CN105911483A - 电源芯片的测试装置及方法 - Google Patents

电源芯片的测试装置及方法 Download PDF

Info

Publication number
CN105911483A
CN105911483A CN201610240392.8A CN201610240392A CN105911483A CN 105911483 A CN105911483 A CN 105911483A CN 201610240392 A CN201610240392 A CN 201610240392A CN 105911483 A CN105911483 A CN 105911483A
Authority
CN
China
Prior art keywords
power supply
port
supply chip
load
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610240392.8A
Other languages
English (en)
Inventor
范杰
底浩
石新明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Xiaomi Mobile Software Co Ltd
Original Assignee
Beijing Xiaomi Mobile Software Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Xiaomi Mobile Software Co Ltd filed Critical Beijing Xiaomi Mobile Software Co Ltd
Priority to CN201610240392.8A priority Critical patent/CN105911483A/zh
Publication of CN105911483A publication Critical patent/CN105911483A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies

Abstract

本公开是关于一种电源芯片的测试装置及方法。装置包括:控制模块和至少一个开关模块,每个开关模块包括一个切换开关;其中,对于每个切换开关,包括第一端口、第二端口和第三端口,其中,第一端口在控制模块产生的控制信号的作用下,选择与第二端口接通或与第三端口接通,第一端口所在的支路与被测试电源芯片的电源输出端连接,第二端口所在的支路和第三端口所在的支路分别连接不同的负载;控制模块,用于向每个切换开关输出控制信号,控制每个切换开关对应的第一端口与第二端口接通或与第三端口接通,采集被测试电源芯片的电源输出端与不同负载连接时输出的电压值,通过电压值确定负载性能。本公开技术方案可以全自动测试电源芯片的负载性能。

