提高器件加热温度,使得虫胶层热熔状态,使其与栅电极和介电材料紧密粘合在一起,冷却,使虫胶层作为衬底;
④对衬底进行机械剥离,将衬底,栅电极以及介电材料剥离下来,从而在栅电极上面形成介电层;
⑤在介电层上制备半导体层;
⑥在半导体层上制备源电极和漏电极;
⑦在源电极和漏电极上面制备虫胶层,作为封装层;
⑧迅速提高器件加热温度,使得虫胶热熔状态,使封装层的虫胶与衬底的虫胶热熔到在一起,然后加热虫胶到热聚合温度,使得虫胶发生热聚合反应,进而固化为一体,起到封装作用;
进一步地,步骤③、⑦中,虫胶层采用旋涂法或滴涂法制备,步骤③、⑧中,虫胶热熔状态加热温度为70℃~90℃,步骤⑧中,虫胶热聚合为120℃~150℃,加热时间为0.5h~1h。
进一步地,步骤②和⑥中,栅电极、源电极、漏电极是通过丝网印刷或打印方法制备,所述步骤⑤中,所述半导体层是通过等离子体增强的化学气相沉积、热氧化、旋涂、真空蒸镀、辊涂、滴膜、压印、印刷或喷涂中的一种方法制备。
进一步地,介电层厚度为5nm~10nm,
进一步地,所述虫胶为脱蜡虫胶。
进一步地,所述金属纳米线材料为铁纳米线、铜纳米线、银纳米线、金纳米线、铝纳米线、镍纳米线、钴纳米线、锰纳米线、镉纳米线、铟纳米线、锡纳米线、钨纳米线或铂纳米线中的一种或多种。
进一步地,所述的水溶性粘合剂为明胶或聚乙烯醇中的一种或两种。
进一步地,所述半导体层为氧化锌、氧化锡、碳纳米管、氧化石墨烯、聚3-已基噻吩,6,13-双(三异丙基硅烷基乙炔基)并五苯或含硅氧烷的聚异戊二烯衍生物中的一种,所述半导体层厚度为30nm~100nm。
本发明中,引入虫胶层,因其独特的材料特性,在常温下为固体,受热时一般在75℃左右开始熔化,120℃左右成为流体,如在此温度下继续受热,它的聚合反应很慢。温度继续升高时,随着受热时间的延长,聚合反应迅速进行,虫胶的平均分子量不断增大,粘度逐渐增加,软化点逐步升高,颜色加深,热硬化时间随之不断缩短,热乙醇不溶物不断增加,逐渐变稠失去流动性,经橡胶状阶段,最后变成在溶剂中不溶解、加热也不熔化的角质状三维网状聚合物。基于此种特性,当采用虫胶作为衬底和封装层时,可将虫胶加热至熔化状态,随后迅速加热,使其发生热聚合,快速固化。从而起到很好的彻底和封装的效果。
与现有技术相比,本发明的优点在于:
一、该场效应晶体管的二维可剥离的介电材料,通过虫胶粘着性剥离而形成稳定几个分子层厚度的介电层,减少了介电层的溶液法制备,从而有效杜绝了氯苯、甲苯、氯仿以及苯甲醚等有毒试剂的使用,同时减少了传统二维材料剥离后转移的过程,减少了介电层的损坏并提高了稳定性;
二、机械剥离的介电层,由于其只有几个分子层的厚度,从而有效的减小了器件的阈值电压,提升了器件的性能;
三、通过使用虫胶作为衬底和封装层,虫胶出色的致密性和防紫外线防辐射的优点,既能使整个器件杜绝了空气中水氧的影响,又可以防止紫外线和电磁辐射等对器件的干扰,从而提高整个器件的稳定性和寿命;
四、虫胶来源广泛,易溶于乙醇,便于溶液法制备虫胶薄膜,成本低廉,制备工艺简单,同时基于其独特的热熔与热聚合特性,可以很方便的控制虫胶衬底和虫胶封装层进行融合,并且实现固化封装,易于实施,方法可靠;
五、该场效应晶体管的栅电极、源电极和漏电极采用的是含有10%~30%的虫胶和10%~30%水溶性粘合剂的金属纳米线,一方面有利于金属纳米线涂覆在介电层上,另一方面水溶性粘合剂可以促进金属纳米线与二维介电材料接触,虫胶可以使得金属纳米线与后续的虫胶衬底熔为一体,使得虫胶衬底、二维介电材料、金属纳米线三者结为一体,进而有利于衬底对介电层的机械剥离。制备采用的是丝网印刷或打印方法,这种方法相对于传统的化学气相沉积、热氧化和真空蒸镀方法,具有节能环保,易于大规模量产等优点。
六、相对与传统硅基场效应晶体管,本发明可在大气环境下持续稳定工作,且所需材料、制备过程绿色无污染。
附图说明
图1是本发明的结构示意图;
