CN105914240A - Solar cell using carbon nanotube transparent electrode - Google Patents
Solar cell using carbon nanotube transparent electrode Download PDFInfo
- Publication number
- CN105914240A CN105914240A CN201610429348.1A CN201610429348A CN105914240A CN 105914240 A CN105914240 A CN 105914240A CN 201610429348 A CN201610429348 A CN 201610429348A CN 105914240 A CN105914240 A CN 105914240A
- Authority
- CN
- China
- Prior art keywords
- electrode
- carbon nanotube
- layer
- solar cell
- nanotube transparent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 44
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 claims abstract description 37
- 239000000463 material Substances 0.000 claims abstract description 7
- 238000011031 large-scale manufacturing process Methods 0.000 claims abstract description 6
- 239000010410 layer Substances 0.000 claims description 76
- 239000004065 semiconductor Substances 0.000 claims description 15
- 230000005525 hole transport Effects 0.000 claims description 14
- 239000002109 single walled nanotube Substances 0.000 claims description 14
- 239000002048 multi walled nanotube Substances 0.000 claims description 13
- 238000002360 preparation method Methods 0.000 claims description 13
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 12
- 238000000576 coating method Methods 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 9
- 239000011347 resin Substances 0.000 claims description 9
- 229920005989 resin Polymers 0.000 claims description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 8
- 230000008021 deposition Effects 0.000 claims description 8
- 238000005229 chemical vapour deposition Methods 0.000 claims description 7
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000002002 slurry Substances 0.000 claims description 6
- 239000004408 titanium dioxide Substances 0.000 claims description 6
- 239000012790 adhesive layer Substances 0.000 claims description 5
- 238000006116 polymerization reaction Methods 0.000 claims description 5
- 239000011149 active material Substances 0.000 claims description 4
- 238000010528 free radical solution polymerization reaction Methods 0.000 claims description 4
- 238000000608 laser ablation Methods 0.000 claims description 4
- 238000000197 pyrolysis Methods 0.000 claims description 4
- 239000007790 solid phase Substances 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 4
- 239000004925 Acrylic resin Substances 0.000 claims description 3
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims description 3
- 238000000137 annealing Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000009841 combustion method Methods 0.000 claims description 3
- 229910003472 fullerene Inorganic materials 0.000 claims description 3
- 229910010272 inorganic material Inorganic materials 0.000 claims description 3
- 239000011147 inorganic material Substances 0.000 claims description 3
- 229910052745 lead Inorganic materials 0.000 claims description 3
- PSGAAPLEWMOORI-PEINSRQWSA-N medroxyprogesterone acetate Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](OC(C)=O)(C(C)=O)CC[C@H]21 PSGAAPLEWMOORI-PEINSRQWSA-N 0.000 claims description 3
- 239000000178 monomer Substances 0.000 claims description 3
- 239000011368 organic material Substances 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 3
- 238000004528 spin coating Methods 0.000 claims description 3
- 238000001308 synthesis method Methods 0.000 claims description 3
- 238000002207 thermal evaporation Methods 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 238000007740 vapor deposition Methods 0.000 claims description 3
- 238000001241 arc-discharge method Methods 0.000 claims description 2
- 238000003980 solgel method Methods 0.000 claims description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 1
- 125000006850 spacer group Chemical group 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 5
- 239000010409 thin film Substances 0.000 abstract description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 abstract description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 abstract description 2
- 238000002834 transmittance Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 7
- 239000010408 film Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000007646 gravure printing Methods 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 238000007650 screen-printing Methods 0.000 description 4
- 238000007606 doctor blade method Methods 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000007641 inkjet printing Methods 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910020598 Co Fe Inorganic materials 0.000 description 1
- 229910002519 Co-Fe Inorganic materials 0.000 description 1
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- -1 polyparaphenylene Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- DNXIASIHZYFFRO-UHFFFAOYSA-N pyrazoline Chemical compound C1CN=NC1 DNXIASIHZYFFRO-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 125000005259 triarylamine group Chemical group 0.000 description 1
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/244—Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/138—Manufacture of transparent electrodes, e.g. transparent conductive oxides [TCO] or indium tin oxide [ITO] electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明一种使用碳纳米管透明电极的太阳能电池,包括第一电极、第二电极以及设置第一电极和第二电极之间的钙钛矿活性层,其中第一电极为碳纳米管透明电极,本发明用碳纳米管透明电极替代原结构中的透明电极,碳纳米管透明电极主要结构为具有高透光性的单壁及多壁碳纳米管网状导电薄膜,其导电性、透光率、产品柔性均优于现有材料;采用卷对卷技术的一系列工艺,可以实现柔性钙钛矿电池的大规模生产,碳纳米管透明电极的生产技术,也可以用于其他形式的太阳能电池如有机太阳能电池、CIGS电池、晶硅及非晶硅薄膜电池等,以及一切可以使用该电极的领域,如LED,OLED等,不但提升了性能,而且适应于大规模的生产。
The present invention is a solar cell using a carbon nanotube transparent electrode, comprising a first electrode, a second electrode and a perovskite active layer arranged between the first electrode and the second electrode, wherein the first electrode is a carbon nanotube transparent electrode , the present invention replaces the transparent electrode in the original structure with a carbon nanotube transparent electrode. The efficiency and product flexibility are superior to existing materials; a series of processes using roll-to-roll technology can realize large-scale production of flexible perovskite cells, and the production technology of carbon nanotube transparent electrodes can also be used for other forms of solar energy Batteries such as organic solar cells, CIGS cells, crystalline silicon and amorphous silicon thin-film cells, and all fields that can use this electrode, such as LED, OLED, etc., not only improve performance, but also adapt to large-scale production.
