CN105921746A - 一种基于弹性形变的钛金属增强块及其构建方法 - Google Patents

一种基于弹性形变的钛金属增强块及其构建方法 Download PDF

Info

Publication number
CN105921746A
CN105921746A CN201610362061.1A CN201610362061A CN105921746A CN 105921746 A CN105921746 A CN 105921746A CN 201610362061 A CN201610362061 A CN 201610362061A CN 105921746 A CN105921746 A CN 105921746A
Authority
CN
China
Prior art keywords
titanium
block
strengthen
titanium metal
reinforcing block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610362061.1A
Other languages
English (en)
Other versions
CN105921746B (zh
Inventor
李慧武
朱振安
常永云
戴尅戎
曲新华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ninth Peoples Hospital Shanghai Jiaotong University School of Medicine
Original Assignee
Ninth Peoples Hospital Shanghai Jiaotong University School of Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ninth Peoples Hospital Shanghai Jiaotong University School of Medicine filed Critical Ninth Peoples Hospital Shanghai Jiaotong University School of Medicine
Priority to CN201610362061.1A priority Critical patent/CN105921746B/zh
Publication of CN105921746A publication Critical patent/CN105921746A/zh
Application granted granted Critical
Publication of CN105921746B publication Critical patent/CN105921746B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

本发明公开了一种基于弹性形变的钛金属增强块及其构建方法,涉及医用生物材料领域,本发明以纺锤形结构作为钛金属增强块的单元格结构,以钛及其合金粉体为原材料,通过金属三维打印技术制作出内部结构新型的钛金属增强块,具有弹性模量更低,延展性更好,强度高、弹性模量低、生物相容性好的优点,在适当的应力作用下容易发生弹性形变,钛金属增强块的微量弹性形变可以通过力学信号影响其表面间充质干细胞及成骨细胞的增殖与分化,从而促进金属‑骨界面整合。采用有机溶液对钛金属增强块进行阳极氧化,制备出诱发干细胞分化的最佳Ti‑Nb‑O纳米管阵微形貌。本发明所述钛金属增强块及其构建方法通过这三方面的改进,从而更好促进钛金属和骨界面整合。