图中:1-衬底,2-栅电极,3-介电层,4-半导体层,5-漏电极,6-封装层,7-源电极;
图2是实施例1制备的器件的寿命测试曲线。
图3是实施例6制备的器件的寿命测试曲线。
具体实施方式
下面结合附图对本发明作进一步说明。
参照图1,本发明的一种场效应晶体管的制备方法,包括衬底1、栅电极2、介电层3、半导体层4、漏电极5、封装层6、源电极7,所述栅电极2设置于衬底1之上,介电层3设置于栅电极2之上,半导体层4设置于介电层3之上,漏电极5和源电极7分别设置于半导体层5之上,封装层6设置于漏电极5和源电极7之上,覆盖整个场效应晶体管器件。
①先对二维可剥离的介电材料进行彻底的清洗,清洗后干燥;
②在介电材料表面涂覆金属纳米线复合材料作为栅电极,并对其进行固化;
③在栅电极上面制备虫胶层,并迅速提高器件加热温度,使得虫胶层热熔状态,使其与栅电极和介电材料紧密粘合在一起,冷却,使虫胶层作为衬底;
④对衬底进行机械剥离,将衬底,栅电极以及介电材料剥离下来,从而在栅电极上面形成介电层;
⑤在介电层上制备半导体层;
⑥在半导体层上制备源电极和漏电极;
⑦在源电极和漏电极上面制备虫胶层,作为封装层;
⑧迅速提高器件加热温度,使得虫胶热熔状态,使封装层的虫胶与衬底的虫胶热熔到在一起,然后加热虫胶到热聚合温度,使得虫胶发生热聚合反应,进而固化为一体,起到封装作用;
以下是本发明的具体实施例:
实施例1:
如图1所示为底栅顶接触式结构,各层的材料和厚度为:衬底为虫胶,栅电极、源电极和漏电极均为银纳米线,加入了10%的虫胶和30%的水溶性粘合剂明胶,介电层采用云母片,厚度为5nm,半导体层为氧化锌,厚度为30nm,封装层为虫胶。用该结构可实现高寿命高稳定性的场效应晶体管。
制备方法如下:
①先对云母片进行彻底的清洗,清洗后干燥;
②在云母表面采用丝网印刷技术制备银纳米线栅电极2,并对其进行固化;
③在所述栅电极2上面制备虫胶层,并迅速提高器件加热温度到70℃~90℃,使得虫胶层热熔状态,使其与栅电极和云母片紧密粘合在一起,冷却,使虫胶层作为衬底1;
④对所述衬底1进行机械剥离,将衬底1,栅电极2以及云母片剥离下来,从而在栅电极2上面形成一层几个分子层厚的云母介电层3;
⑤在介电层3上采用旋涂方法制备氧化锌半导体层4;
⑥在半导体层4上采用丝网印刷技术制备银纳米线源电极5和银纳米线漏电极7;
⑦在源电极5和漏电极7上面制备虫胶层,作为封装层6;
⑧迅速提高器件加热温度到70℃~90℃,使得虫胶热熔状态,使封装层的虫胶与衬底的虫胶热熔到在一起,然后加热虫胶到热聚合温度120℃~150℃,使得虫胶发生热聚合反应,进而固化为一体,起到封装作用。
实施例2:
如图1所示为底栅顶接触式结构,各层的材料和厚度为:衬底为虫胶,栅电极、源电极和漏电极均为铝纳米线,加入了30%的虫胶和30%的水溶性粘合剂聚乙烯醇,介电层采用丝素蛋白片,厚度为8nm,半导体层为氧化石墨烯,厚度为30nm,封装层为虫胶。用该结构可实现高寿命高稳定性的场效应晶体管。
制备方法如同实施例1。
实施例3:
如图1所示为底栅顶接触式结构,各层的材料和厚度为:衬底为虫胶,栅电极、源电极和漏电极均为金纳米线,加入了30%的虫胶和10%的水溶性粘合剂明胶,介电层采用六方氮化硼,厚度为10nm,半导体层为碳纳米管,厚度为50nm,封装层为虫胶。用该结构可实现高寿命高稳定性的场效应晶体管。
制备方法如同实施例1。
实施例4:
如图1所示为底栅顶接触式结构,各层的材料和厚度为:衬底为虫胶,栅电极、源电极和漏电极均为铜纳米线,加入了10%的虫胶和30%的水溶性粘合剂明胶,介电层采用云母片,厚度为6nm,半导体层为氧化锡,厚度为30nm,封装层为虫胶。用该结构可实现高寿命高稳定性的场效应晶体管。
制备方法如同实施例1。
实施例5:
如图1所示为底栅顶接触式结构,各层的材料和厚度为:衬底为虫胶,栅电极、源电极和漏电极均为铁纳米线,加入了20%的虫胶和20%的水溶性粘合剂明胶,介电层采用丝素蛋白片,厚度为8nm,半导体层为6,13-双(三异丙基硅烷基乙炔基)并五苯,厚度为30nm,封装层为虫胶。用该结构可实现高寿命高稳定性的场效应晶体管。
制备方法如同实施例1。
实施例6:
如图1所示为底栅顶接触式结构,各层的材料和厚度为:衬底为虫胶,栅电极、源电极和漏电极均为银纳米线,加入了20%的虫胶和30%的水溶性粘合剂聚乙烯醇,介电层采用云母片,厚度为5nm,半导体层为氧化石墨烯,厚度为50nm,封装层为虫胶。用该结构可实现高寿命高稳定性的场效应晶体管。
制备方法如下:
①先对云母片进行彻底的清洗,清洗后干燥;
②在云母表面采用打印技术制备银纳米线栅电极2,并对其进行固化;
③在所述栅电极2上面制备虫胶层,并迅速提高器件加热温度到70℃~90℃,使得虫胶层热熔状态,使其与栅电极和云母片紧密粘合在一起,冷却,使虫胶层作为衬底1;
④对所述衬底1进行机械剥离,将衬底1,栅电极2以及云母片剥离下来,从而在栅电极2上面形成一层几个分子层厚的云母介电层3;
⑤在介电层3上采用旋涂方法制备氧化石墨烯半导体层4;
⑥在半导体层4上采用打印技术制备银纳米线源电极5和银纳米线漏电极7;
⑦在源电极5和漏电极7上面制备虫胶层,作为封装层6;
⑧迅速提高器件加热温度到70℃~90℃,使得虫胶热熔状态,使封装层的虫胶与衬底的虫胶热熔到在一起,然后加热虫胶到热聚合温度120℃~150℃,使得虫胶发生热聚合反应,进而固化为一体,起到封装作用。
实施例7:
如图1所示为底栅顶接触式结构,各层的材料和厚度为:衬底为虫胶,栅电极、源电极和漏电极均为银纳米线,加入了10%的虫胶和30%的水溶性粘合剂明胶,介电层采用六方氮化硼,厚度为8nm,半导体层为含硅氧烷的聚异戊二烯衍生物,厚度为80nm,封装层为虫胶。用该结构可实现高寿命高稳定性的场效应晶体管。
制备方法如同实施例6。
实施例8:
如图1所示为底栅顶接触式结构,各层的材料和厚度为:衬底为虫胶,栅电极、源电极和漏电极均为金纳米线,加入了10%的虫胶和30%的水溶性粘合剂明胶,介电层采用丝素蛋白片,厚度为8nm,半导体层为氧化锌,厚度为100nm,封装层为虫胶。用该结构可实现高寿命高稳定性的场效应晶体管。
制备方法如同实施例6。
实施例9:
如图1所示为底栅顶接触式结构,各层的材料和厚度为:衬底为虫胶,栅电极、源电极和漏电极均为镍纳米线,加入了10%的虫胶和30%的水溶性粘合剂聚乙烯醇,介电层采用云母片,厚度为10nm,半导体层为氧化石墨烯,厚度为80nm,封装层为虫胶。用该结构可实现高寿命高稳定性的场效应晶体管。
制备方法如下:
①先对云母片进行彻底的清洗,清洗后干燥;
②在云母表面采用打印技术制备银纳米线栅电极2,并对其进行固化;
③在所述栅电极2上面制备虫胶层,并迅速提高器件加热温度到70℃~90℃,使得虫胶层热熔状态,使其与栅电极和云母片紧密粘合在一起,冷却,使虫胶层作为衬底1;
④对所述衬底1进行机械剥离,将衬底1,栅电极2以及云母片剥离下来,从而在栅电极2上面形成一层几个分子层厚的云母介电层3;
⑤在介电层3上喷涂方法制备氧化石墨烯半导体层4;
⑥在半导体层4上采用打印技术制备银纳米线源电极5和银纳米线漏电极7;
⑦在源电极5和漏电极7上面制备虫胶层,作为封装层6;
⑧迅速提高器件加热温度到70℃~90℃,使得虫胶热熔状态,使封装层的虫胶与衬底的虫胶热熔到在一起,然后加热虫胶到热聚合温度120℃~150℃,使得虫胶发生热聚合反应,进而固化为一体,起到封装作用。
实施例10:
如图1所示为底栅顶接触式结构,各层的材料和厚度为:衬底为虫胶,栅电极、源电极和漏电极均为金纳米线,加入了20%的虫胶和10%的水溶性粘合剂明胶,介电层采用六方氮化硼,厚度为10nm,半导体层为3-已基噻吩,厚度为80nm,封装层为虫胶。用该结构可实现高寿命高稳定性的场效应晶体管。
制备方法如同实施例9。