Description
技术领域technical field
本发明属于薄膜太阳能电池器件设计制备技术领域,特别涉及一种使用碳纳米管透明电极的太阳能电池。The invention belongs to the technical field of thin-film solar cell device design and preparation, and in particular relates to a solar cell using a carbon nanotube transparent electrode.
背景技术Background technique
随着化石能源的日益枯竭和其使用所带来的高昂的环境成本,可再生清洁能源的开发和利用受到广泛的关注。太阳能光伏发电技术和产品在全球范围内得到了高速增长,成为最具潜力的清洁能源。近年来发现的钙钛矿型太阳能电池由于高转换效率、低成本、环境友善、可挠式产品化等优点备受关注。With the depletion of fossil energy and the high environmental costs brought about by its use, the development and utilization of renewable clean energy has attracted extensive attention. Solar photovoltaic power generation technology and products have been growing rapidly around the world, becoming the most potential clean energy. Perovskite solar cells discovered in recent years have attracted much attention due to their high conversion efficiency, low cost, environmental friendliness, and flexible productization.
透明电极是钙钛矿型太阳能电池结构中的关键部分之一,起到将太阳电池产生的光电流传导到外电路的作用。透明电极需要具有以下特性:高导电性、高透光率以及产业化需要的柔性(可挠性);此外,在大规模生产的要求下,还需要具有低成本、易合成、适合大规模制备等特点。目前常用的透明电极为FTO(掺氟氧化锡)、ITO(氧化铟锡)、AZO(掺铝氧化锌)等,这类金属氧化物半导体类的透明电极除了具备90%左右较高透光率的优势之外,其导电性、可挠性均较差;此外其生产大多需要使用磁控溅射、原子沉积、激光沉积、化学气相沉积、分子束外延等高耗能的制备方法和相应设备,成本高,制备条件苛刻。因此亟需一种可以代替其的新型透明电极材料。The transparent electrode is one of the key parts in the perovskite solar cell structure, which plays a role in conducting the photocurrent generated by the solar cell to the external circuit. Transparent electrodes need to have the following characteristics: high conductivity, high light transmittance, and flexibility (flexibility) required for industrialization; in addition, under the requirements of mass production, they also need to be low-cost, easy to synthesize, suitable for large-scale preparation Features. At present, the commonly used transparent electrodes are FTO (fluorine-doped tin oxide), ITO (indium tin oxide), AZO (aluminum-doped zinc oxide), etc. This kind of transparent electrode of metal oxide semiconductor has a high light transmittance of about 90%. In addition to its advantages, its conductivity and flexibility are poor; in addition, its production mostly requires the use of high-energy-consuming preparation methods and corresponding equipment such as magnetron sputtering, atomic deposition, laser deposition, chemical vapor deposition, and molecular beam epitaxy. , high cost and harsh preparation conditions. Therefore, there is an urgent need for a new type of transparent electrode material that can replace it.
