CN105907962B - 高纯含铍反萃液及其制备方法、氟铍酸铵、氟化铍和金属铍的制备方法 - Google Patents

高纯含铍反萃液及其制备方法、氟铍酸铵、氟化铍和金属铍的制备方法 Download PDF

Info

Publication number
CN105907962B
CN105907962B CN201610265157.6A CN201610265157A CN105907962B CN 105907962 B CN105907962 B CN 105907962B CN 201610265157 A CN201610265157 A CN 201610265157A CN 105907962 B CN105907962 B CN 105907962B
Authority
CN
China
Prior art keywords
beryllium
strip liquor
liquor containing
purity
containing beryllium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610265157.6A
Other languages
English (en)
Other versions
CN105907962A (zh
Inventor
翁鸿蒙
唐向阳
刘力
夏国定
王晨雪
曹毅臣
万凌云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XINJIANG NON-FERROUS METAL INST
Original Assignee
XINJIANG NON-FERROUS METAL INST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XINJIANG NON-FERROUS METAL INST filed Critical XINJIANG NON-FERROUS METAL INST
Priority to CN201610265157.6A priority Critical patent/CN105907962B/zh
Publication of CN105907962A publication Critical patent/CN105907962A/zh
Application granted granted Critical
Publication of CN105907962B publication Critical patent/CN105907962B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B35/00Obtaining beryllium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明涉及含铍溶液及其制备方法、氟铍酸铵、氟化铍和金属铍的制备方法技术领域,是一种高纯含铍反萃液及其制备方法、氟铍酸铵、氟化铍和金属铍的制备方法。本发明所述的高纯含铍反萃液的铍离子的浓度高达70g/L至150g/L,其高于采用现有工艺制得的含铍溶液,为下游氟铍酸铵、氟化铍和金属铍的制备提供了高浓度条件,并且,采用本发明所述的高纯含铍反萃液的制备方法、氟铍酸铵的制备方法、氟化铍的制备方法和金属铍的制备方法时,原料的适用范围广,适合于任意浓度的含铍浸出液,无论是矿石浸出液还是含铍废液,只需根据铍浓度改变相比和逆流级数即可将铍离子的浓度富集到70g/L至150g/L。

Description

高纯含铍反萃液及其制备方法、氟铍酸铵、氟化铍和金属铍的 制备方法
技术领域
本发明涉及含铍溶液及其制备方法、氟铍酸铵、氟化铍和金属铍的制备方法技术领域,是一种高纯含铍反萃液及其制备方法、氟铍酸铵、氟化铍和金属铍的制备方法。
背景技术