Claims (8)

1.一种场效应晶体管的制备方法,其特征在于,该场效应晶体管从下到上依次为衬底、栅电极、介电层、半导体层、源电极和漏电极、封装层,所述介电层为二维可剥离的介电材料,所述栅电极、源电极和漏电极为金属纳米线复合材料,所述二维可剥离的介电材料为丝素蛋白、云母或六方氮化硼中的一种,所述金属纳米线复合材料由以下重量百分比的材料构成:金属纳米线40%~80%,虫胶10%~30%,水溶性粘合剂10%~30%;
制备方法如下:
①先对二维可剥离的介电材料进行彻底的清洗,清洗后干燥;
②在介电材料表面涂覆金属纳米线复合材料作为栅电极,并对其进行固化;
③在栅电极上面制备虫胶层,并迅速提高器件加热温度,使得虫胶层热熔状态,使其与栅电极和介电材料紧密粘合在一起,冷却,使虫胶层作为衬底;
④对衬底进行机械剥离,将衬底,栅电极以及介电材料剥离下来,从而在栅电极上面形成介电层;
⑤在介电层上制备半导体层;
⑥在半导体层上制备源电极和漏电极;
⑦在源电极和漏电极上面制备虫胶层,作为封装层;
⑧迅速提高器件加热温度,使得虫胶热熔状态,使封装层的虫胶与衬底的虫胶热熔到在一起,然后加热虫胶到热聚合温度,使得虫胶发生热聚合反应,进而固化为一体,起到封装作用。
2.根据权利要求1所述的一种场效应晶体管的制备方法,其特征在于,步骤③、⑦中,虫胶层采用旋涂法或滴涂法制备,步骤③、⑧中,虫胶热熔状态加热温度为70℃~90℃,步骤⑧中,虫胶热聚合为120℃~150℃,加热时间为0.5h~1h。
3.根据权利要求1所述的一种场效应晶体管的制备方法,其特征在于,步骤②和⑥中,栅电极、源电极、漏电极是通过丝网印刷或打印方法制备,所述步骤⑤中,所述半导体层是通过等离子体增强的化学气相沉积、热氧化、旋涂、真空蒸镀、辊涂、滴膜、压印、印刷或喷涂中的一种方法制备。
4.根据权利要求1所述的一种场效应晶体管的制备方法,其特征在于,介电层厚度为5nm~10nm。
5.根据权利要求1所述的一种场效应晶体管的制备方法,其特征在于,所述虫胶为脱蜡虫胶。
6.根据权利要求1所述的一种场效应晶体管的制备方法,其特征在于,所述金属纳米线材料为铁纳米线、铜纳米线、银纳米线、金纳米线、铝纳米线、镍纳米线、钴纳米线、锰纳米线、镉纳米线、铟纳米线、锡纳米线、钨纳米线或铂纳米线中的一种或多种。
7.根据权利要求1所述的一种场效应晶体管的制备方法,其特征在于,所述的水溶性粘合剂为明胶或聚乙烯醇中的一种或两种。
8.根据权利要求1所述的一种场效应晶体管的制备方法,其特征在于,所述半导体层为氧化锌、氧化锡、碳纳米管、氧化石墨烯、聚3-已基噻吩,6,13-双(三异丙基硅烷基乙炔基)并五苯或含硅氧烷的聚异戊二烯衍生物中的一种,所述半导体层厚度为30nm~100nm。
CN201610548403.9A 2016-07-13 2016-07-13 一种场效应晶体管的制备方法 Active CN105931971B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610548403.9A CN105931971B (zh) 2016-07-13 2016-07-13 一种场效应晶体管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610548403.9A CN105931971B (zh) 2016-07-13 2016-07-13 一种场效应晶体管的制备方法