Description

电源芯片的测试装置及方法
技术领域
本公开涉及芯片测试技术领域,尤其涉及一种电源芯片的测试装置及方法。
背景技术
目前电源管理芯片(Power Management Unit,简称为PMU)所集成的电源模块越来越多,且性能要求越来越高。对于PMU的第一版芯片,需要测试人员验证第一版芯片的各路电源的性能,例如,负载从轻载到满载时芯片的性能等,由于是前期芯片的性能测试,为了降低成本,通常需要通过测试人员通过人工的方式对第一版芯片的电源性能进行测试,导致测试的效率非常的低下。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种电源芯片的测试装置及方法,用以提高测试电源芯片的效率。
根据本公开实施例的第一方面,提供一种电源芯片的测试装置,包括:控制模块和至少一个开关模块,每个开关模块包括一个切换开关;其中,
对于每个切换开关,包括第一端口、第二端口和第三端口,其中,所述第一端口在所述控制模块产生的控制信号的作用下,选择与所述第二端口接通或与所述第三端口接通,所述第一端口所在的支路与被测试电源芯片的电源输出端连接,所述第二端口所在的支路和所述第三端口所在的支路分别连接不同的负载;或者,所述第一端口所在的支路中连接负载,所述第二端口和所述第三端口所在的支路分别连接被测试电源芯片的不同电源输出端;
所述控制模块,用于向每个切换开关输出控制信号,控制所述每个切换开关对应的所述第一端口与所述第二端口接通或与所述第三端口接通,采集所述被测试电源芯片的电源输出端与不同负载连接时输出的电压值,或者,采集不同电源输出端在接同一个负载时输出的电压值,确定所述被测试电源芯片的负载性能。
在一实施例中,所述每个切换开关包括:
磁性线圈,所述磁性线圈的一端与供电电源连接,另一端通过控制开关与所述控制模块连接,,在所述磁性线圈通电时,第一端口与第二端口接通,在所述磁性线圈不通电时,第一端口与第三端口接通;
所述控制模块,用于通过所述控制信号控制所述控制开关闭合以向所述磁性线圈通电,通过所述控制信号控制所述控制开关打开以停止向所述磁性线圈通电。
在一实施例中,所述控制开关可以为NMOS管,所述NMOS管的栅极与所述控制模块连接,所述NMOS管的源极与所述磁性线圈的另一端连接,所述NMOS管的漏极与地线连接。
在一实施例中,所述第一端口所在的支路与被测试电源芯片的电源输出端连接,所述第二端口所在的支路连接的负载为空载状态对应的负载,所述第三端口所在的支路连接负载为满载状态对应的负载。
在一实施例中,所述NMOS管的栅极与所述控制模块连接,所述NMOS管的栅极在所述控制模块输出的控制信号的控制下,控制所述每个切换开关从第一开关状态切换到第二开关状态。
在一实施例中,当所述控制信号为低电平时,所述NMOS管处于关断状态,所述被测试电源芯片处于满载状态;
当所述控制信号为高电平时,所述NMOS管处于闭合状态,所述磁性线圈控制对应的切换开关的弹片从所述第三端口吸合到所述第一端口,所述被测试电源芯片处于空载状态。
在一实施例中,所述每个开关模块还包括与切换开关对应的第一发光二极管,所述第一发光二极管连接在所述被测试电源芯片的电源输出端与地之间。
在一实施例中,所述每个开关模块还包括与切换开关对应的第二发光二极管,所述第二发光二极管连接在用于传输所述控制信号的控制线与地之间。
在一实施例中,所述控制模块,还用于将采集的各个电源输出的电压值与该电源的标准参考值进行比对,通过比对结果确定所述被测试电源芯片的负载性能。
在一实施例中,所述装置还可包括:
显示模块,用于显示所述被测试电源芯片的负载性能。
根据本公开实施例的第二方面,提供一种电源芯片的测试方法,由上述技术方案所述的电源芯片的测试装置执行,包括:
通过所述控制模块向每个切换开关输出控制信号,控制所述每个切换开关对应的所述第一端口与所述第二端口接通或与所述第三端口接通;
采集所述被测试电源芯片的电源输出端与不同负载连接时的电压值,或者,采集不同电源输出端在接同一个负载时的电压值;
根据所述采集的电压值确定所述被测试电源芯片的负载性能。
在一实施例中,所述根据所述采集的电压值确定所述被测试电源芯片的负载性能,包括:
确定所述被测试电源芯片各个电源输出的标准参考值;
将采集的各个电源输出的电压值与该电源对应的标准参考值进行比对;
通过比对结果确定所述被测试电源芯片的负载性能。