Description

一种基于弹性形变的钛金属增强块及其构建方法
技术领域
本发明涉及医用生物材料领域,尤其涉及一种基于弹性形变的钛金属增强块及其构建方法。
背景技术
钛金属材料因其强度高、弹性模量低、生物相容性好而作为支架材料在临床得到广泛应用。为了促进骨再生,传统对于钛金属增强块的研究主要集中在支架孔径大小、孔隙连通率控制等方面。通过控制支架孔径大小和孔隙率可以调整钛金属增强块的强度和弹性模量,有利于骨组织的长入,促进钛金属和骨界面整合,但具体支架孔径大小和孔隙率的多少最有利于骨组织的长入,目前尚无统一的标准,钛金属和骨界面整合效果不确切。
此外,钛金属及合金的不同构型和成分会明显改变其弹性模量。目前市场上α型钛合金(纯钛系列等)和α+β型两相钛合金(Ti6Al4V、Ti6Al7Nb等)的弹性模量为105-110GPa与骨组织1-30GPa相比仍有较大差距,而新型介稳定β型(包括亚稳定β型和近β型两种类型)钛合金是一类容易达到低模量化、高强韧性及高抗疲劳断裂等力学性能并具有良好生物及力学相容性的金属,并且通过后期加工和热处理调整其显微组织和微观结构,可进一步使材料的强度、韧性、弹性模量、耐磨性、耐蚀性及疲劳等性能得到大幅调整和改善。
目前尚未见利用钛金属物理形变促进骨组织再生的增强块构建。研究已证明钛金属在适当应力刺激下会发生非线性弹性形变,这种形变受金属的弹性模量等物理要素的影响,在负重行走或弹跳等过程中,循环往复的应力会导致钛金属支架产生极其细微的弹性形变。研究已经证实,在对钛及其合金进行多孔化处理中可以通过改变孔隙率、孔径大小及支柱直径等参数调整其强度和弹性模量。另外,钛金属单元格的几何构型、钛金属表面微观形貌同样对支架的弹性模量、弹性性能以及表面干细胞分化发挥重要作用。目前钛支架制作中单元格的几何构型常采用立方体、多面体(如六面体、十二面体等)、金刚石型、仿骨小梁型及G7等。现我们自行设计纺锤形单元格结构,与立方体、十二面体和G7结构相比,纺锤形结构的支架弹性模量更低,延展性更好、弹性形变量更高。
成骨细胞及干细胞是力学信号敏感或响应细胞,研究证明在细胞与基底间的各种力学信号可通过干细胞表面受体激活特定的力转导途径进而调节干细胞的分化,即使在缺乏生物化学刺激的情况下力学因素也能单独调控干细胞自我更新和谱系分化。干细胞对基底硬度、表面纳米尺度粗糙度变化的响应非常敏感,研究表明干细胞在质地硬及表面粗糙度高的基底表面更倾向于向成骨细胞分化。钛金属弹性模量接近皮质骨,通过调整阳极氧化工艺参数,可以在钛金属增强块表面制作诱发干细胞分化的最佳纳米坑、纳米管形貌。采用有机溶液(醇基氧化介质)对不同成分的钛金属增强块进行阳极氧化,可以制备出大面积均匀生长的、长度和直径可控的、具有良好生物学特性的纳米坑及纳米管阵列的表面微形貌。在纳米坑表面,细胞形变量最小,随着纳米管高度的增加,其表面的细胞形变量也会逐渐增加,即可以通过纳米管高度放大钛金属形变产生的力学信号,从而更有利于促进诱导干细胞分化。
传统对于钛金属增强块的研究主要集中在支架孔径大小、孔隙连通率控制等方面。但具体支架孔径大小和孔隙率的多少最有利于骨组织的长入,目前尚无统一的标准,钛金属和骨界面整合效果不确切。另外,钛金属微量弹性形变引发的力学信号可以影响其表面细胞成骨分化,既往钛金属增强块没有考虑到钛金属增强块的弹性形变可以影响其表面的干细胞的成骨分化,进而促进钛金属和骨界面的整合。
因此,本领域的技术人员致力于开发一种基于弹性形变的钛金属增强块及其构建方法,即构建一种内部结构新型的钛金属增强块,与既往增强块相比,更容易发生弹性形变,利用钛金属微量弹性形变引发的力学信号对其表面细胞成骨分化的影响达到促进金属-骨界面整合的目的。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是如何促进钛金属和骨组织界面整合以及如何利用钛金属弹性形变促进骨再生。
为实现上述目的,本发明提供了一种基于弹性形变的钛金属增强块,所述钛金属增强块具有纺锤形结构,所述纺锤形结构具有多个小梁,所述小梁间具有空隙。
进一步地,所述纺锤形结构具有四个小梁。
进一步地,所述小梁直径为200~500微米。
进一步地,所述空隙大小为200~700微米。
进一步地,所述钛金属增强块的压缩强度为10~300MPa,弹性模量为0.5~15GPa。
本发明还提供了一种基于弹性形变的钛金属增强块的构建方法,包含以下步骤:
步骤1、利用CT逐层扫描骨缺损部位,然后三维重建出所需打印的钛金属增强块的内部及整体形态;
步骤2、以钛金属或其合金粉体为原材料,通过金属三维打印技术制作新型介稳定单相β型钛金属或其合金增强块,其中以纺锤形结构作为增强块的单元格结构;
步骤3、采用有机溶液对钛金属或其合金增强块进行阳极氧化,制备出大面积均匀生长的、长度和直径可控的、具有生物学特性的纳米坑及纳米管阵列钛金属增强块表面微形貌;
步骤4、对钛金属及其合金增强块施加不同频率、周期和大小的压应力,造成钛金属及其合金增强块的微细形变,促进其表面的细胞的增殖及向成骨分化。
进一步地,所述合金包括Ti6Al4V、Ti35Nb或Ti35NbxZr系列。
进一步地,所述金属三维打印技术为电子束熔化成形。
进一步地,所述有机溶液为醇基氧化介质。
进一步地,所述压应力大小范围与人体重量所产生的压力相同。
本发明所述以纺锤形结构作为钛金属增强块的单元格结构,具体来说,是以钛及其合金粉体为原材料,通过金属三维打印技术制作出内部结构新型的钛金属增强块,具有弹性模量更低,延展性更好,从而使钛金属增强块产生更高的弹性形变量。本发明利用3D打印技术打印出新型介稳定单相β型钛金属及合金增强块。该钛金属增强块具有强度高、弹性模量低、生物相容性好的优点,在适当的应力作用下容易发生弹性形变,钛金属增强块的微量弹性形变可以通过力学信号影响其表面间充质干细胞及成骨细胞的增殖与分化,从而促进金属-骨界面整合。本发明采用有机溶液(醇基氧化介质)对钛金属增强块进行阳极氧化,制备出诱发干细胞分化的最佳Ti-Nb-O纳米管阵微形貌。通过这三方面的改进,从而更好促进钛金属和骨界面整合。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是本发明的一个较佳实施例的纺锤形钛金属增强块的单元格机构示意图。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
本发明所述的钛金属增强块及其构建方法包括:
1、首先利用薄层CT逐层扫描由于骨肿瘤、感染、创伤、关节翻修、椎体切除等造成的骨缺损,然后行三维重建出所需打印的增强块的内部及整体形态,然后将其模型导入3D打印机中。
2、以钛及其合金粉体为原材料,包括纯钛、Ti6Al4V、Ti35Nb和Ti35NbxZr系列合金,以纺锤形结构作为钛金属增强块的单元格结构(如图1所示),通过金属三维打印技术(电子束熔化成形ARCAMA1)制作新型介稳定单相β型钛金属及合金增强块,该增强块的空隙大小为200~700微米,金属小梁直径为200~500微米,压缩强度为10-300MPa,弹性模量为:0.5-15GPa。
3、采用有机溶液(醇基氧化介质)对不同成分的钛金属增强块进行阳极氧化,制备出大面积均匀生长的、长度和直径可控的、具有良好生物学特性的纳米坑及纳米管阵列钛金属增强块表面微形貌。在纳米坑表面,细胞形变量最小,随着纳米管高度的增加,其表面的细胞形变量也会逐渐增加,即可以通过纳米管高度放大钛金属形变产生的力学信号,从而更有利于促进诱导干细胞分化,促进钛金属和骨界面的整合。
4、利用钛金属力学性能测试平台对钛金属增强块施加不同频率、周期和大小的压应力(压应力大小范围与人体重量所产生的压力相同),造成钛金属增强块的微细形变,促进其表面的细胞的增殖及向成骨分化,从而促进钛金属和骨界面的整合。
本发明以纺锤形结构作为钛金属增强块的单元格结构,具有弹性模量更低,延展性更好,从而使钛金属增强块产生更高的弹性形变量,从而更好促进钛金属和骨界面整合。本发明采用有机溶液(醇基氧化介质)对钛金属增强块进行阳极氧化,制备出大面积均匀生长、具有良好生物学特性、诱发干细胞分化的最佳长度和直径的纳米管微形貌,通过纳米管高度放大钛金属形变产生的力学信号,从而更有利于促进诱导干细胞分化,促进钛金属和骨界面的整合。考虑到钛金属弹性形变可以帮助促进骨整合,本发明构建一种内部结构新型的钛金属增强块,与既往增强块相比,更容易发生弹性形变,利用钛金属微量弹性形变引发的力学信号对其表面细胞成骨分化的影响达到促进金属-骨界面整合的目的。该钛合金增强块可以应用于椎体切除术后重建,创伤性骨缺损,关节翻修造成的骨缺损,骨肿瘤、骨感染等造成的骨缺损等。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