发明内容Contents of the invention
为了克服上述现有技术的缺点,本发明的目的在于提供一种使用碳纳米管透明电极的太阳能电池,将碳纳米管网状结构薄膜在钙钛矿型太阳电池结构中作为透明电极层,所述的碳纳米管透明电极为具有高透光性的单壁碳纳米管及多壁碳纳米管网状导电薄膜,其导电性、透光率及可挠性大大优于前述的半导体金属氧化物;该薄膜可以采用化学气相沉积法、电弧放电法、激光烧蚀法、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等方法进行制备;特别地,采用溶液聚合方法制备的单壁及多壁碳纳米管特别易于大规模、低成本地进行合成,同时利用卷对卷制备技术,如狭缝涂布、刮刀涂布、丝网印刷、凹版印刷、喷墨涂布、喷墨印刷等进行大规模生产。In order to overcome the above-mentioned shortcoming of the prior art, the object of the present invention is to provide a kind of solar cell that uses the carbon nanotube transparent electrode, the carbon nanotube network structure film is used as the transparent electrode layer in the perovskite type solar cell structure, so The carbon nanotube transparent electrode described above is a single-walled carbon nanotube and multi-walled carbon nanotube network conductive film with high light transmittance, and its conductivity, light transmittance and flexibility are much better than the aforementioned semiconductor metal oxides. ; The film can be prepared by methods such as chemical vapor deposition, arc discharge, laser ablation, solid-phase pyrolysis, glow discharge, gas combustion, and polymerization synthesis; in particular, the solution polymerization method The prepared single-wall and multi-wall carbon nanotubes are particularly easy to synthesize on a large scale and at low cost, while utilizing roll-to-roll preparation techniques such as slot coating, doctor blade coating, screen printing, gravure printing, inkjet coating , inkjet printing, etc. for mass production.
为了实现上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种使用碳纳米管透明电极的太阳能电池,包括第一电极102、第二电极112以及设置在第一电极102和第二电极112之间的钙钛矿活性层108,所述第一电极102为碳纳米管透明电极。A solar cell using a carbon nanotube transparent electrode, comprising a first electrode 102, a second electrode 112 and a perovskite active layer 108 disposed between the first electrode 102 and the second electrode 112, the first electrode 102 It is a carbon nanotube transparent electrode.
所述碳纳米管透明电极为由单壁碳纳米管或由多壁碳纳米管或由单壁碳纳米管和多壁碳纳米管混合组成的网状导电薄膜。The carbon nanotube transparent electrode is a mesh conductive film composed of single-wall carbon nanotubes or multi-wall carbon nanotubes or a mixture of single-wall carbon nanotubes and multi-wall carbon nanotubes.
所述单壁及多壁碳纳米管的直径为1-100nm,具有1000:1以上的长径比。The single-wall and multi-wall carbon nanotubes have a diameter of 1-100 nm and an aspect ratio of more than 1000:1.
所述单壁及多壁碳纳米管具有10000:1以上的长径比。The single-wall and multi-wall carbon nanotubes have an aspect ratio above 10000:1.
所述第一电极102和第二电极112之间还设置有半导体致密层104、多孔支架层或电子传输层106和空穴传输层110,其中,半导体致密层104位于第一电极102上,多孔支架层或电子传输层106位于半导体致密层104与钙钛矿活性层108之间,空穴传输层110位于钙钛矿活性层108与第二电极112之间。A semiconductor dense layer 104, a porous support layer or an electron transport layer 106 and a hole transport layer 110 are also provided between the first electrode 102 and the second electrode 112, wherein the semiconductor dense layer 104 is located on the first electrode 102, and the porous The scaffold layer or electron transport layer 106 is located between the semiconductor dense layer 104 and the perovskite active layer 108 , and the hole transport layer 110 is located between the perovskite active layer 108 and the second electrode 112 .
