CN105914240A - Solar cell using carbon nanotube transparent electrode - Google Patents

Solar cell using carbon nanotube transparent electrode Download PDF

Info

Publication number
CN105914240A
CN105914240A CN201610429348.1A CN201610429348A CN105914240A CN 105914240 A CN105914240 A CN 105914240A CN 201610429348 A CN201610429348 A CN 201610429348A CN 105914240 A CN105914240 A CN 105914240A
Authority
CN
China
Prior art keywords
electrode
carbon nanotube
layer
solar cell
nanotube transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610429348.1A
Other languages
Chinese (zh)
Inventor
秦校军
赵志国
王丹
王一丹
邬俊波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaneng Clean Energy Research Institute
China Huaneng Group Co Ltd
Original Assignee
Huaneng Clean Energy Research Institute
China Huaneng Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaneng Clean Energy Research Institute, China Huaneng Group Co Ltd filed Critical Huaneng Clean Energy Research Institute
Priority to CN201610429348.1A priority Critical patent/CN105914240A/en
Publication of CN105914240A publication Critical patent/CN105914240A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • H10F77/244Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/138Manufacture of transparent electrodes, e.g. transparent conductive oxides [TCO] or indium tin oxide [ITO] electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明一种使用碳纳米管透明电极的太阳能电池,包括第一电极、第二电极以及设置第一电极和第二电极之间的钙钛矿活性层,其中第一电极为碳纳米管透明电极,本发明用碳纳米管透明电极替代原结构中的透明电极,碳纳米管透明电极主要结构为具有高透光性的单壁及多壁碳纳米管网状导电薄膜,其导电性、透光率、产品柔性均优于现有材料;采用卷对卷技术的一系列工艺,可以实现柔性钙钛矿电池的大规模生产,碳纳米管透明电极的生产技术,也可以用于其他形式的太阳能电池如有机太阳能电池、CIGS电池、晶硅及非晶硅薄膜电池等,以及一切可以使用该电极的领域,如LED,OLED等,不但提升了性能,而且适应于大规模的生产。

The present invention is a solar cell using a carbon nanotube transparent electrode, comprising a first electrode, a second electrode and a perovskite active layer arranged between the first electrode and the second electrode, wherein the first electrode is a carbon nanotube transparent electrode , the present invention replaces the transparent electrode in the original structure with a carbon nanotube transparent electrode. The efficiency and product flexibility are superior to existing materials; a series of processes using roll-to-roll technology can realize large-scale production of flexible perovskite cells, and the production technology of carbon nanotube transparent electrodes can also be used for other forms of solar energy Batteries such as organic solar cells, CIGS cells, crystalline silicon and amorphous silicon thin-film cells, and all fields that can use this electrode, such as LED, OLED, etc., not only improve performance, but also adapt to large-scale production.

Description

一种使用碳纳米管透明电极的太阳能电池A solar cell using carbon nanotube transparent electrodes

技术领域technical field

本发明属于薄膜太阳能电池器件设计制备技术领域,特别涉及一种使用碳纳米管透明电极的太阳能电池。The invention belongs to the technical field of thin-film solar cell device design and preparation, and in particular relates to a solar cell using a carbon nanotube transparent electrode.

背景技术Background technique

随着化石能源的日益枯竭和其使用所带来的高昂的环境成本,可再生清洁能源的开发和利用受到广泛的关注。太阳能光伏发电技术和产品在全球范围内得到了高速增长,成为最具潜力的清洁能源。近年来发现的钙钛矿型太阳能电池由于高转换效率、低成本、环境友善、可挠式产品化等优点备受关注。With the depletion of fossil energy and the high environmental costs brought about by its use, the development and utilization of renewable clean energy has attracted extensive attention. Solar photovoltaic power generation technology and products have been growing rapidly around the world, becoming the most potential clean energy. Perovskite solar cells discovered in recent years have attracted much attention due to their high conversion efficiency, low cost, environmental friendliness, and flexible productization.

透明电极是钙钛矿型太阳能电池结构中的关键部分之一,起到将太阳电池产生的光电流传导到外电路的作用。透明电极需要具有以下特性:高导电性、高透光率以及产业化需要的柔性(可挠性);此外,在大规模生产的要求下,还需要具有低成本、易合成、适合大规模制备等特点。目前常用的透明电极为FTO(掺氟氧化锡)、ITO(氧化铟锡)、AZO(掺铝氧化锌)等,这类金属氧化物半导体类的透明电极除了具备90%左右较高透光率的优势之外,其导电性、可挠性均较差;此外其生产大多需要使用磁控溅射、原子沉积、激光沉积、化学气相沉积、分子束外延等高耗能的制备方法和相应设备,成本高,制备条件苛刻。因此亟需一种可以代替其的新型透明电极材料。The transparent electrode is one of the key parts in the perovskite solar cell structure, which plays a role in conducting the photocurrent generated by the solar cell to the external circuit. Transparent electrodes need to have the following characteristics: high conductivity, high light transmittance, and flexibility (flexibility) required for industrialization; in addition, under the requirements of mass production, they also need to be low-cost, easy to synthesize, suitable for large-scale preparation Features. At present, the commonly used transparent electrodes are FTO (fluorine-doped tin oxide), ITO (indium tin oxide), AZO (aluminum-doped zinc oxide), etc. This kind of transparent electrode of metal oxide semiconductor has a high light transmittance of about 90%. In addition to its advantages, its conductivity and flexibility are poor; in addition, its production mostly requires the use of high-energy-consuming preparation methods and corresponding equipment such as magnetron sputtering, atomic deposition, laser deposition, chemical vapor deposition, and molecular beam epitaxy. , high cost and harsh preparation conditions. Therefore, there is an urgent need for a new type of transparent electrode material that can replace it.