铍是一种特殊的功能结构材料和战略性物资,其应用领域与国防体系息息相关。铍虽然属于稀有轻金属,但随着科学技术和工业的发展,它的应用范围越来越广。其在高科技领域应用较早,工业和民用领域的应用发展较快,特别是近几年工业和民用应用范围迅速扩大,用量猛增,给铍行业带来了发展机遇。目前,只有两种方法在工业上用于生产铍,即氟化铍镁热还原法和氯化铍熔盐电解法。电解法最早在二战期间德国使用,美国和法国也曾使用过电解法,但该工艺在较长时间内一直没有得到工业化推广,目前工业上普遍采用镁热还原法。氟化铍常用作镁热还原法制备金属铍的原料,其也在原子工业的熔盐反应堆中用作熔融盐燃料和二次载热剂的组分、中子减速剂、反射体材料、核反应器和裂变反应介质,也可用于制造铍合金和光学玻璃工业等。近20年来,金属铍及含铍材料在工艺技术、新材料的研发方面取得了许多新的研究进展,但这些成果主要集中在美国、俄国和日本,我国金属铍及含铍材料的研究集中在传统工艺优化上,对新材料和工艺技术研究较少。而在所有铍材料中,金属铍用量最少但最重要,金属铍的粉末冶金技术亟需发展。
目前工业上常用浸出液(含铍浸出液)通过硫酸法制备氢氧化铍、氢氧化铍经精制、再用氢氟酸溶解、再盐析结晶制备氟铍酸铵,该工艺流程较为复杂,并且铍的回收率有待提高,公开号为103663506的中国专利文献公开了一种精制氢氧化铍的制备方法以及利用该精制氢氧化铍制备核纯级金属铍珠的方法,根据该专利文献中所述的工艺方法,当需要回收含铍溶液制备铍珠时,先需要将浸出液中的铍制备成氢氧化铍,再通过重溶解制成精制氢氧化铍,再加入HF(氢氟酸)、水、片碱经过溶解反应制成铍离子浓度仅为27g/L的含铍溶液(氟铍酸溶液),为了获得高纯度的金属铍,需要将含铍溶液先进行浓缩后再进行后续的盐析反应,另外,根据公开号为103663506的中国专利文献所述的工艺制备金属铍时,由于工艺步骤较多,容易引入杂质,使得氟铍酸溶液的杂质含量较高,因此需要加入双氧水进行除杂,工艺步骤的增加,使含铍溶液中的铍的回收率有所下降。
发明内容
本发明提供了一种高纯含铍反萃液及其制备方法、氟铍酸铵、氟化铍和金属铍的制备方法,克服了上述现有技术之不足,其能有效解决现有工艺制得的含铍溶液存在的铍离子的浓度较低的问题。
本发明的技术方案之一是通过以下措施来实现的:一种高纯含铍反萃液,按下述方法得到:第一步,将磷酸类萃取剂、醇和磺化煤油混合在一起后配置成萃取剂,将pH值为1至3的含铍溶液与萃取剂按体积比为1:0.5至6进行多级逆流萃取,经过多级逆流萃取后得到萃取有机相和萃余水相,多级逆流萃取至萃取有机相中的铍离子的浓度为1.8g/L至3.6g/L,其中,磷酸类萃取剂、醇和磺化煤油的体积比为10至40:4至15:50至90;第二步,将质量百分比为5%至25%的草酸水溶液和萃取有机相按体积比为1:3至6进行多级逆流洗涤,经过多级逆流洗涤得到洗后萃取有机相和洗涤废液,多级逆流洗涤至洗后萃取有机相中的铁铝杂质的总浓度为10-3g/L至10-2g/L;第三步,将体积百分比为40%至55%的氢氟酸水溶液与洗后萃取有机相按体积比为1:20至35进行多级逆流反萃取,经过多级逆流反萃取得到贫有机相和高纯含铍反萃液,高纯含铍反萃液中的铍离子的浓度为70g/L至150g/L。
下面是对上述发明技术方案之一的进一步优化或/和改进:
上述磷酸类萃取剂为不同取代基的磷酸类系列萃取剂。
上述磷酸类萃取剂为二-(2- 乙基己基) 磷酸类和3,9- 二乙基三己基醇-6 及2,6,8- 三甲壬醇-4 与五氧化二磷作用合成的十七烷基磷酸类或十二烷基磷酸类或二-( 正丁基) 磷酸类或甲基对- 特- 辛基- 苯基磷酸类。
上述醇为辛醇-2 或己醇-1 或甲基异丁酮或异戊醇。