所述碳纳米管透明电极厚度为5-100nm;所述半导体致密层104成分为二氧化钛或氧化锌,厚度为20-150nm;所述多孔支架层或电子传输层106成分为介孔二氧化钛,使用溶胶凝胶法制备介观粒子溶胶后,退火烧结制备,或者成分为富勒烯类电子传输层材料,厚度为100-2000nm;所述钙钛矿活性层108结构为RNH3AXnY3-n,R=烃基;A=Pb,Sn;X,Y=Cl,Br,I;n为0-3的实数,采用旋涂法、气相沉积法或磁控溅射方形成,或采用适用于柔性及大规模制备的卷对卷工艺进行制备,厚度为100-3000nm;所述空穴传输层110成分为与钙钛矿活性材料能级相匹配的有机、无机材料,厚度为100-1000nm;所述第二电极112为金属对电极,采用磁控溅射法、热蒸发法、原子沉积法或激光沉积法制备,或使用卷对卷工艺进行制备,厚度为10-200nm。The thickness of the carbon nanotube transparent electrode is 5-100nm; the composition of the semiconductor dense layer 104 is titanium dioxide or zinc oxide, and the thickness is 20-150nm; the composition of the porous support layer or the electron transport layer 106 is mesoporous titanium dioxide, using a After the mesoscopic particle sol is prepared by the gel method, it is prepared by annealing and sintering, or the composition is a fullerene electron transport layer material, and the thickness is 100-2000nm; the structure of the perovskite active layer 108 is RNH 3 AX n Y 3-n , R=hydrocarbon group; A=Pb, Sn; X, Y=Cl, Br, I; n is a real number of 0-3, which is formed by spin coating method, vapor deposition method or magnetron sputtering, or is suitable for flexible and large-scale preparation of the roll-to-roll process, with a thickness of 100-3000nm; the composition of the hole transport layer 110 is organic and inorganic materials that match the energy level of the perovskite active material, and the thickness is 100-1000nm; The second electrode 112 is a metal counter electrode, which is prepared by magnetron sputtering, thermal evaporation, atomic deposition or laser deposition, or by a roll-to-roll process, with a thickness of 10-200 nm.
所述第一电极102和第二电极112之间还设置有电子传输层106和空穴传输层110,其中,空穴传输层110位于第一电极102和钙钛矿活性层108之间,电子传输层106位于钙钛矿活性层108和第二电极112之间。An electron transport layer 106 and a hole transport layer 110 are also provided between the first electrode 102 and the second electrode 112, wherein the hole transport layer 110 is located between the first electrode 102 and the perovskite active layer 108, and electrons The transport layer 106 is located between the perovskite active layer 108 and the second electrode 112 .
先通过化学气相沉积法、电弧放电法、激光烧蚀法、固相热解法、辉光放电法、气体燃烧法以及溶液聚合反应合成法制成浆料,利用卷对卷制备工艺制成厚度5-100nm的碳纳米管透明电极。Firstly, the slurry is prepared by chemical vapor deposition method, arc discharge method, laser ablation method, solid phase pyrolysis method, glow discharge method, gas combustion method and solution polymerization reaction synthesis method, and the thickness is made by roll-to-roll preparation process. -100nm carbon nanotube transparent electrodes.
在所述第一电极102与基底之间还设置有树脂粘结层101,或者直接在第一电极102下方设置树脂粘结层101作为基底。A resin adhesive layer 101 is also provided between the first electrode 102 and the substrate, or the resin adhesive layer 101 is provided directly under the first electrode 102 as the substrate.
所述树脂粘结层101是将聚丙烯酸类树脂单体与质量浓度1%的光引发剂DMPA混合后涂覆于基底表面,在紫外光照射下,室温条件下引发聚合反应形成。The resin bonding layer 101 is formed by mixing a polyacrylic resin monomer with a photoinitiator DMPA with a mass concentration of 1% and coating it on the surface of the substrate, and initiating a polymerization reaction at room temperature under ultraviolet light irradiation.
与现有技术相比,本发明用碳纳米管透明电极替代原结构中的透明电极,碳纳米管透明电极主要结构为具有高透光性的单壁及多壁碳纳米管网状导电薄膜,其导电性、透光率、产品柔性均优于现有材料;采用卷对卷技术的一系列工艺,可以实现柔性钙钛矿电池的大规模生产,碳纳米管透明电极的生产技术,也可以用于其他形式的太阳能电池如有机太阳能电池、CIGS电池、晶硅及非晶硅薄膜电池等,以及一切可以使用该电极的领域,如LED,OLED等,不但提升了性能,而且适应于大规模的生产。Compared with the prior art, the present invention replaces the transparent electrode in the original structure with a carbon nanotube transparent electrode. The main structure of the carbon nanotube transparent electrode is a single-wall and multi-wall carbon nanotube mesh conductive film with high light transmittance. Its conductivity, light transmittance, and product flexibility are all superior to existing materials; a series of processes using roll-to-roll technology can realize large-scale production of flexible perovskite batteries, and the production technology of carbon nanotube transparent electrodes can also It is used in other forms of solar cells such as organic solar cells, CIGS cells, crystalline silicon and amorphous silicon thin film cells, etc., and all fields where the electrode can be used, such as LED, OLED, etc., not only improves performance, but also adapts to large-scale production.
附图说明Description of drawings
图1为本发明使用碳纳米管透明电极的钙钛矿型太阳电池的一种结构示意图。FIG. 1 is a schematic structural view of a perovskite solar cell using a carbon nanotube transparent electrode according to the present invention.