在一实施例中,所述方法还可包括:
显示所述被测试电源芯片的负载性能。
本公开的实施例提供的技术方案可以包括以下有益效果:
通过控制模块向每个切换开关输出控制信号,控制每个切换开关对应的不同端口之间的接通或者断开,使被测试电源芯片的电源输出端在不同负载状态之间切换,从而可以全自动测试被测试电源芯片的负载性能,提高电源芯片的测试效率,简化测试人员的工作量,降低了测试人员的人力成本,解决了高集成度的电源芯片由于人工测试费用昂贵及人工操作复杂耗时的问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1A是根据一示例性实施例示出的电源芯片的测试装置的结构示意图。
图1B是根据一示例性实施例示出的切换开关与负载的连接关系的示意图之一。
图1C是根据一示例性实施例示出的切换开关与负载的连接关系的示意图之二。
图1D是根据一示例性实施例示出的电源芯片的测试装置的电路系统图。
图2是根据一示例性实施例一示出的电源芯片的测试装置的结构示意图。
图3是根据一示例性实施例二示出的电源芯片的测试装置的结构示意图。
图4是根据一示例性实施例三示出的电源芯片的测试装置的结构图。
图5是根据一示例性实施例示出的一种电源芯片的测试方法的流程图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
图1A是根据一示例性实施例示出的电源芯片的测试装置的结构示意图,图1B是根据一示例性实施例示出的切换开关与负载的连接关系的示意图之一,图1C是根据一示例性实施例示出的切换开关与负载的连接关系的示意图之二,图1D是根据一示例性实施例示出的电源芯片的测试装置的电路系统图;该电源芯片的测试装置100可以应用在测试设备上,如图1A所示,该电源芯片的测试装置100可包括:控制模块11和至少一个开关模块(例如,开关模块21、开关模块22、…、开关模块2n,n表示开关模块的个数),开关模块21、开关模块22、…、开关模块2n可集成在开关电路120中,开关模块21、开关模块22、…、开关模块2n均可包括一个切换开关,本领域技术人员可以理解的是,本申请的开关电路120中所包括的开关模块21、开关模块22、…、开关模块2n仅为示例性说明,开关电路120中可以根据被测试电源芯片的电源输出的个数来设置不同个数的开关模块,本申请对开关电路120中所包括的开关模块的个数不做限制。
如图1B和图1C所示,以开关模块21包括的切换开关210为例进行示例性说明,切换开关210可包括第一端口121、第二端口122和第三端口123,其中,在图1B中,第一端口121在控制模块11产生的控制信号的作用下,选择与第二端口122接通或与第三端口123接通,第一端口121所在的支路与被测试电源芯片10的电源输出端连接,第二端口122所在的支路和第三端口123所在的支路分别连接不同的负载;在图1C中,第一端口121所在的支路中连接负载,第二端口122和第三端口123所在的支路分别连接被测试电源芯片10的不同电源输出端。
以控制模块11向切换开关210输出控制信号GPIO1为例进行示例性说明,控制模块11向切换开关210输出控制信号GPIO1,控制切换开关210对应的第一端口121与第二端口122接通或与第三端口123接通,采集被测试电源芯片10的电源输出端与不同负载(图1B中所示的负载1或者负载2)连接时输出的电压值,或者,采集不同电源输出端在接同一个负载(图1C中所示的负载3)时输出的电压值,通过电压值确定被测试电源芯片10的负载性能。
如图1D所示,以控制模块11具体为系统级芯片(System On a Chip,简称为SOC)作为示例性说明,控制模块11作为控制系统中枢,通过控制信号发送模块111输出n路控制信号GPIO(如图1D所示的GPIO1、…、GPIOn,n为正整数,表示被测试电源芯片10的电源输出的数量),通过采样模块112采集被测试电源芯片10的n路电源的电源输出端(如图1A中所示的电源输出1、电源输出2、…、电源输出n,或者,图1B所示的电源输出1、…、电源输出n)与不同负载连接时的电压值(如图1A和图1D所示的ADC1、…、ADCn),或者,采集被测试电源芯片10的n路电源的电源输出端中的不同电源输出端在接同一个负载时的电压值,通过采集到的电压值确定被测试电源芯片10的负载性能。