1.一种基于弹性形变的钛金属增强块,其特征在于,所述钛金属增强块具有纺锤形结构,所述纺锤形结构具有多个小梁,所述小梁间具有空隙。
2.如权利要求1所述的基于弹性形变的钛金属增强块,其特征在于,所述纺锤形结构具有四个小梁。
3.如权利要求1所述的基于弹性形变的钛金属增强块,其特征在于,所述小梁直径为200~500微米。
4.如权利要求1所述的基于弹性形变的钛金属增强块,其特征在于,所述空隙大小为200~700微米。
5.如权利要求1所述的基于弹性形变的钛金属增强块,其特征在于,所述钛金属增强块的压缩强度为10~300MPa,弹性模量为0.5~15GPa。
6.如权利要求1~5任一一种所述的基于弹性形变的钛金属增强块的构建方法,其特征在于,包含以下步骤:
步骤1、利用CT逐层扫描骨缺损部位,然后三维重建出所需打印的钛金属增强块的内部及整体形态;
步骤2、以钛金属或其合金粉体为原材料,通过金属三维打印技术制作新型介稳定单相β型钛金属或其合金增强块,其中以纺锤形结构作为增强块的单元格结构;
步骤3、采用有机溶液对钛金属或其合金增强块进行阳极氧化,制备出大面积均匀生长的、长度和直径可控的、具有生物学特性的纳米坑及纳米管阵列钛金属增强块表面微形貌;
步骤4、对钛金属及其合金增强块施加不同频率、周期和大小的压应力,造成钛金属及其合金增强块的微细形变,促进其表面的细胞的增殖及向成骨分化。
7.如权利要求6所述的基于弹性形变的钛金属增强块的构建方法,其特征在于,所述合金包括Ti6Al4V、Ti35Nb或Ti35NbxZr系列。
8.如权利要求6所述的基于弹性形变的钛金属增强块的构建方法,其特征在于,所述金属三维打印技术为电子束熔化成形。
9.如权利要求6所述的基于弹性形变的钛金属增强块的构建方法,其特征在于,所述有机溶液为醇基氧化介质。
10.如权利要求6所述的基于弹性形变的钛金属增强块的构建方法,其特征在于,所述压应力大小范围与人体重量所产生的压力相同。
CN201610362061.1A 2016-05-26 2016-05-26 一种基于弹性形变的钛金属增强块及其构建方法 Expired - Fee Related CN105921746B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610362061.1A CN105921746B (zh) 2016-05-26 2016-05-26 一种基于弹性形变的钛金属增强块及其构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610362061.1A CN105921746B (zh) 2016-05-26 2016-05-26 一种基于弹性形变的钛金属增强块及其构建方法