图2为本发明使用碳纳米管透明电极的钙钛矿型太阳电池的另一种结构示意图。FIG. 2 is another structural schematic diagram of a perovskite solar cell using a carbon nanotube transparent electrode according to the present invention.
图3为本发明碳纳米管透明电极的微观结构示意图。Fig. 3 is a schematic diagram of the microstructure of the carbon nanotube transparent electrode of the present invention.
具体实施方式detailed description
在描述本发明的实施方案时,为了清楚起见,使用了特定的术语。然而,本发明无意局限于所选择的特定术语。应了解每个特定元件包括类似的方法运行以实现类似目的的所有技术等同物。In describing embodiments of the invention, specific terminology is employed for the sake of clarity. However, it is not intended that the invention be limited to the particular terms so chosen. It is to be understood that each specific element includes all technical equivalents which operate in a similar method to achieve a similar purpose.
下面结合附图对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings.
图1为使用碳纳米管透明电极的钙钛矿型太阳电池结构示意图,其电池结构由以下部分组成:Figure 1 is a schematic diagram of the structure of a perovskite solar cell using a carbon nanotube transparent electrode. The cell structure consists of the following parts:
0.树脂粘结层101:可以将聚丙烯酸类树脂的单体与质量浓度1%的光引发剂DMPA混合后涂覆于玻璃或者PET基底表面,在紫外光照射下,室温条件下引发聚合反应,形成粘结层,用于增强碳纳米管透明电极与玻璃或PET基底之间的粘合性,或者也可以直接将该树脂粘结层101作为基底进行使用。0. Resin bonding layer 101: the monomer of polyacrylic resin can be mixed with the photoinitiator DMPA with a mass concentration of 1%, and then coated on the surface of glass or PET substrate, and the polymerization reaction can be initiated at room temperature under ultraviolet light irradiation , to form an adhesive layer for enhancing the adhesion between the carbon nanotube transparent electrode and the glass or PET substrate, or the resin adhesive layer 101 can also be directly used as the substrate.
1.第一电极102,即碳纳米管透明电极层,为本发明的核心部分,可以采用化学气相沉积法、电弧放电法、激光烧蚀法、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等方法进行制备。特别的,采用溶液聚合方法制备或其他方法制备的单壁及多壁碳纳米管溶液浆料特别易于大规模、低成本地进行合成,同时利用卷对卷制备技术,如狭缝涂布、刮刀涂布、丝网印刷、凹版印刷、喷墨涂布、喷墨印刷等进行大规模生产。厚度可以为5-100nm,层结构如图3所示。1. The first electrode 102, i.e. the carbon nanotube transparent electrode layer, is the core part of the present invention, and chemical vapor deposition, arc discharge, laser ablation, solid phase pyrolysis, glow discharge, gas It can be prepared by combustion method and polymerization synthesis method. In particular, single-wall and multi-wall carbon nanotube solution slurries prepared by solution polymerization or other methods are particularly easy to synthesize on a large scale and at low cost, while using roll-to-roll preparation techniques such as slot coating, doctor blade Coating, screen printing, gravure printing, inkjet coating, inkjet printing, etc. for mass production. The thickness can be 5-100 nm, and the layer structure is shown in FIG. 3 .
本层的另一特点为柔性,大大改善了传统半导体金属氧化物透明电极的易碎性。Another feature of this layer is flexibility, which greatly improves the fragility of traditional semiconductor metal oxide transparent electrodes.
2.在第一电极102上形成的与钙钛矿活性层材料能级匹配的半导体致密层104(通常为二氧化钛或氧化锌)。厚度为20-150nm。2. A dense semiconductor layer 104 (usually titanium dioxide or zinc oxide) formed on the first electrode 102 that matches the energy level of the perovskite active layer material. The thickness is 20-150nm.
3.在致密导电层上形成的多孔支架层或电子传输层106,通常为介孔二氧化钛,使用溶胶凝胶法制备介观粒子溶胶后,退火烧结制备。也可以使用富勒烯类电子传输层材料代替。厚度为100-2000nm。3. The porous support layer or electron transport layer 106 formed on the dense conductive layer is usually mesoporous titanium dioxide, which is prepared by annealing and sintering after preparing mesoscopic particle sol by sol-gel method. A fullerene-based electron transport layer material may also be used instead. The thickness is 100-2000nm.