此外,控制模块11可以根据被测试电源芯片10的电源输出的数量输出与该数量相一致的控制信号,以被测试电源芯片10的电源输出的数量为100个为例进行示例性说明,控制模块11可以向开关电路120输出100个控制信号,该100个控制信号可以控制开关电路120中的100个开关模块。
本实施例中,通过控制模块11向每个切换开关输出控制信号,控制每个切换开关对应的不同端口之间的接通或者断开,使被测试电源芯片10的电源输出端在不同负载状态之间切换,从而可以全自动测试被测试电源芯片的负载性能,提高电源芯片的测试效率,简化测试人员的工作量,降低了测试人员的人力成本,解决了高集成度的电源芯片由于人工测试费用昂贵及人工操作复杂耗时的问题。
在一实施例中,每个切换开关还可包括:
磁性线圈,磁性线圈的一端与供电电源连接,另一端通过与控制模块连接,在磁性线圈通电时,第一端口与第二端口接通,在磁性线圈不通电时,第一端口与第三端口接通;
控制模块,用于通过控制信号控制控制开关闭合以向磁性线圈通电,通过控制信号控制控制开关打开以停止向磁性线圈通电。
在一实施例中,控制开关为NMOS管,NMOS管的栅极与控制模块连接,NMOS管的源极与磁性线圈的另一端连接,NMOS管的漏极与地线连接。
在一实施例中,第一端口所在的支路与被测试电源芯片的电源输出端连接,第二端口所在的支路连接的负载为空载状态对应的负载,第三端口所在的支路连接负载为满载状态对应的负载。
在一实施例中,NMOS管的栅极与控制模块连接,NMOS管的栅极在控制模块输出的控制信号的控制下,控制每个切换开关从第一开关状态切换到第二开关状态。
在一实施例中,当控制信号为低电平时,NMOS管处于关断状态,被测试电源芯片处于满载状态;
当控制信号变为高电平时,NMOS管处于闭合状态,磁性线圈控制对应的切换开关的弹片从第三端口吸合到第一端口,被测试电源芯片处于空载状态。
在一实施例中,每一开关模块还包括与切换开关对应的第一发光二极管,第一发光二极管连接在被测试电源芯片的电源输出端与地之间。
在一实施例中,每一开关模块还包括与切换开关对应的第二发光二极管,第二发光二极管连接在用于传输控制信号的控制线与地之间。
在一实施例中,控制模块,还用于将采集的各个电源输出的电压值与该电源的标准参考值进行比对,通过比对结果确定被测试电源芯片的负载性能。
在一实施例中,装置还包括:
显示模块,用于显示被测试电源芯片的负载性能。
至此,本公开实施例提供的上述装置,可以使被测试电源芯片的电源输出端在不同负载状态之间切换,从而可以全自动测试被测试电源芯片的负载性能,提高电源芯片的测试效率,简化测试人员的工作量,降低了测试人员的人力成本,解决了高集成度的电源芯片由于人工测试费用昂贵及人工操作复杂耗时的问题。
下面以具体实施例来说明本公开实施例提供的技术方案。
图2是根据一示例性实施例一示出的电源芯片的测试装置的结构示意图;如图2所示,在上述图1A所示实施例的基础上,对开关模块21进行示例性说明,开关模块21包括切换开关210,该切换开关210可包括磁性线圈124,磁性线圈124的一端与电源13连接,另一端通过控制开关与控制模块11连接,在磁性线圈124通电时,第一端口121与第二端口122接通,在磁性线圈124不通电时,第一端口121与第三端口123接通;控制模块11用于通过控制信号控制控制开关闭合以向磁性线圈124通电,通过控制信号控制控制开关打开以停止向磁性线圈124通电。本实施例以控制开关为以NMOS管14为例进行示例性说明,如图2所示,磁性线圈124一端与供电电源13连接,另一端与NMOS管14的源极连接,在磁性线圈24通电时,第一端口121与第二端口122接通,在磁性线圈124不通电时,第一端口121与第三端口123接通;控制模块11通过控制信号控制与NMOS管14闭合以向磁性线圈124通电,通过控制信号控制NMOS管14打开以停止向磁性线圈124通电。
在一实施例中,NMOS管14的栅极与控制模块11连接,NMOS管14的源极与磁性线圈124的另一端连接,NMOS管14的漏极与地线连接。
在一实施例中,第一端口121所在的支路与被测试电源芯片10的电源输出端连接,第二端口122所在的支路连接的负载为空载状态对应的负载,第三端口123所在的支路连接负载为满载状态对应的负载。