发明内容Contents of the invention

为了克服上述现有技术的缺点,本发明的目的在于提供一种使用碳纳米管透明电极的太阳能电池,将碳纳米管网状结构薄膜在钙钛矿型太阳电池结构中作为透明电极层,所述的碳纳米管透明电极为具有高透光性的单壁碳纳米管及多壁碳纳米管网状导电薄膜,其导电性、透光率及可挠性大大优于前述的半导体金属氧化物;该薄膜可以采用化学气相沉积法、电弧放电法、激光烧蚀法、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等方法进行制备;特别地,采用溶液聚合方法制备的单壁及多壁碳纳米管特别易于大规模、低成本地进行合成,同时利用卷对卷制备技术,如狭缝涂布、刮刀涂布、丝网印刷、凹版印刷、喷墨涂布、喷墨印刷等进行大规模生产。In order to overcome the above-mentioned shortcoming of the prior art, the object of the present invention is to provide a kind of solar cell that uses the carbon nanotube transparent electrode, the carbon nanotube network structure film is used as the transparent electrode layer in the perovskite type solar cell structure, so The carbon nanotube transparent electrode described above is a single-walled carbon nanotube and multi-walled carbon nanotube network conductive film with high light transmittance, and its conductivity, light transmittance and flexibility are much better than the aforementioned semiconductor metal oxides. ; The film can be prepared by methods such as chemical vapor deposition, arc discharge, laser ablation, solid-phase pyrolysis, glow discharge, gas combustion, and polymerization synthesis; in particular, the solution polymerization method The prepared single-wall and multi-wall carbon nanotubes are particularly easy to synthesize on a large scale and at low cost, while utilizing roll-to-roll preparation techniques such as slot coating, doctor blade coating, screen printing, gravure printing, inkjet coating , inkjet printing, etc. for mass production.

为了实现上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:

一种使用碳纳米管透明电极的太阳能电池,包括第一电极102、第二电极112以及设置在第一电极102和第二电极112之间的钙钛矿活性层108,所述第一电极102为碳纳米管透明电极。A solar cell using a carbon nanotube transparent electrode, comprising a first electrode 102, a second electrode 112 and a perovskite active layer 108 disposed between the first electrode 102 and the second electrode 112, the first electrode 102 It is a carbon nanotube transparent electrode.

所述碳纳米管透明电极为由单壁碳纳米管或由多壁碳纳米管或由单壁碳纳米管和多壁碳纳米管混合组成的网状导电薄膜。The carbon nanotube transparent electrode is a mesh conductive film composed of single-wall carbon nanotubes or multi-wall carbon nanotubes or a mixture of single-wall carbon nanotubes and multi-wall carbon nanotubes.

所述单壁及多壁碳纳米管的直径为1-100nm,具有1000:1以上的长径比。The single-wall and multi-wall carbon nanotubes have a diameter of 1-100 nm and an aspect ratio of more than 1000:1.

所述单壁及多壁碳纳米管具有10000:1以上的长径比。The single-wall and multi-wall carbon nanotubes have an aspect ratio above 10000:1.

所述第一电极102和第二电极112之间还设置有半导体致密层104、多孔支架层或电子传输层106和空穴传输层110,其中,半导体致密层104位于第一电极102上,多孔支架层或电子传输层106位于半导体致密层104与钙钛矿活性层108之间,空穴传输层110位于钙钛矿活性层108与第二电极112之间。A semiconductor dense layer 104, a porous support layer or an electron transport layer 106 and a hole transport layer 110 are also provided between the first electrode 102 and the second electrode 112, wherein the semiconductor dense layer 104 is located on the first electrode 102, and the porous The scaffold layer or electron transport layer 106 is located between the semiconductor dense layer 104 and the perovskite active layer 108 , and the hole transport layer 110 is located between the perovskite active layer 108 and the second electrode 112 .