本发明的技术方案之二是通过以下措施来实现的:一种高纯含铍反萃液的制备方法,按下述方法进行:第一步,将磷酸类萃取剂、醇和磺化煤油混合在一起后配置成萃取剂,将pH值为1至3的含铍溶液与萃取剂按体积比为1:0.5至6进行多级逆流萃取,经过多级逆流萃取后得到萃取有机相和萃余水相,多级逆流萃取至萃取有机相中的铍离子的浓度为1.8g/L至3.6g/L,其中,磷酸类萃取剂、醇和磺化煤油的体积比为10至40:4至15:50至90;第二步,将质量百分比为5%至25%的草酸水溶液和萃取有机相按体积比为1:3至6进行多级逆流洗涤,经过多级逆流洗涤得到洗后萃取有机相和洗涤废液,多级逆流洗涤至洗后萃取有机相中的铁铝杂质的总浓度为10-3g/L至10-2g/L;第三步,将体积百分比为40%至55%的氢氟酸水溶液与洗后萃取有机相按体积比为1:20至35进行多级逆流反萃取,经过多级逆流反萃取得到贫有机相和高纯含铍反萃液,高纯含铍反萃液中的铍离子的浓度为70g/L至150g/L。
下面是对上述发明技术方案之二的进一步优化或/和改进:
上述磷酸类萃取剂为不同取代基的磷酸类系列萃取剂。
上述磷酸类萃取剂为二-(2- 乙基己基) 磷酸类和3,9- 二乙基三己基醇-6 及2,6,8- 三甲壬醇-4 与五氧化二磷作用合成的十七烷基磷酸类或十二烷基磷酸类或二-( 正丁基) 磷酸类或甲基对- 特- 辛基- 苯基磷酸类。
上述醇为辛醇-2 或己醇-1 或甲基异丁酮或异戊醇。
本发明的技术方案之三是通过以下措施来实现的:一种氟铍酸铵的制备方法,按下述方法进行:向高纯含铍反萃液中通入液氨进行盐析反应,当高纯含铍反萃液中的pH值为7至9时,停止通入液氨,然后将经过盐析反应后的溶液依序经过冷却结晶和过滤后得氟铍酸铵。
本发明的技术方案之四是通过以下措施来实现的:一种氟化铍的制备方法,按下述方法进行:第一步,向高纯含铍反萃液中通入液氨进行盐析反应,当高纯含铍反萃液中的pH值为7至9时,停止通入液氨,然后将经过盐析反应后的溶液依序经过冷却结晶和过滤后得氟铍酸铵;第二步,将氟铍酸铵在温度为400℃至800℃的条件下煅烧120分钟至180分钟后得到氟化铍。
本发明的技术方案之五是通过以下措施来实现的:一种金属铍的制备方法,按下述方法进行:第一步,向高纯含铍反萃液中通入液氨进行盐析反应,当高纯含铍反萃液中的pH值为7至9时,停止通入液氨,然后将经过盐析反应后的溶液依序经过冷却结晶和过滤后得氟铍酸铵;第二步,将氟铍酸铵在温度为400℃至800℃的条件下煅烧120分钟至180分钟后得到煅烧物,将煅烧物和镁锭发生还原反应后得到金属铍。
本发明所述的高纯含铍反萃液的铍离子的浓度高达70g/L至150g/L,其高于采用现有工艺制得的含铍溶液,为下游氟铍酸铵、氟化铍和金属铍的制备提供了高浓度条件,并且,采用本发明所述的高纯含铍反萃液的制备方法、氟铍酸铵的制备方法、氟化铍的制备方法和金属铍的制备方法时,原料的适用范围广,适合于任意浓度的含铍浸出液,无论是矿石浸出液还是含铍废液,只需根据铍浓度改变相比和逆流级数即可将铍离子的浓度富集到70g/L至150g/L,因此,本发明所述的高纯含铍反萃液及其制备方法、氟铍酸铵的制备方法、氟化铍的制备方法和金属铍的制备方法具有广阔的应用前景,为铍材料的研究和发展提供了新手段,同时,根据本发明所述的氟铍酸铵的制备方法、氟化铍的制备方法和金属铍的制备方法,能够提高铍的回收率,能够降低产物的杂质含量,在本发明的工艺中,主要产生酸性废液,中和处理即可排放,废渣和废气量少,工艺环保,适应经济发展与环境保护并存的理念。
具体实施方式
本发明不受下述实施例的限制,可根据本发明的技术方案与实际情况来确定具体的实施方式。
下面结合实施例对本发明作进一步描述:
实施例1:该高纯含铍反萃液,按下述制备方法得到:第一步,将磷酸类萃取剂、醇和磺化煤油混合在一起后配置成萃取剂,将pH值为1至3的含铍溶液与萃取剂按体积比为1:0.5至6进行多级逆流萃取,经过多级逆流萃取后得到萃取有机相和萃余水相,多级逆流萃取至萃取有机相中的铍离子的浓度为1.8g/L至3.6g/L,其中,磷酸类萃取剂、醇和磺化煤油的体积比为10至40:4至15:50至90;第二步,将质量百分比为5%至25%的草酸水溶液和萃取有机相按体积比为1:3至6进行多级逆流洗涤,经过多级逆流洗涤得到洗后萃取有机相和洗涤废液,多级逆流洗涤至洗后萃取有机相中的铁铝杂质的总浓度为10-3g/L至10-2g/L;第三步,将体积百分比为40%至55%的氢氟酸水溶液与洗后萃取有机相按体积比为1:20至35进行多级逆流反萃取,经过多级逆流反萃取得到贫有机相和高纯含铍反萃液,高纯含铍反萃液中的铍离子的浓度为70g/L至150g/L。将第三步得到的贫有机相用5%至15%的硫酸水溶液进行酸化再生后可以返回第一步作为萃取剂循环使用。本实施例所述的制备高纯含铍反萃液的方法,原料的适用范围广,适合于任意浓度的含铍浸出液(含铍溶液),无论是矿石浸出液还是含铍废液,只需根据铍浓度改变相比和逆流级数即可将铍离子的浓度富集到70g/L至150g/L,因此,可将本实施例得到的高纯含铍反萃液直接用于盐析反应制备氟铍酸铵,无需在盐析反应之前进行高纯含铍反萃液的浓缩,并且根据本实施例得到的高纯含铍反萃液的杂质含量较低,因此,无需采用双氧水除杂,由此,相应的减少了一个工艺步骤,仅此一个步骤使铍的回收率提升4.4%至4.8%,从而提高了含铍溶液中的铍的回收率,在使用本实施例所述的高纯含铍反萃液制备下游产品时,能够减少本实施例所述的高纯含铍反萃液的使用量,并且,本实施例中的高纯含铍反萃液的制备方法相对于现有工艺以及公开号为103663506的中国专利文献而言,简化了工艺流程。在本实施例所述的制备高纯含铍反萃液的方法中,含铍溶液经萃取使其大部分铁铝和铍分离,再经草酸洗涤进一步除铁铝,从而降低了本实施例所述的高纯含铍反萃液的杂质含量。本实施例采用氢氟酸做反萃剂,相比大,氢氟酸用量少。在制备本实施例所述的高纯含铍反萃液的过程中,主要产生酸性废液,中和处理即可排放,废渣和废气量少,工艺环保。
实施例2:该高纯含铍反萃液,按下述制备方法得到:第一步,将磷酸类萃取剂、醇和磺化煤油混合在一起后配置成萃取剂,将pH值为1或3的含铍溶液与萃取剂按体积比为1:0.5或6进行多级逆流萃取,经过多级逆流萃取后得到萃取有机相和萃余水相,多级逆流萃取至萃取有机相中的铍离子的浓度为1.8g/L或3.6g/L,其中,磷酸类萃取剂、醇和磺化煤油的体积比为10或40:4或15:50或90;第二步,将质量百分比为5%或25%的草酸水溶液和萃取有机相按体积比为1:3或6进行多级逆流洗涤,经过多级逆流洗涤得到洗后萃取有机相和洗涤废液,多级逆流洗涤至洗后萃取有机相中的铁铝杂质的总浓度为10-3g/L或10-2g/L;第三步,将体积百分比为40%或55%的氢氟酸水溶液与洗后萃取有机相按体积比为1:20或35进行多级逆流反萃取,经过多级逆流反萃取得到贫有机相和高纯含铍反萃液,高纯含铍反萃液中的铍离子的浓度为70g/L或150g/L。将第三步得到的贫有机相用5%至15%的硫酸水溶液进行酸化再生后可以返回第一步作为萃取剂循环使用。
实施例3:该高纯含铍反萃液,按下述制备方法得到:第一步,将磷酸类萃取剂、醇和磺化煤油混合在一起后配置成萃取剂,将pH值为1的含铍溶液与萃取剂按体积比为1:0.5进行多级逆流萃取,经过多级逆流萃取后得到萃取有机相和萃余水相,多级逆流萃取至萃取有机相中的铍离子的浓度为1.8g/L,其中,磷酸类萃取剂、醇和磺化煤油的体积比为10:4:86;第二步,将质量百分比为5%的草酸水溶液和萃取有机相按体积比为1:3进行多级逆流洗涤,经过多级逆流洗涤得到洗后萃取有机相和洗涤废液,多级逆流洗涤至洗后萃取有机相中的铁铝杂质的总浓度为10-3g/L;第三步,将体积百分比为40%的氢氟酸水溶液与洗后萃取有机相按体积比为1:20进行多级逆流反萃取,经过多级逆流反萃取得到贫有机相和高纯含铍反萃液,高纯含铍反萃液中的铍离子的浓度为70g/L。将第三步得到的贫有机相用5%至15%的硫酸水溶液进行酸化再生后可以返回第一步作为萃取剂循环使用。