如图2所示,当切换开关210中的第一端口121与第三端口123连接时,负载15为第三端口123所在的支路连接的负载,表示被测试电源芯片10处于满载状态;当切换开关210中的第一端口121与第二端口122连接时,负载19为第二端口122所在的支路连接的负载,此时表示被测试电源芯片10处于轻载状态或者空载状态,其中,轻载状态或者空载状态可以由负载19的电阻值的大小来设定,当负载19的电阻值接近0的情形下,可以视为空载状态。在一实施例中,负载15的阻值可以远远大于负载19的阻值,从而确保第一端口121与第三端口123连接时被测试电源芯片10处于满载状态,第一端口121与第二端口122连接时被测试电源芯片10处于轻载状态或者空载状态。
以被测试电源芯片10的电源输出1为例进行示例性说明,GPIO1为控制切换开关210的控制信号,该切换开关210为电源输出1对应的切换开关,ADC1表示采集到的电源输出1对应的电压值,该电压值为电阻161和电阻162对电源输出1的电压值分压后得到,大小可以由电阻161和电阻162的比值来确定,采集模块112可以采集到该电压值。当GPIO1为低电平时,磁性线圈124未通电,第一端口121和第三端口123电连接,被测试电源芯片10处于满载状态,此时可以通过采集模块112采集到电源输出1在满载状态的电压值ADC1;当GPIO1为高电平时,磁性线圈124通电,第一端口121和第三端口123断开,第一端口121和第二端口122电连接,被测试电源芯片10处于空载状态或者轻载状态,此时可以通过采集模块112采集到电源输出1在空载状态或者轻载状态的电压值。
本领域技术人员可以理解的是,当被测试电源芯片10中有多个电源输出时,对应有多路的开关模块以及相应的切换开关,相关描述以及电路连接关系均可以参见电源输出1的描述以及相应的电路连接关系,本公开不再详述。
本实施例在具有上述实施例的有益技术效果的基础上,通过控制信号可以控制切换开关210中的第一端口121与第二端口122、第一端口121与第三端口123之间的切换,可以实现不同负载状态的切换,因此可以全自动化地测试被测试电源芯片在空载和满载时的负载性能。
图3是根据一示例性实施例二示出的电源芯片的测试装置的结构示意图;如图3所示,与上述图2所示实施例不同的是,第一端口121所在的支路中连接负载30,第二端口122和第三端口123所在的支路分别连接被测试电源芯片10的不同电源输出端,即,电源输出1和电源输出2。
当GPIO1为低电平时,磁性线圈124未通电,第一端口121和第三端口123电连接,被测试电源芯片10处于满载状态,此时可以通过采集模块112采集到电源输出2在满载状态的电压值ADC2,该ADC2为电阻311和电阻312对电源输出2输出的电压值分压后得到,大小可以由电阻311和电阻312的比值来确定;当GPIO1为高电平时,磁性线圈124通电,第一端口121和第三端口123断开,第一端口121和第二端口122电连接,被测试电源芯片10仍处于满载状态,此时可以通过采集模块112采集到电源输出1在满载状态的电压值ADC1,ADC1的采集方式可以参见上述图2所示实施例的相关描述,在此不再详述。
本领域技术人员可以理解的是,当需要对被测试电源芯片10中不同组合的电源输出进行测试时,可以通过不同组合的电源输出端连接到对应的开关模块以及相应的切换开关即可,本公开不再详述。
本实施例在具有上述实施例的有益技术效果的基础上,通过控制信号可以控制切换开关210中的第一端口121与第二端口122、第一端口121与第三端口123之间的切换,可以全自动化地测试被测试电源芯片的不同电源输出端对同一个负载的负载性能。
图4是根据一示例性实施例二示出的电源芯片的测试装置的结构图;在上述图2所示实施例的基础上,如图4所示,图1A所示的开关模块21、开关模块22以及开关模块23均还可包括与各自对应的切换开关对应的第一发光二极管,以开关模块21为例进行示例性说明,第一发光二极管17连接在被测试电源芯片10的电源输出端与地之间,用于确定被测试电源芯片10的电源输出端是否有电压输出。
在一实施例中,图1A所示的开关模块21、开关模块22以及开关模块23均还可包括与切换开关各自对应的第二发光二极管,以开关模块21为例进行示例性说明,第二发光二极管18连接在用于传输控制信号的控制线与地之间,用于确定控制线上是否有控制信号。