所述碳纳米管透明电极厚度为5-100nm;所述半导体致密层104成分为二氧化钛或氧化锌,厚度为20-150nm;所述多孔支架层或电子传输层106成分为介孔二氧化钛,使用溶胶凝胶法制备介观粒子溶胶后,退火烧结制备,或者成分为富勒烯类电子传输层材料,厚度为100-2000nm;所述钙钛矿活性层108结构为RNH3AXnY3-n,R=烃基;A=Pb,Sn;X,Y=Cl,Br,I;n为0-3的实数,采用旋涂法、气相沉积法或磁控溅射方形成,或采用适用于柔性及大规模制备的卷对卷工艺进行制备,厚度为100-3000nm;所述空穴传输层110成分为与钙钛矿活性材料能级相匹配的有机、无机材料,厚度为100-1000nm;所述第二电极112为金属对电极,采用磁控溅射法、热蒸发法、原子沉积法或激光沉积法制备,或使用卷对卷工艺进行制备,厚度为10-200nm。The thickness of the carbon nanotube transparent electrode is 5-100nm; the composition of the semiconductor dense layer 104 is titanium dioxide or zinc oxide, and the thickness is 20-150nm; the composition of the porous support layer or the electron transport layer 106 is mesoporous titanium dioxide, using a After the mesoscopic particle sol is prepared by the gel method, it is prepared by annealing and sintering, or the composition is a fullerene electron transport layer material, and the thickness is 100-2000nm; the structure of the perovskite active layer 108 is RNH 3 AX n Y 3-n , R=hydrocarbon group; A=Pb, Sn; X, Y=Cl, Br, I; n is a real number of 0-3, which is formed by spin coating method, vapor deposition method or magnetron sputtering, or is suitable for flexible and large-scale preparation of the roll-to-roll process, with a thickness of 100-3000nm; the composition of the hole transport layer 110 is organic and inorganic materials that match the energy level of the perovskite active material, and the thickness is 100-1000nm; The second electrode 112 is a metal counter electrode, which is prepared by magnetron sputtering, thermal evaporation, atomic deposition or laser deposition, or by a roll-to-roll process, with a thickness of 10-200 nm.

所述第一电极102和第二电极112之间还设置有电子传输层106和空穴传输层110,其中,空穴传输层110位于第一电极102和钙钛矿活性层108之间,电子传输层106位于钙钛矿活性层108和第二电极112之间。An electron transport layer 106 and a hole transport layer 110 are also provided between the first electrode 102 and the second electrode 112, wherein the hole transport layer 110 is located between the first electrode 102 and the perovskite active layer 108, and electrons The transport layer 106 is located between the perovskite active layer 108 and the second electrode 112 .

先通过化学气相沉积法、电弧放电法、激光烧蚀法、固相热解法、辉光放电法、气体燃烧法以及溶液聚合反应合成法制成浆料,利用卷对卷制备工艺制成厚度5-100nm的碳纳米管透明电极。Firstly, the slurry is prepared by chemical vapor deposition method, arc discharge method, laser ablation method, solid phase pyrolysis method, glow discharge method, gas combustion method and solution polymerization reaction synthesis method, and the thickness is made by roll-to-roll preparation process. -100nm carbon nanotube transparent electrodes.

在所述第一电极102与基底之间还设置有树脂粘结层101,或者直接在第一电极102下方设置树脂粘结层101作为基底。A resin adhesive layer 101 is also provided between the first electrode 102 and the substrate, or the resin adhesive layer 101 is provided directly under the first electrode 102 as the substrate.

所述树脂粘结层101是将聚丙烯酸类树脂单体与质量浓度1%的光引发剂DMPA混合后涂覆于基底表面,在紫外光照射下,室温条件下引发聚合反应形成。The resin bonding layer 101 is formed by mixing a polyacrylic resin monomer with a photoinitiator DMPA with a mass concentration of 1% and coating it on the surface of the substrate, and initiating a polymerization reaction at room temperature under ultraviolet light irradiation.

与现有技术相比,本发明用碳纳米管透明电极替代原结构中的透明电极,碳纳米管透明电极主要结构为具有高透光性的单壁及多壁碳纳米管网状导电薄膜,其导电性、透光率、产品柔性均优于现有材料;采用卷对卷技术的一系列工艺,可以实现柔性钙钛矿电池的大规模生产,碳纳米管透明电极的生产技术,也可以用于其他形式的太阳能电池如有机太阳能电池、CIGS电池、晶硅及非晶硅薄膜电池等,以及一切可以使用该电极的领域,如LED,OLED等,不但提升了性能,而且适应于大规模的生产。Compared with the prior art, the present invention replaces the transparent electrode in the original structure with a carbon nanotube transparent electrode. The main structure of the carbon nanotube transparent electrode is a single-wall and multi-wall carbon nanotube mesh conductive film with high light transmittance. Its conductivity, light transmittance, and product flexibility are all superior to existing materials; a series of processes using roll-to-roll technology can realize large-scale production of flexible perovskite batteries, and the production technology of carbon nanotube transparent electrodes can also It is used in other forms of solar cells such as organic solar cells, CIGS cells, crystalline silicon and amorphous silicon thin film cells, etc., and all fields where the electrode can be used, such as LED, OLED, etc., not only improves performance, but also adapts to large-scale production.

附图说明Description of drawings

图1为本发明使用碳纳米管透明电极的钙钛矿型太阳电池的一种结构示意图。FIG. 1 is a schematic structural view of a perovskite solar cell using a carbon nanotube transparent electrode according to the present invention.