Publications (2)

Publication Number Publication Date
CN105921746A true CN105921746A (zh) 2016-09-07
CN105921746B CN105921746B (zh) 2017-12-15

Family

ID=56841287

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610362061.1A Expired - Fee Related CN105921746B (zh) 2016-05-26 2016-05-26 一种基于弹性形变的钛金属增强块及其构建方法

Country Status (1)

Country Link
CN (1) CN105921746B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109234735A (zh) * 2018-11-13 2019-01-18 山东大学 一种ebm成型钛植入体及其制备方法和应用
CN111292404A (zh) * 2020-01-17 2020-06-16 上海凯利泰医疗科技股份有限公司 预多孔化实体结构的优化方法、系统、存储介质、设备
CN113198048A (zh) * 2021-04-30 2021-08-03 安徽医科大学第二附属医院 一种二氧化钛纳米管及其制备方法与应用
CN117123143A (zh) * 2023-07-14 2023-11-28 山东中科润晶新材料有限公司 一种异型十二面体金刚石的合成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2710649Y (zh) * 2004-07-30 2005-07-20 北京有色金属研究总院 腔静脉血栓过滤器
CN101889892A (zh) * 2010-06-29 2010-11-24 中国人民解放军第二军医大学 一种跟骨骨折复位用自动撑开内固定器
US20110004308A1 (en) * 2009-06-17 2011-01-06 Marino James F Expanding intervertebral device and methods of use
CN102178569A (zh) * 2011-06-08 2011-09-14 威海维心医疗设备有限公司 一种可控释放的腔静脉滤器及其加工方法
KR20160028592A (ko) * 2014-09-03 2016-03-14 한국원자력연구원 인간 중간엽 줄기 세포의 3차원적 공간 부착 및 골분화를 돕는 섬유상 입자가 도입된 알지네이트 하이드로젤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2710649Y (zh) * 2004-07-30 2005-07-20 北京有色金属研究总院 腔静脉血栓过滤器
US20110004308A1 (en) * 2009-06-17 2011-01-06 Marino James F Expanding intervertebral device and methods of use
CN101889892A (zh) * 2010-06-29 2010-11-24 中国人民解放军第二军医大学 一种跟骨骨折复位用自动撑开内固定器
CN102178569A (zh) * 2011-06-08 2011-09-14 威海维心医疗设备有限公司 一种可控释放的腔静脉滤器及其加工方法
KR20160028592A (ko) * 2014-09-03 2016-03-14 한국원자력연구원 인간 중간엽 줄기 세포의 3차원적 공간 부착 및 골분화를 돕는 섬유상 입자가 도입된 알지네이트 하이드로젤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SABER AMIN YAVARI 等: "Bone regeneration performance of surface-treated porous titanium", 《BIOMATERIALS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109234735A (zh) * 2018-11-13 2019-01-18 山东大学 一种ebm成型钛植入体及其制备方法和应用
CN111292404A (zh) * 2020-01-17 2020-06-16 上海凯利泰医疗科技股份有限公司 预多孔化实体结构的优化方法、系统、存储介质、设备
CN111292404B (zh) * 2020-01-17 2023-08-11 上海凯利泰医疗科技股份有限公司 预多孔化实体结构的优化方法、系统、存储介质、设备
CN113198048A (zh) * 2021-04-30 2021-08-03 安徽医科大学第二附属医院 一种二氧化钛纳米管及其制备方法与应用
CN117123143A (zh) * 2023-07-14 2023-11-28 山东中科润晶新材料有限公司 一种异型十二面体金刚石的合成方法
CN117123143B (zh) * 2023-07-14 2024-02-23 山东中科润晶新材料有限公司 一种异型十二面体金刚石的合成方法