以被测试电源芯片10的电源输出1为例进行示例性说明,GPIO1为控制切换开关210的控制信号,当电源输出1从被测试电源芯片10输出时,第一发光二极管17所在的通路导通,第一发光二极管17处于亮灯状态,表示第一发光二极管17对应的电源输出1有电压输出。当被测试电源芯片10中有多路电源输出时,可通过各开关模块中各自所包括的第一发光二极管测试各个通路的电源输出是否为正常状态,以便测试人员根据第一发光二极管的亮灯状态来检测被测试电源芯片10中不正常的电源输出。
当控制模块11有控制信号从控制线输出至NMOS管14时,第二发光二极管18所在的通路导通,第二发光二极管18处于亮灯状态,表示第二发光二极管18对应的控制线上有GPIO1输出。当被测试电源芯片10中有多路GPIO信号时,可通过各个开关模块中各自所包括的第二发光二极管测试各GPIO信号所在线路的输出是否为正常状态,以便测试人员根据第二发光二极管的亮灯状态来检测被测试电源芯片10中不正常的控制线。
在一实施例中,控制模块11还用于将采集的各个电源输出的电压值与该电源的标准参考值进行比对,通过比对结果确定被测试电源芯片的负载性能。本领域技术人员可以理解的是,被测试电源芯片的标准参考值可以根据不同的电源芯片的测试装置中的各个元器件的参数的不同而不同,本公开对具体的标准参考值不做限制。
在一实施例中,测试人员可以将被测试电源芯片10的各个电源输出端的电压参数作为标准参考值写入控制模块11中的存储单元111中。控制模块11采集到电压值(例如,电压值ADC1)后,根据电阻161和电阻162的分压比例对电压值进行还原,从而将还原后的电压值与标准参考值进行比对,通过比对结果被测试电源芯片的负载性能。
在一实施例中,控制模块11还可包括:
显示单元112,用于显示被测试电源芯片的负载性能,通过将负载性能在显示单元112上实现,可以实现负载性能的人机交互,方便测试人员查看被测试电源芯片的负载性能。
在一实施例中,控制模块11还可包括:
通信接口113,用于将处理结果发送至显示设备,以供显示设备显示处理结果。通过通信接口113将处理结果输出至显示设备(例如,PC机),从而可以实现测试数据的人机交互,方便测试人员查看相关测试结果。
本实施例在具有上述实施例的有益技术效果的基础上,通过第一发光二极管17可以测试对应的电源输出是否为正常状态,以便测试人员根据第一发光二极管的亮灯状态来检测是否为不正常的电源输出;通过第二发光二极管18可以测试对应的GPIO信号所在线路的输出是否为正常状态,以便测试人员根据第二发光二极管的亮灯状态来检测是否为不正常的控制线;通过通信接口113可以实现测试数据的人机交互,方便测试人员查看相关测试结果。
图5是根据一示例性实施例示出的一种电源芯片的测试方法的流程图,本实施例可以由上述实施例的电源芯片的测试装置执行,本实施例结合上述图1A-图4所示进行示例性说明,如图5所示,电源芯片的测试方法包括如下步骤:
在步骤501中,通过控制模块向每个切换开关输出控制信号,控制每个切换开关对应的第一端口与第二端口接通或与第三端口接通。
在步骤502中,采集被测试电源芯片的电源输出端与不同负载连接时的电压值,或者,采集不同电源输出端在接同一个负载时的电压值。
在步骤503中,根据采集到的电压值确定被测试电源芯片的负载性能。
本实施例中的相关描述以及有益技术效果可以参见上述图1A所示实施例的描述,在此不再详述。
在一实施例中,根据采集到的电压值确定被测试电源芯片的负载性能,包括:
确定被测试电源芯片各个电源输出的标准参考值;
将采集的各个电源输出的电压值与该电源对应的标准参考值进行比对;
通过比对结果确定被测试电源芯片的负载性能。
在一实施例中,方法还可包括:
将比对结果通过通信接口发送至显示设备,以供显示设备显示比对结果。
在一实施例中,方法还可包括:
显示被测试电源芯片的负载性能。
至此,本公开实施例提供的上述方法,可以使被测试电源芯片的电源输出在不同负载状态之间切换,从而可以全自动测试被测试电源芯片的负载性能,提高电源芯片的测试效率,简化测试人员的工作量,降低了测试人员的人力成本,解决了高集成度的电源芯片由于人工测试费用昂贵及人工操作复杂耗时的问题。
关于上述实施例中的方法,其中各个步骤的具体方式已经在有关该装置的实施例中进行了详细描述,此处将不做详细阐述说明。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (11)