图2为本发明使用碳纳米管透明电极的钙钛矿型太阳电池的另一种结构示意图。FIG. 2 is another structural schematic diagram of a perovskite solar cell using a carbon nanotube transparent electrode according to the present invention.

图3为本发明碳纳米管透明电极的微观结构示意图。Fig. 3 is a schematic diagram of the microstructure of the carbon nanotube transparent electrode of the present invention.

具体实施方式detailed description

在描述本发明的实施方案时,为了清楚起见,使用了特定的术语。然而,本发明无意局限于所选择的特定术语。应了解每个特定元件包括类似的方法运行以实现类似目的的所有技术等同物。In describing embodiments of the invention, specific terminology is employed for the sake of clarity. However, it is not intended that the invention be limited to the particular terms so chosen. It is to be understood that each specific element includes all technical equivalents which operate in a similar method to achieve a similar purpose.

下面结合附图对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings.

图1为使用碳纳米管透明电极的钙钛矿型太阳电池结构示意图,其电池结构由以下部分组成:Figure 1 is a schematic diagram of the structure of a perovskite solar cell using a carbon nanotube transparent electrode. The cell structure consists of the following parts:

0.树脂粘结层101:可以将聚丙烯酸类树脂的单体与质量浓度1%的光引发剂DMPA混合后涂覆于玻璃或者PET基底表面,在紫外光照射下,室温条件下引发聚合反应,形成粘结层,用于增强碳纳米管透明电极与玻璃或PET基底之间的粘合性,或者也可以直接将该树脂粘结层101作为基底进行使用。0. Resin bonding layer 101: the monomer of polyacrylic resin can be mixed with the photoinitiator DMPA with a mass concentration of 1%, and then coated on the surface of glass or PET substrate, and the polymerization reaction can be initiated at room temperature under ultraviolet light irradiation , to form an adhesive layer for enhancing the adhesion between the carbon nanotube transparent electrode and the glass or PET substrate, or the resin adhesive layer 101 can also be directly used as the substrate.

1.第一电极102,即碳纳米管透明电极层,为本发明的核心部分,可以采用化学气相沉积法、电弧放电法、激光烧蚀法、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等方法进行制备。特别的,采用溶液聚合方法制备或其他方法制备的单壁及多壁碳纳米管溶液浆料特别易于大规模、低成本地进行合成,同时利用卷对卷制备技术,如狭缝涂布、刮刀涂布、丝网印刷、凹版印刷、喷墨涂布、喷墨印刷等进行大规模生产。厚度可以为5-100nm,层结构如图3所示。1. The first electrode 102, i.e. the carbon nanotube transparent electrode layer, is the core part of the present invention, and chemical vapor deposition, arc discharge, laser ablation, solid phase pyrolysis, glow discharge, gas It can be prepared by combustion method and polymerization synthesis method. In particular, single-wall and multi-wall carbon nanotube solution slurries prepared by solution polymerization or other methods are particularly easy to synthesize on a large scale and at low cost, while using roll-to-roll preparation techniques such as slot coating, doctor blade Coating, screen printing, gravure printing, inkjet coating, inkjet printing, etc. for mass production. The thickness can be 5-100 nm, and the layer structure is shown in FIG. 3 .

本层的另一特点为柔性,大大改善了传统半导体金属氧化物透明电极的易碎性。Another feature of this layer is flexibility, which greatly improves the fragility of traditional semiconductor metal oxide transparent electrodes.

2.在第一电极102上形成的与钙钛矿活性层材料能级匹配的半导体致密层104(通常为二氧化钛或氧化锌)。厚度为20-150nm。2. A dense semiconductor layer 104 (usually titanium dioxide or zinc oxide) formed on the first electrode 102 that matches the energy level of the perovskite active layer material. The thickness is 20-150nm.

3.在致密导电层上形成的多孔支架层或电子传输层106,通常为介孔二氧化钛,使用溶胶凝胶法制备介观粒子溶胶后,退火烧结制备。也可以使用富勒烯类电子传输层材料代替。厚度为100-2000nm。3. The porous support layer or electron transport layer 106 formed on the dense conductive layer is usually mesoporous titanium dioxide, which is prepared by annealing and sintering after preparing mesoscopic particle sol by sol-gel method. A fullerene-based electron transport layer material may also be used instead. The thickness is 100-2000nm.

4.在多孔支架层上形成的活性钙钛矿层108,结构为(RNH3)AXnY3-n(R=烃基;A=Pb,Sn;X,Y=Cl,Br,I;n为0-3的实数),通常采用旋涂法、气相沉积、磁控溅射等方法形成,也可以采用适用于柔性及大规模制备的卷对卷工艺进行制备,即将活性材料的浆料通过狭缝涂布、刮刀涂布、丝网印刷、凹版印刷、喷墨涂布、喷墨印刷等方法形成。厚度为100-3000nm。4. The active perovskite layer 108 formed on the porous support layer has a structure of (RNH 3 )AX n Y 3-n (R = hydrocarbon group; A = Pb, Sn; X, Y = Cl, Br, I; n is 0-3), usually formed by methods such as spin coating, vapor deposition, magnetron sputtering, etc., and can also be prepared by a roll-to-roll process suitable for flexible and large-scale production, that is, the active material slurry is passed through a narrow Slot coating, blade coating, screen printing, gravure printing, inkjet coating, inkjet printing and other methods. The thickness is 100-3000nm.