Also Published As

Publication number Publication date
CN105921746B (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
Liang et al. Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility
Ouyang et al. Hydromechanical mechanism behind the effect of pore size of porous titanium scaffolds on osteoblast response and bone ingrowth
Zadpoor Additively manufactured porous metallic biomaterials
Pei et al. 3D printed titanium scaffolds with homogeneous diamond-like structures mimicking that of the osteocyte microenvironment and its bone regeneration study
Chen et al. 3D printed porous Ti6Al4V cage: Effects of additive angle on surface properties and biocompatibility; bone ingrowth in Beagle tibia model
CN204581484U (zh) 一种具有三维贯通多孔结构的3d打印骨螺钉
Lu et al. Electrochemical deposition of nanostructured hydroxyapatite coating on titanium with enhanced early stage osteogenic activity and osseointegration
EP2121053B1 (en) Metal oxide scaffolds
CN105921746A (zh) 一种基于弹性形变的钛金属增强块及其构建方法
Bian et al. Design and fabrication of a novel porous implant with pre-set channels based on ceramic stereolithography for vascular implantation
CN107349472B (zh) 一种促进骨融合的重复梯度多孔钛合金的制备方法
CN104758042A (zh) 一种具有三维贯通多孔结构的骨螺钉
Zhang et al. Preparation of micro-nanostructure on titanium implants and its bioactivity
CN104207867B (zh) 一种低模量医用植入多孔支架结构
Dobrzański The concept of biologically active microporous engineering materials and composite biological-engineering materials for regenerative medicine and dentistry
Liu et al. Experimental study of a 3D printed permanent implantable porous Ta-coated bone plate for fracture fixation
CN106267342A (zh) 一种牙科种植体及其制备方法
Wang et al. Biomechanical study on implantable and interventional medical devices
Li et al. The response of host blood vessels to graded distribution of macro-pores size in the process of ectopic osteogenesis
Xie et al. Fabrication of submicro-nano structures on polyetheretherketone surface by femtosecond laser for exciting cellular responses of MC3T3-E1 cells/gingival epithelial cells
Sadovoy et al. Cellular matrices (scaffolds) for bone regeneration: state of the art
CN208243822U (zh) 一种3d打印复合磁性金属支架
Rezapourian et al. Optimal mechanical properties of Hydroxyapatite gradient Voronoi porous scaffolds for bone applications—A numerical study
Ricci et al. Where is dentistry in regenerative medicine?
CN112972759A (zh) 一种利用磁场体外调控材料表面生物活性的复合材料及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171215

Termination date: 20200526