1.一种电源芯片的测试装置,其特征在于,所述装置包括:控制模块和至少一个开关模块,每个开关模块包括一个切换开关;其中,
对于每个切换开关,包括第一端口、第二端口和第三端口,其中,所述第一端口在所述控制模块产生的控制信号的作用下,选择与所述第二端口接通或与所述第三端口接通,所述第一端口所在的支路与被测试电源芯片的电源输出端连接,所述第二端口所在的支路和所述第三端口所在的支路分别连接不同的负载;或者,所述第一端口所在的支路中连接负载,所述第二端口和所述第三端口所在的支路分别连接被测试电源芯片的不同电源输出端;
所述控制模块,用于向每个切换开关输出控制信号,控制所述每个切换开关对应的所述第一端口与所述第二端口接通或与所述第三端口接通,采集所述被测试电源芯片的电源输出端与不同负载连接时输出的电压值,或者,采集不同电源输出端在接同一个负载时输出的电压值,通过所述电压值确定所述被测试电源芯片的负载性能。
2.根据权利要求1所述的装置,其特征在于,所述每个切换开关包括:
磁性线圈,所述磁性线圈的一端与供电电源连接,另一端通过控制开关与所述控制模块连接,在所述磁性线圈通电时,所述第一端口与所述第二端口接通,在所述磁性线圈不通电时,所述第一端口与所述第三端口接通;
所述控制模块,用于通过所述控制信号控制所述控制开关闭合以向所述磁性线圈通电,通过所述控制信号控制所述控制开关打开以停止向所述磁性线圈通电。
3.根据权利要求2所述的装置,其特征在于,所述控制开关为NMOS管,所述NMOS管的栅极与所述控制模块连接,所述NMOS管的源极与所述磁性线圈的另一端连接,所述NMOS管的漏极与地线连接。
4.根据权利要求1~3任一所述的装置,其特征在于,
所述第一端口所在的支路与被测试电源芯片的电源输出端连接,所述第二端口所在的支路连接的负载为空载状态对应的负载,所述第三端口所在的支路连接负载为满载状态对应的负载。
5.根据权利要求1所述的装置,其特征在于,所述每一开关模块还包括与切换开关对应的第一发光二极管,所述第一发光二极管连接在所述被测试电源芯片的电源输出端与地之间。
6.根据权利要求1所述的装置,其特征在于,所述每一开关模块还包括与切换开关对应的第二发光二极管,所述第二发光二极管连接在用于传输所述控制信号的控制线与地之间。
7.根据权利要求1所述的装置,其特征在于,
所述控制模块,还用于将采集的各个电源输出的电压值与该电源的标准参考值进行比对,通过比对结果确定所述被测试电源芯片的负载性能。
8.根据权利要求1所述的装置,其特征在于,所述装置还包括:
显示模块,用于显示所述被测试电源芯片的负载性能。
9.一种电源芯片的测试方法,由上述权利要求1-8任一所述的电源芯片的测试装置执行,其特征在于,所述方法包括:
通过所述控制模块向每个切换开关输出控制信号,控制所述每个切换开关对应的所述第一端口与所述第二端口接通或与所述第三端口接通;
采集所述被测试电源芯片的电源输出端与不同负载连接时输出的电压值,或者,采集不同电源输出端在接同一个负载时的电压值;
根据所述采集的电压值确定所述被测试电源芯片的负载性能。
10.根据权利要求9所述的方法,其特征在于,所述根据所述采集的电压值确定所述被测试电源芯片的负载性能,包括:
确定所述被测试电源芯片各个电源输出的标准参考值;
将采集的各个电源输出的电压值与该电源对应的标准参考值进行比对;
通过比对结果确定所述被测试电源芯片的负载性能。
11.根据权利要求9所述的方法,其特征在于,所述方法还包括:
显示所述被测试电源芯片的负载性能。
CN201610240392.8A 2016-04-18 2016-04-18 电源芯片的测试装置及方法 Pending CN105911483A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610240392.8A CN105911483A (zh) 2016-04-18 2016-04-18 电源芯片的测试装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610240392.8A CN105911483A (zh) 2016-04-18 2016-04-18 电源芯片的测试装置及方法