5.在活性钙钛矿层108上形成的空穴传输层110,其特点为与钙钛矿活性材料能级相匹配的有机、无机材料,如碘化亚铜、PEDOT:PSS、聚对苯撑乙烯类、聚噻吩类、聚硅烷类、三苯甲烷类、三芳胺类、腙类、吡唑啉类、嚼唑类、咔唑类、丁二烯类等,厚度为100-1000nm。5. The hole transport layer 110 formed on the active perovskite layer 108 is characterized by organic and inorganic materials that match the energy level of the perovskite active material, such as cuprous iodide, PEDOT:PSS, polyparaphenylene Vinyl, polythiophene, polysilane, triphenylmethane, triarylamine, hydrazone, pyrazoline, azole, carbazole, butadiene, etc., with a thickness of 100-1000nm.

6.在空穴传输层上形成的第二电极112,即金属对电极层,材料为金、银、铝、铂等金属,可采用磁控溅射、热蒸发、原子沉积、激光沉积等方法制备,在柔性制备过程中,还可以使用卷对卷工艺进行制备,即将导电金属电极材料的浆料通过狭缝涂布、刮刀涂布、丝网印刷、凹版印刷、喷墨涂布、喷墨印刷等方法形成。厚度为10-200nm。6. The second electrode 112 formed on the hole transport layer, that is, the metal counter electrode layer, is made of metals such as gold, silver, aluminum, platinum, etc., and methods such as magnetron sputtering, thermal evaporation, atomic deposition, and laser deposition can be used Preparation, in the flexible preparation process, the roll-to-roll process can also be used for preparation, that is, the slurry of the conductive metal electrode material is passed through slit coating, doctor blade coating, screen printing, gravure printing, inkjet coating, inkjet coating, etc. Formed by printing and other methods. The thickness is 10-200nm.

在上述各层中,半导体致密层104与空穴传输层110可以不用,以简化工艺,降低成本,但得到的电池效率相对较低。Among the above-mentioned layers, the semiconductor dense layer 104 and the hole transport layer 110 may not be used to simplify the process and reduce the cost, but the obtained battery efficiency is relatively low.

图2为另一种结构的钙钛矿型太阳能电池,将正负极倒置,结构中包括树脂粘结层101,第一电极102,空穴传输层110,活性钙钛矿层108,电子传输层106,第二电极112。Fig. 2 is a perovskite solar cell with another structure, the positive and negative electrodes are reversed, and the structure includes a resin bonding layer 101, a first electrode 102, a hole transport layer 110, an active perovskite layer 108, and an electron transport layer 106 , the second electrode 112 .

图3为碳纳米管透明电极的微观结构示意图,其中每一条黑线代表一根直径为1-100nm的单壁或多壁碳纳米管。如果采用溶液方法或其他方法制备的碳纳米管进行溶液相分散,则可以将得到的碳纳米管溶液制成浆料进行卷对卷工艺制备,得到无规的网状结构。3 is a schematic diagram of the microstructure of a carbon nanotube transparent electrode, wherein each black line represents a single-wall or multi-wall carbon nanotube with a diameter of 1-100 nm. If the carbon nanotubes prepared by the solution method or other methods are used for solution phase dispersion, the obtained carbon nanotube solution can be made into a slurry and prepared by a roll-to-roll process to obtain a random network structure.

该结构的透光性取决于碳纳米管的疏密程度,一般情况下可以达到95%以上,优于现有方案使用的金属氧化物半导体类材料。The light transmission of the structure depends on the density of the carbon nanotubes, and generally can reach more than 95%, which is better than the metal oxide semiconductor materials used in the existing scheme.

同时,本发明之碳纳米管电极对比传统ITO半导体氧化物的“致密无孔”电极,是一种“多孔”电极结构,透光率和导电率可以通过调节原料浓度和制备工艺进行改变,例如:At the same time, the carbon nanotube electrode of the present invention is a "porous" electrode structure compared with the "dense non-porous" electrode of the traditional ITO semiconductor oxide, and the light transmittance and electrical conductivity can be changed by adjusting the concentration of raw materials and the preparation process, for example :

1.化学气相沉积法:以Co、Fe、Ni、Cu、Co-Mo、Co-Fe、Fe-Ni等金属及合金纳米粒子作为催化剂,以甲烷、高压一氧化碳、乙醇等为碳源气体的氛围下,直接在透明基底上700-850℃下进行化学气相沉积方法生长单壁碳纳米管,单管直径在0.5-2.5nm之间,可以直接生长出厚度在20-100nm的碳纳米管导电透明薄膜电极材料,透光率为70%-85%,方块电阻约为75-300Ω。1. Chemical vapor deposition method: Co, Fe, Ni, Cu, Co-Mo, Co-Fe, Fe-Ni and other metal and alloy nanoparticles are used as catalysts, and methane, high-pressure carbon monoxide, ethanol, etc. are used as carbon source gas atmosphere Under this condition, the chemical vapor deposition method is used to grow single-walled carbon nanotubes directly on a transparent substrate at 700-850°C. The diameter of a single tube is between 0.5-2.5nm, and carbon nanotubes with a thickness of 20-100nm can be directly grown to be conductive and transparent. Thin film electrode material, the light transmittance is 70%-85%, and the sheet resistance is about 75-300Ω.