Publications (2)

Publication Number Publication Date
CN105931971A CN105931971A (zh) 2016-09-07
CN105931971B true CN105931971B (zh) 2018-08-17

Family

ID=56827834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610548403.9A Active CN105931971B (zh) 2016-07-13 2016-07-13 一种场效应晶体管的制备方法

Country Status (1)

Country Link
CN (1) CN105931971B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108225621B (zh) * 2018-01-03 2020-05-22 电子科技大学 一种基于有机场效应管压力传感器及其制备方法
CN109326724B (zh) * 2018-09-19 2020-06-23 电子科技大学 一种基于有机场效应管的光敏传感器及其制备方法
CN109900763B (zh) * 2019-03-07 2021-06-25 江苏友润微电子有限公司 基于有机晶体管的二氧化氮传感器芯片及其制备方法
CN110514327B (zh) * 2019-08-29 2022-01-25 电子科技大学 一种基于有机场效应晶体管的柔性压力传感器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104132989A (zh) * 2014-08-01 2014-11-05 电子科技大学 基于混合绝缘层的有机场效应管气体传感器及其制备方法
CN104752546A (zh) * 2015-04-22 2015-07-01 电子科技大学 一种金属氧化物紫外探测器及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0801494D0 (en) * 2007-02-23 2008-03-05 Univ Ind & Acad Collaboration Nonvolatile memory electronic device using nanowire used as charge channel and nanoparticles used as charge trap and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104132989A (zh) * 2014-08-01 2014-11-05 电子科技大学 基于混合绝缘层的有机场效应管气体传感器及其制备方法
CN104752546A (zh) * 2015-04-22 2015-07-01 电子科技大学 一种金属氧化物紫外探测器及其制备方法

Also Published As

Publication number Publication date
CN105931971A (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
CN105931971B (zh) 一种场效应晶体管的制备方法
Jiang et al. All electrospray printed perovskite solar cells
Lian et al. Highly conductive silver nanowire transparent electrode by selective welding for organic light emitting diode
Noh et al. Cost-effective ITO-free organic solar cells with silver nanowire–PEDOT: PSS composite electrodes via a one-step spray deposition method
CN109532067B (zh) 一种高性能柔性电加热膜的制造方法
Lee et al. Thermal pressing of a metal-grid transparent electrode into a plastic substrate for flexible electronic devices
CN102610756B (zh) 一种溶液法低电压高性能有机薄膜晶体管及其制备方法
CN102648542A (zh) 有机电子器件、组合物和方法
Wu et al. All electrospray printing of carbon‐based cost‐effective perovskite solar cells
CN103828018A (zh) 金属氧化物薄膜的低温制造技术及衍生自纳米材料的金属复合物薄膜
Cheong et al. Transparent film heaters with highly enhanced thermal efficiency using silver nanowires and metal/metal-oxide blankets
CN103531304A (zh) 一种快速制备大面积碳纳米管柔性透明导电薄膜及提高其导电性的方法
CN109080281B (zh) 基于浸润性基底精细喷墨打印制备柔性透明导电膜的方法
WO2014108015A1 (zh) 碳纳米管透明复合电极的制备方法
De Girolamo Del Mauro et al. Polymer solar cells with inkjet‐printed doped‐PEDOT: PSS anode
CN108063186A (zh) 锌掺杂氧化镍空穴传输层反置钙钛矿太阳能电池及制备方法
Yun et al. Transferable transparent electrodes of liquid metals for bifacial perovskite solar cells and heaters
Kim et al. Tailoring opto-electrical properties of ultra-thin indium tin oxide films via filament doping: Application as a transparent cathode for indoor organic photovoltaics
KR20150137101A (ko) 실란 관능화된 완충 층 및 그를 포함하는 전자 기기
WO2020239143A1 (zh) 一种石墨烯导电油墨及其制备方法
CN104792849A (zh) 基于虫胶封装/调控的场效应管气体传感器及其制备方法
CN107868465A (zh) 一种具有各向异性结构的导热绝缘复合材料及其制备方法
Meng et al. Silver mesh electrodes via electroless deposition-coupled inkjet-printing mask technology for flexible polymer solar cells
TW200537689A (en) Method for enhancing the electrical characteristics of organic electronic devices
Zhang et al. High-resolution inkjet-printed oxide thin-film transistors with a self-aligned fine channel bank structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200720

Address after: Xihu town Ganquan ecological science and Technology Park, Hanjiang District, Yangzhou City, Jiangsu Province

Patentee after: JIANGSU YOURUN MICROELECTRONICS Co.,Ltd.

Address before: 611731 Chengdu province high tech Zone (West) West source Avenue, No. 2006

Patentee before: UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY

TR01 Transfer of patent right