4.在多孔支架层上形成的活性钙钛矿层108,结构为(RNH3)AXnY3-n(R=烃基;A=Pb,Sn;X,Y=Cl,Br,I;n为0-3的实数),通常采用旋涂法、气相沉积、磁控溅射等方法形成,也可以采用适用于柔性及大规模制备的卷对卷工艺进行制备,即将活性材料的浆料通过狭缝涂布、刮刀涂布、丝网印刷、凹版印刷、喷墨涂布、喷墨印刷等方法形成。厚度为100-3000nm。4. The active perovskite layer 108 formed on the porous support layer has a structure of (RNH 3 )AX n Y 3-n (R = hydrocarbon group; A = Pb, Sn; X, Y = Cl, Br, I; n is 0-3), usually formed by methods such as spin coating, vapor deposition, magnetron sputtering, etc., and can also be prepared by a roll-to-roll process suitable for flexible and large-scale production, that is, the active material slurry is passed through a narrow Slot coating, blade coating, screen printing, gravure printing, inkjet coating, inkjet printing and other methods. The thickness is 100-3000nm.
5.在活性钙钛矿层108上形成的空穴传输层110,其特点为与钙钛矿活性材料能级相匹配的有机、无机材料,如碘化亚铜、PEDOT:PSS、聚对苯撑乙烯类、聚噻吩类、聚硅烷类、三苯甲烷类、三芳胺类、腙类、吡唑啉类、嚼唑类、咔唑类、丁二烯类等,厚度为100-1000nm。5. The hole transport layer 110 formed on the active perovskite layer 108 is characterized by organic and inorganic materials that match the energy level of the perovskite active material, such as cuprous iodide, PEDOT:PSS, polyparaphenylene Vinyl, polythiophene, polysilane, triphenylmethane, triarylamine, hydrazone, pyrazoline, azole, carbazole, butadiene, etc., with a thickness of 100-1000nm.
6.在空穴传输层上形成的第二电极112,即金属对电极层,材料为金、银、铝、铂等金属,可采用磁控溅射、热蒸发、原子沉积、激光沉积等方法制备,在柔性制备过程中,还可以使用卷对卷工艺进行制备,即将导电金属电极材料的浆料通过狭缝涂布、刮刀涂布、丝网印刷、凹版印刷、喷墨涂布、喷墨印刷等方法形成。厚度为10-200nm。6. The second electrode 112 formed on the hole transport layer, that is, the metal counter electrode layer, is made of metals such as gold, silver, aluminum, platinum, etc., and methods such as magnetron sputtering, thermal evaporation, atomic deposition, and laser deposition can be used Preparation, in the flexible preparation process, the roll-to-roll process can also be used for preparation, that is, the slurry of the conductive metal electrode material is passed through slit coating, doctor blade coating, screen printing, gravure printing, inkjet coating, inkjet coating, etc. Formed by printing and other methods. The thickness is 10-200nm.
在上述各层中,半导体致密层104与空穴传输层110可以不用,以简化工艺,降低成本,但得到的电池效率相对较低。Among the above-mentioned layers, the semiconductor dense layer 104 and the hole transport layer 110 may not be used to simplify the process and reduce the cost, but the obtained battery efficiency is relatively low.
图2为另一种结构的钙钛矿型太阳能电池,将正负极倒置,结构中包括树脂粘结层101,第一电极102,空穴传输层110,活性钙钛矿层108,电子传输层106,第二电极112。Fig. 2 is a perovskite solar cell with another structure, the positive and negative electrodes are reversed, and the structure includes a resin bonding layer 101, a first electrode 102, a hole transport layer 110, an active perovskite layer 108, and an electron transport layer 106 , the second electrode 112 .
图3为碳纳米管透明电极的微观结构示意图,其中每一条黑线代表一根直径为1-100nm的单壁或多壁碳纳米管。如果采用溶液方法或其他方法制备的碳纳米管进行溶液相分散,则可以将得到的碳纳米管溶液制成浆料进行卷对卷工艺制备,得到无规的网状结构。3 is a schematic diagram of the microstructure of a carbon nanotube transparent electrode, wherein each black line represents a single-wall or multi-wall carbon nanotube with a diameter of 1-100 nm. If the carbon nanotubes prepared by the solution method or other methods are used for solution phase dispersion, the obtained carbon nanotube solution can be made into a slurry and prepared by a roll-to-roll process to obtain a random network structure.