2.溶液提拉法:将高纯单壁碳纳米管分散在十二烷基硫酸钠(SDS)水溶液中,作为提拉液备用;在透明玻璃基底上先涂覆一层APTS作为助黏剂,浸入提拉液中,然后用提拉机以1-5mm/min的速度进行提拉操作,直至将基底完全拉出;依次使用硝酸及去离子水进行清洗,洗去附着在碳纳米管表面的表面活性剂以增强导电性和透光性,按照需求可进行多次提拉,随着提拉次数的增加,电极薄膜的厚度增加。该法制备的透明电极透光度可以达85%-92%,方块电阻稍高,在200-1kΩ。2. Solution pulling method: disperse high-purity single-walled carbon nanotubes in sodium dodecyl sulfate (SDS) aqueous solution as a lifting solution; first coat a layer of APTS on a transparent glass substrate as an adhesion promoter , immersed in the pulling solution, and then use a pulling machine to pull at a speed of 1-5mm/min until the substrate is completely pulled out; sequentially use nitric acid and deionized water to wash off the carbon nanotube surface The surfactant can be used to enhance the conductivity and light transmittance, and it can be pulled multiple times according to the demand. As the number of pulls increases, the thickness of the electrode film increases. The transmittance of the transparent electrode prepared by the method can reach 85%-92%, and the sheet resistance is slightly higher at 200-1kΩ.

Claims (10)