Publications (1)

Publication Number Publication Date
CN105911483A true CN105911483A (zh) 2016-08-31

Family

ID=56747207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610240392.8A Pending CN105911483A (zh) 2016-04-18 2016-04-18 电源芯片的测试装置及方法

Country Status (1)

Country Link
CN (1) CN105911483A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107634641A (zh) * 2017-09-11 2018-01-26 郑州云海信息技术有限公司 一种基于开关电源自动化测试平台的自动调试系统及方法
CN108132445A (zh) * 2017-12-21 2018-06-08 佛山市法恩洁具有限公司 一种线性电源的检测装置
CN108205102A (zh) * 2016-12-20 2018-06-26 成都锐成芯微科技股份有限公司 Dc-dc电源转换芯片自动测试系统及方法
CN110286335A (zh) * 2019-06-26 2019-09-27 深圳创维-Rgb电子有限公司 一种电源的测试老化电路、方法及装置
CN114076901A (zh) * 2021-11-15 2022-02-22 四川九洲电器集团有限责任公司 一种电源模块输出纹波自动化测试系统及方法
CN115856588A (zh) * 2023-02-22 2023-03-28 长鑫存储技术有限公司 芯片测试板及测试方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042830A (en) * 1975-11-25 1977-08-16 The United States Of America As Represented By The Secretary Of The Navy Solid state programmable dynamic load simulator
CN200996991Y (zh) * 2007-01-26 2007-12-26 北京锐安科技有限公司 开关电源测试装置
CN102073021A (zh) * 2009-11-24 2011-05-25 鸿富锦精密工业(深圳)有限公司 电源供应器测试装置
CN102455415A (zh) * 2010-10-28 2012-05-16 鸿富锦精密工业(深圳)有限公司 电压测试装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042830A (en) * 1975-11-25 1977-08-16 The United States Of America As Represented By The Secretary Of The Navy Solid state programmable dynamic load simulator
CN200996991Y (zh) * 2007-01-26 2007-12-26 北京锐安科技有限公司 开关电源测试装置
CN102073021A (zh) * 2009-11-24 2011-05-25 鸿富锦精密工业(深圳)有限公司 电源供应器测试装置
CN102455415A (zh) * 2010-10-28 2012-05-16 鸿富锦精密工业(深圳)有限公司 电压测试装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
柳炳祥等: "《计算机硬件基础与维护技术》", 31 December 2015 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108205102A (zh) * 2016-12-20 2018-06-26 成都锐成芯微科技股份有限公司 Dc-dc电源转换芯片自动测试系统及方法
CN107634641A (zh) * 2017-09-11 2018-01-26 郑州云海信息技术有限公司 一种基于开关电源自动化测试平台的自动调试系统及方法
CN108132445A (zh) * 2017-12-21 2018-06-08 佛山市法恩洁具有限公司 一种线性电源的检测装置
CN108132445B (zh) * 2017-12-21 2024-02-20 佛山市法恩洁具有限公司 一种线性电源的检测装置
CN110286335A (zh) * 2019-06-26 2019-09-27 深圳创维-Rgb电子有限公司 一种电源的测试老化电路、方法及装置
CN114076901A (zh) * 2021-11-15 2022-02-22 四川九洲电器集团有限责任公司 一种电源模块输出纹波自动化测试系统及方法
CN114076901B (zh) * 2021-11-15 2022-10-21 四川九洲电器集团有限责任公司 一种电源模块输出纹波自动化测试系统及方法
CN115856588A (zh) * 2023-02-22 2023-03-28 长鑫存储技术有限公司 芯片测试板及测试方法

Similar Documents

Publication Publication Date Title
CN105911483A (zh) 电源芯片的测试装置及方法
CN105094117A (zh) 空调室内机电控板功能自动测试设备
CN107065716A (zh) 一种具有动态诊断故障能力的数字量采集电路
CN103093714A (zh) Led显示屏驱动板的检测装置以及检测方法
CN209184851U (zh) 一种基于视频感应和多传感器调节亮度和色温的照明系统
CN108181578A (zh) 一种开关设备的检测电路、检测方法及io控制器
CN205898948U (zh) 连接线线序检测装置
CN102981134B (zh) 开关柜智能显示装置测试仪
CN203287403U (zh) 一种信号配线装置
CN106941380B (zh) 光路控制设备及ont测试系统
CN205987460U (zh) 模拟灯丝阻抗电路、led灯管及led照明系统
CN108829551A (zh) 一种高低压火工品等效器测试系统及方法
CN206074668U (zh) 带有自动报警功能的led车灯电流测试仪
CN109493776A (zh) 一种显示面板测试治具及其测试方法
CN206038880U (zh) 一种开关电源的老化测试系统
CN205015732U (zh) 空调室内机电控板功能自动测试设备
CN109586993A (zh) 一种网络布线自动测评的方法及系统
CN201740835U (zh) 线材测试装置
CN107102234A (zh) 电池模组电压采样线束的检测装置和方法
CN106249136A (zh) 一种同轴机电开关的寿命测试装置及方法
CN113311313A (zh) 一种集成电路测试机的自诊断电路及方法
CN208767005U (zh) 一种显示装置和治具
CN208953913U (zh) Dsp芯片选择电路、装置、控制系统及电器设备
CN208547683U (zh) 车辆线束测试装置及系统
CN101521395B (zh) 多功能输入终端及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160831

RJ01 Rejection of invention patent application after publication