该结构的透光性取决于碳纳米管的疏密程度,一般情况下可以达到95%以上,优于现有方案使用的金属氧化物半导体类材料。The light transmission of the structure depends on the density of the carbon nanotubes, and generally can reach more than 95%, which is better than the metal oxide semiconductor materials used in the existing scheme.
同时,本发明之碳纳米管电极对比传统ITO半导体氧化物的“致密无孔”电极,是一种“多孔”电极结构,透光率和导电率可以通过调节原料浓度和制备工艺进行改变,例如:At the same time, the carbon nanotube electrode of the present invention is a "porous" electrode structure compared with the "dense non-porous" electrode of the traditional ITO semiconductor oxide, and the light transmittance and electrical conductivity can be changed by adjusting the concentration of raw materials and the preparation process, for example :
1.化学气相沉积法:以Co、Fe、Ni、Cu、Co-Mo、Co-Fe、Fe-Ni等金属及合金纳米粒子作为催化剂,以甲烷、高压一氧化碳、乙醇等为碳源气体的氛围下,直接在透明基底上700-850℃下进行化学气相沉积方法生长单壁碳纳米管,单管直径在0.5-2.5nm之间,可以直接生长出厚度在20-100nm的碳纳米管导电透明薄膜电极材料,透光率为70%-85%,方块电阻约为75-300Ω。1. Chemical vapor deposition method: Co, Fe, Ni, Cu, Co-Mo, Co-Fe, Fe-Ni and other metal and alloy nanoparticles are used as catalysts, and methane, high-pressure carbon monoxide, ethanol, etc. are used as carbon source gas atmosphere Under this condition, the chemical vapor deposition method is used to grow single-walled carbon nanotubes directly on a transparent substrate at 700-850°C. The diameter of a single tube is between 0.5-2.5nm, and carbon nanotubes with a thickness of 20-100nm can be directly grown to be conductive and transparent. Thin film electrode material, the light transmittance is 70%-85%, and the sheet resistance is about 75-300Ω.
2.溶液提拉法:将高纯单壁碳纳米管分散在十二烷基硫酸钠(SDS)水溶液中,作为提拉液备用;在透明玻璃基底上先涂覆一层APTS作为助黏剂,浸入提拉液中,然后用提拉机以1-5mm/min的速度进行提拉操作,直至将基底完全拉出;依次使用硝酸及去离子水进行清洗,洗去附着在碳纳米管表面的表面活性剂以增强导电性和透光性,按照需求可进行多次提拉,随着提拉次数的增加,电极薄膜的厚度增加。该法制备的透明电极透光度可以达85%-92%,方块电阻稍高,在200-1kΩ。2. Solution pulling method: disperse high-purity single-walled carbon nanotubes in sodium dodecyl sulfate (SDS) aqueous solution as a lifting solution; first coat a layer of APTS on a transparent glass substrate as an adhesion promoter , immersed in the pulling solution, and then use a pulling machine to pull at a speed of 1-5mm/min until the substrate is completely pulled out; sequentially use nitric acid and deionized water to wash off the carbon nanotube surface The surfactant can be used to enhance the conductivity and light transmittance, and it can be pulled multiple times according to the demand. As the number of pulls increases, the thickness of the electrode film increases. The transmittance of the transparent electrode prepared by the method can reach 85%-92%, and the sheet resistance is slightly higher at 200-1kΩ.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610429348.1A CN105914240A (en) | 2016-06-16 | 2016-06-16 | Solar cell using carbon nanotube transparent electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610429348.1A CN105914240A (en) | 2016-06-16 | 2016-06-16 | Solar cell using carbon nanotube transparent electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105914240A true CN105914240A (en) | 2016-08-31 |
Family
ID=56751391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610429348.1A Pending CN105914240A (en) | 2016-06-16 | 2016-06-16 | Solar cell using carbon nanotube transparent electrode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105914240A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108321297A (en) * | 2018-02-05 | 2018-07-24 | 湖南纳昇印刷电子科技有限公司 | A kind of flexible perovskite photodetector and preparation method of printing |
CN111384188A (en) * | 2018-12-27 | 2020-07-07 | 北京铂阳顶荣光伏科技有限公司 | Thin film solar cell and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009122938A1 (en) * | 2008-04-02 | 2009-10-08 | Murata Masayoshi | Substrate for thin film solar cell, manufacturing method thereof, and thin film solar cell using thereof |
KR20100074370A (en) * | 2008-12-24 | 2010-07-02 | 주식회사 효성 | Layered thin film solar cell |
JP2014082285A (en) * | 2012-10-15 | 2014-05-08 | Mitsubishi Electric Corp | Solar cell, method for manufacturing the same, and solar cell module |
CN105161622A (en) * | 2015-07-01 | 2015-12-16 | 中国华能集团清洁能源技术研究院有限公司 | Solar cell based on graphene transparent electrode |