1.一种使用碳纳米管透明电极的太阳能电池,包括第一电极(102)、第二电极(112)以及设置在第一电极(102)和第二电极(112)之间的钙钛矿活性层(108),其特征在于,所述第一电极(102)为碳纳米管透明电极。1. A solar cell using a carbon nanotube transparent electrode, comprising a first electrode (102), a second electrode (112) and a perovskite arranged between the first electrode (102) and the second electrode (112) The active layer (108), characterized in that the first electrode (102) is a carbon nanotube transparent electrode. 2.根据权利要求1所述使用碳纳米管透明电极的太阳能电池,其特征在于,所述碳纳米管透明电极为由单壁碳纳米管或由多壁碳纳米管或由单壁碳纳米管和多壁碳纳米管混合组成的网状导电薄膜。2. the solar cell using carbon nanotube transparent electrode according to claim 1, is characterized in that, described carbon nanotube transparent electrode is by single-wall carbon nanotube or by multi-wall carbon nanotube or by single-wall carbon nanotube and multi-walled carbon nanotubes to form a mesh conductive film. 3.根据权利要求2所述使用碳纳米管透明电极的太阳能电池,其特征在于,所述单壁及多壁碳纳米管的直径为1-100nm,具有1000:1以上的长径比。3 . The solar cell using carbon nanotube transparent electrodes according to claim 2 , wherein the single-wall and multi-wall carbon nanotubes have a diameter of 1-100 nm and an aspect ratio of 1000:1 or more. 4.根据权利要求2所述使用碳纳米管透明电极的太阳能电池,其特征在于,所述单壁及多壁碳纳米管具有10000:1以上的长径比。4. The solar cell using carbon nanotube transparent electrodes according to claim 2, wherein the single-wall and multi-wall carbon nanotubes have an aspect ratio of 10000:1 or more. 5.根据权利要求1所述使用碳纳米管透明电极的太阳能电池,其特征在于,所述第一电极(102)和第二电极(112)之间还设置有半导体致密层(104)、多孔支架层或电子传输层(106)和空穴传输层(110),其中,半导体致密层(104)位于第一电极(102)上,多孔支架层或电子传输层(106)位于半导体致密层(104)与钙钛矿活性层(108)之间,空穴传输层(110)位于钙钛矿活性层(108)与第二电极(112)之间。5. the solar cell using carbon nanotube transparent electrode according to claim 1, is characterized in that, between described first electrode (102) and second electrode (112), also be provided with semiconductor dense layer (104), porous Support layer or electron transport layer (106) and hole transport layer (110), wherein, semiconductor dense layer (104) is located on the first electrode (102), porous support layer or electron transport layer (106) is located in semiconductor dense layer ( 104) and the perovskite active layer (108), the hole transport layer (110) is located between the perovskite active layer (108) and the second electrode (112). 6.根据权利要求5所述使用碳纳米管透明电极的太阳能电池,其特征在于,所述碳纳米管透明电极厚度为5-100nm;所述半导体致密层(104)成分为二氧化钛或氧化锌,厚度为20-150nm;所述多孔支架层或电子传输层(106)成分为介孔二氧化钛,使用溶胶凝胶法制备介观粒子溶胶后,退火烧结制备,或者成分为富勒烯类电子传输层材料,厚度为100-2000nm;所述钙钛矿活性层(108)结构为(RNH3)AXnY3-n,R=烃基;A=Pb,Sn;X,Y=Cl,Br,I;n为0-3的实数,采用旋涂法、气相沉积法或磁控溅射方形成,或采用适用于柔性及大规模制备的卷对卷工艺进行制备,厚度为100-3000nm;所述空穴传输层(110)成分为与钙钛矿活性材料能级相匹配的有机、无机材料,厚度为100-1000nm;所述第二电极(112)为金属对电极,采用磁控溅射法、热蒸发法、原子沉积法或激光沉积法制备,或使用卷对卷工艺进行制备,厚度为10-200nm。6. the solar cell using carbon nanotube transparent electrode according to claim 5, is characterized in that, described carbon nanotube transparent electrode thickness is 5-100nm; Described semiconductor compact layer (104) composition is titanium dioxide or zinc oxide, The thickness is 20-150nm; the composition of the porous support layer or the electron transport layer (106) is mesoporous titanium dioxide, which is prepared by annealing and sintering after the mesoscopic particle sol is prepared by the sol-gel method, or the composition is a fullerene electron transport layer material, with a thickness of 100-2000nm; the structure of the perovskite active layer (108) is (RNH 3 )AX n Y 3-n , R=hydrocarbyl; A=Pb, Sn; X, Y=Cl, Br, I ; n is a real number of 0-3, formed by spin coating, vapor deposition or magnetron sputtering, or prepared by a roll-to-roll process suitable for flexible and large-scale production, with a thickness of 100-3000nm; The composition of the hole transport layer (110) is an organic or inorganic material matching the energy level of the perovskite active material, and the thickness is 100-1000nm; the second electrode (112) is a metal counter electrode, and the magnetron sputtering method is used , thermal evaporation, atomic deposition or laser deposition, or roll-to-roll process, with a thickness of 10-200nm. 7.根据权利要求1所述使用碳纳米管透明电极的太阳能电池,其特征在于,所述第一电极(102)和第二电极(112)之间还设置有电子传输层(106)和空穴传输层(110),其中,空穴传输层(110)位于第一电极(102)和钙钛矿活性层(108)之间,电子传输层(106)位于钙钛矿活性层(108)和第二电极(112)之间。7. the solar cell using carbon nanotube transparent electrode according to claim 1, is characterized in that, between described first electrode (102) and second electrode (112), also be provided with electron transport layer (106) and spacer. A hole transport layer (110), wherein the hole transport layer (110) is located between the first electrode (102) and the perovskite active layer (108), and the electron transport layer (106) is located in the perovskite active layer (108) and the second electrode (112). 8.根据权利要求1所述使用碳纳米管透明电极的太阳能电池,其特征在于,先通过化学气相沉积法、电弧放电法、激光烧蚀法、固相热解法、辉光放电法、气体燃烧法以及溶液聚合反应合成法制成浆料,利用卷对卷制备工艺制成厚度5-100nm的碳纳米管透明电极。8. The solar cell using carbon nanotube transparent electrodes according to claim 1, is characterized in that, first pass through chemical vapor deposition method, arc discharge method, laser ablation method, solid phase pyrolysis method, glow discharge method, gas Combustion method and solution polymerization reaction synthesis method are used to make slurry, and roll-to-roll preparation process is used to make carbon nanotube transparent electrode with a thickness of 5-100nm. 9.根据权利要求1所述使用碳纳米管透明电极的太阳能电池,其特征在于,在所述第一电极(102)与基底之间还设置有树脂粘结层(101),或者直接在第一电极(102)下方设置树脂粘结层(101)作为基底。9. The solar cell using carbon nanotube transparent electrodes according to claim 1, characterized in that a resin bonding layer (101) is also provided between the first electrode (102) and the substrate, or directly A resin adhesive layer (101) is arranged under an electrode (102) as a base. 10.根据权利要求1所述使用碳纳米管透明电极的太阳能电池,其特征在于,所述树脂粘结层(101)是将聚丙烯酸类树脂单体与质量浓度1%的光引发剂DMPA混合后涂覆于基底表面,在紫外光照射下,室温条件下引发聚合反应形成。10. The solar cell using carbon nanotube transparent electrodes according to claim 1, characterized in that, the resin bonding layer (101) is mixed with the photoinitiator DMPA of polyacrylic resin monomer and mass concentration 1%. After coating on the surface of the substrate, under the irradiation of ultraviolet light, the polymerization reaction is initiated at room temperature.
CN201610429348.1A 2016-06-16 2016-06-16 Solar cell using carbon nanotube transparent electrode Pending CN105914240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610429348.1A CN105914240A (en) 2016-06-16 2016-06-16 Solar cell using carbon nanotube transparent electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610429348.1A CN105914240A (en) 2016-06-16 2016-06-16 Solar cell using carbon nanotube transparent electrode

Publications (1)