CN105321592A (en) * | 2014-08-01 | 2016-02-10 | 广东阿格蕾雅光电材料有限公司 | CNT (carbon nanotube)-polymer laminated composite flexible transparent electrode and preparation method thereof |
-
2016
- 2016-06-16 CN CN201610429348.1A patent/CN105914240A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009122938A1 (en) * | 2008-04-02 | 2009-10-08 | Murata Masayoshi | Substrate for thin film solar cell, manufacturing method thereof, and thin film solar cell using thereof |
KR20100074370A (en) * | 2008-12-24 | 2010-07-02 | 주식회사 효성 | Layered thin film solar cell |
JP2014082285A (en) * | 2012-10-15 | 2014-05-08 | Mitsubishi Electric Corp | Solar cell, method for manufacturing the same, and solar cell module |
CN105321592A (en) * | 2014-08-01 | 2016-02-10 | 广东阿格蕾雅光电材料有限公司 | CNT (carbon nanotube)-polymer laminated composite flexible transparent electrode and preparation method thereof |
CN105161622A (en) * | 2015-07-01 | 2015-12-16 | 中国华能集团清洁能源技术研究院有限公司 | Solar cell based on graphene transparent electrode |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108321297A (en) * | 2018-02-05 | 2018-07-24 | 湖南纳昇印刷电子科技有限公司 | A kind of flexible perovskite photodetector and preparation method of printing |
CN111384188A (en) * | 2018-12-27 | 2020-07-07 | 北京铂阳顶荣光伏科技有限公司 | Thin film solar cell and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mahmoudi et al. | Graphene and its derivatives for solar cells application | |
Guo et al. | Graphene-based materials for photoanodes in dye-sensitized solar cells | |
CN102347143B (en) | A kind of graphene composite porous counter electrode, preparation method and applications | |
CN104701023B (en) | A kind of carbon electrode material of perovskite thin film solar cell and preparation method thereof | |
Peng et al. | Scalable, efficient and flexible perovskite solar cells with carbon film based electrode | |
CN104966548B (en) | A kind of perovskite conductive carbon paste used for solar batteries, carbon are to electrode, battery and preparation method | |
Passatorntaschakorn et al. | Room-temperature carbon electrodes with ethanol solvent interlacing process for efficient and stable planar hybrid perovskite solar cells | |
CN105469996A (en) | Perovskite solar cell based on metal nanoparticle interface modification and preparation method of perovskite solar cell | |
CN108832002B (en) | A perovskite solar cell based on PVA-modified hole transport layer | |
CN106098141B (en) | A kind of perovskite electric-conducting nickel paste used for solar batteries and preparation method thereof | |
CN104934539A (en) | Solar cell adopting metal transparent electrode and preparation of solar cell | |
CN106252515A (en) | A kind of efficient stable perovskite battery containing impermeable C film and preparation method thereof | |
CN103681965A (en) | Preparation method of flexible substrate silicon nanowire heterojunction solar cell | |
CN105161622A (en) | Solar cell based on graphene transparent electrode | |
CN103515536B (en) | A kind of simple method for preparing of transoid organic solar batteries | |
TW201121114A (en) | Inverted organic solar cell and method for manufacturing the same | |
Jiang et al. | A counter electrode modified with renewable carbonized biomass for an all-inorganic CsPbBr3 perovskite solar cell | |
CN114715958A (en) | A spray pyrolysis method of nickel oxide and perovskite solar cell | |
CN105280818B (en) | A kind of planar heterojunction perovskite solar cell of stabilization and preparation method thereof | |
Wang et al. | Enhanced photovoltaic performance with carbon nanotubes incorporating into hole transport materials for perovskite solar cells | |
CN104332522A (en) | Graphene double-junction solar battery and preparation method thereof | |
CN104716261A (en) | Absorption spectrum complementary silicon thin film/organic laminated thin film solar cell | |
Veerappan et al. | Economical and highly efficient non-metal counter electrode materials for stable dye-sensitized solar cells | |
CN106252516B (en) | A kind of translucent hybrid perovskite solar cell device of planar inverted and preparation method | |
CN108878594B (en) | A silicon heterojunction photovoltaic cell and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160831 |
|
RJ01 | Rejection of invention patent application after publication |