Publication Number Publication Date
CN105914240A true CN105914240A (en) 2016-08-31

Family

ID=56751391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610429348.1A Pending CN105914240A (en) 2016-06-16 2016-06-16 Solar cell using carbon nanotube transparent electrode

Country Status (1)

Country Link
CN (1) CN105914240A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321297A (en) * 2018-02-05 2018-07-24 湖南纳昇印刷电子科技有限公司 A kind of flexible perovskite photodetector and preparation method of printing
CN111384188A (en) * 2018-12-27 2020-07-07 北京铂阳顶荣光伏科技有限公司 Thin film solar cell and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122938A1 (en) * 2008-04-02 2009-10-08 Murata Masayoshi Substrate for thin film solar cell, manufacturing method thereof, and thin film solar cell using thereof
KR20100074370A (en) * 2008-12-24 2010-07-02 주식회사 효성 Layered thin film solar cell
JP2014082285A (en) * 2012-10-15 2014-05-08 Mitsubishi Electric Corp Solar cell, method for manufacturing the same, and solar cell module
CN105161622A (en) * 2015-07-01 2015-12-16 中国华能集团清洁能源技术研究院有限公司 Solar cell based on graphene transparent electrode
CN105321592A (en) * 2014-08-01 2016-02-10 广东阿格蕾雅光电材料有限公司 CNT (carbon nanotube)-polymer laminated composite flexible transparent electrode and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122938A1 (en) * 2008-04-02 2009-10-08 Murata Masayoshi Substrate for thin film solar cell, manufacturing method thereof, and thin film solar cell using thereof
KR20100074370A (en) * 2008-12-24 2010-07-02 주식회사 효성 Layered thin film solar cell
JP2014082285A (en) * 2012-10-15 2014-05-08 Mitsubishi Electric Corp Solar cell, method for manufacturing the same, and solar cell module
CN105321592A (en) * 2014-08-01 2016-02-10 广东阿格蕾雅光电材料有限公司 CNT (carbon nanotube)-polymer laminated composite flexible transparent electrode and preparation method thereof
CN105161622A (en) * 2015-07-01 2015-12-16 中国华能集团清洁能源技术研究院有限公司 Solar cell based on graphene transparent electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321297A (en) * 2018-02-05 2018-07-24 湖南纳昇印刷电子科技有限公司 A kind of flexible perovskite photodetector and preparation method of printing
CN111384188A (en) * 2018-12-27 2020-07-07 北京铂阳顶荣光伏科技有限公司 Thin film solar cell and preparation method thereof

Similar Documents

Publication Publication Date Title
Mahmoudi et al. Graphene and its derivatives for solar cells application
Guo et al. Graphene-based materials for photoanodes in dye-sensitized solar cells
CN102347143B (en) A kind of graphene composite porous counter electrode, preparation method and applications
CN104701023B (en) A kind of carbon electrode material of perovskite thin film solar cell and preparation method thereof
Peng et al. Scalable, efficient and flexible perovskite solar cells with carbon film based electrode
CN104966548B (en) A kind of perovskite conductive carbon paste used for solar batteries, carbon are to electrode, battery and preparation method
Passatorntaschakorn et al. Room-temperature carbon electrodes with ethanol solvent interlacing process for efficient and stable planar hybrid perovskite solar cells
CN105469996A (en) Perovskite solar cell based on metal nanoparticle interface modification and preparation method of perovskite solar cell
CN108832002B (en) A perovskite solar cell based on PVA-modified hole transport layer
CN106098141B (en) A kind of perovskite electric-conducting nickel paste used for solar batteries and preparation method thereof
CN104934539A (en) Solar cell adopting metal transparent electrode and preparation of solar cell
CN106252515A (en) A kind of efficient stable perovskite battery containing impermeable C film and preparation method thereof
CN103681965A (en) Preparation method of flexible substrate silicon nanowire heterojunction solar cell
CN105161622A (en) Solar cell based on graphene transparent electrode
CN103515536B (en) A kind of simple method for preparing of transoid organic solar batteries
TW201121114A (en) Inverted organic solar cell and method for manufacturing the same
Jiang et al. A counter electrode modified with renewable carbonized biomass for an all-inorganic CsPbBr3 perovskite solar cell
CN114715958A (en) A spray pyrolysis method of nickel oxide and perovskite solar cell
CN105280818B (en) A kind of planar heterojunction perovskite solar cell of stabilization and preparation method thereof
Wang et al. Enhanced photovoltaic performance with carbon nanotubes incorporating into hole transport materials for perovskite solar cells
CN104332522A (en) Graphene double-junction solar battery and preparation method thereof
CN104716261A (en) Absorption spectrum complementary silicon thin film/organic laminated thin film solar cell
Veerappan et al. Economical and highly efficient non-metal counter electrode materials for stable dye-sensitized solar cells
CN106252516B (en) A kind of translucent hybrid perovskite solar cell device of planar inverted and preparation method
CN108878594B (en) A silicon heterojunction photovoltaic cell and its manufacturing method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160831

RJ01 Rejection of invention patent application after publication