本实施例所述的制备高纯含铍反萃液的方法,原料的适用范围广,适合于任意浓度的含铍浸出液(含铍溶液),无论是矿石浸出液还是含铍废液,只需根据铍浓度改变相比和逆流级数即可将铍离子的浓度富集到70g/L,因此,可将本实施例得到的高纯含铍反萃液直接用于盐析反应制备氟铍酸铵,无需在盐析反应之前进行高纯含铍反萃液的浓缩,并且根据本实施例得到的高纯含铍反萃液的杂质含量较低,因此,无需采用双氧水除杂,由此,相应的减少了一个工艺步骤,仅此一个步骤使铍的回收率提升4.4%,从而提高了含铍溶液中的铍的回收率,在使用本实施例所述的高纯含铍反萃液制备下游产品时,能够减少本实施例所述的高纯含铍反萃液的使用量,并且,本实施例中的高纯含铍反萃液的制备方法相对于现有工艺以及公开号为103663506的中国专利文献而言,简化了工艺流程。在本实施例所述的制备高纯含铍反萃液的方法中,含铍溶液经萃取使其大部分铁铝和铍分离,再经草酸洗涤进一步除铁铝,从而降低了本实施例所述的高纯含铍反萃液的杂质含量。本实施例采用氢氟酸做反萃剂,相比大,氢氟酸用量少。在制备本实施例所述的高纯含铍反萃液的过程中,主要产生酸性废液,中和处理即可排放,废渣和废气量少,工艺环保。
实施例4:该高纯含铍反萃液,按下述制备方法得到:第一步,将磷酸类萃取剂、醇和磺化煤油混合在一起后配置成萃取剂,将pH值为3的含铍溶液与萃取剂按体积比为1:6进行多级逆流萃取,经过多级逆流萃取后得到萃取有机相和萃余水相,多级逆流萃取至萃取有机相中的铍离子的浓度为3.6g/L,其中,磷酸类萃取剂、醇和磺化煤油的体积比为15:5:80;第二步,将质量百分比为25%的草酸水溶液和萃取有机相按体积比为1:6进行多级逆流洗涤,经过多级逆流洗涤得到洗后萃取有机相和洗涤废液,多级逆流洗涤至洗后萃取有机相中的铁铝杂质的总浓度为10-2g/L;第三步,将体积百分比为55%的氢氟酸水溶液与洗后萃取有机相按体积比为1:35进行多级逆流反萃取,经过多级逆流反萃取得到贫有机相和高纯含铍反萃液,高纯含铍反萃液中的铍离子的浓度为150g/L。将第三步得到的贫有机相用5%至15%的硫酸水溶液进行酸化再生后可以返回第一步作为萃取剂循环使用。本实施例所述的制备高纯含铍反萃液的方法,原料的适用范围广,适合于任意浓度的含铍浸出液(含铍溶液),无论是矿石浸出液还是含铍废液,只需根据铍浓度改变相比和逆流级数即可将铍离子的浓度富集到150g/L,因此,可将本实施例得到的高纯含铍反萃液直接用于盐析反应制备氟铍酸铵,无需在盐析反应之前进行高纯含铍反萃液的浓缩,并且根据本实施例得到的高纯含铍反萃液的杂质含量较低,因此,无需采用双氧水除杂,由此,相应的减少了一个工艺步骤,仅此一个步骤使铍的回收率提升4.8%,从而提高了含铍溶液中的铍的回收率,在使用本实施例所述的高纯含铍反萃液制备下游产品时,能够减少本实施例所述的高纯含铍反萃液的使用量,并且,本实施例中的高纯含铍反萃液的制备方法相对于现有工艺以及公开号为103663506的中国专利文献而言,简化了工艺流程。在本实施例所述的制备高纯含铍反萃液的方法中,含铍溶液经萃取使其大部分铁铝和铍分离,再经草酸洗涤进一步除铁铝,从而降低了本实施例所述的高纯含铍反萃液的杂质含量。本实施例采用氢氟酸做反萃剂,相比大,氢氟酸用量少。在制备本实施例所述的高纯含铍反萃液的过程中,主要产生酸性废液,中和处理即可排放,废渣和废气量少,工艺环保。
实施例5:该高纯含铍反萃液,按下述制备方法得到:第一步,将磷酸类萃取剂、醇和磺化煤油混合在一起后配置成萃取剂,将pH值为3的含铍溶液与萃取剂按体积比为1:1.9进行多级逆流萃取,经过多级逆流萃取后得到萃取有机相和萃余水相,多级逆流萃取至萃取有机相中的铍离子的浓度为3.5g/L,其中,磷酸类萃取剂、醇和磺化煤油的体积比为28:7:65;第二步,将质量百分比为15%的草酸水溶液和萃取有机相按体积比为1:4进行多级逆流洗涤,经过多级逆流洗涤得到洗后萃取有机相和洗涤废液,多级逆流洗涤至洗后萃取有机相中的铁铝杂质的总浓度为10-3g/L;第三步,将体积百分比为45%的氢氟酸水溶液与洗后萃取有机相按体积比为1:25进行多级逆流反萃取,经过多级逆流反萃取得到贫有机相和高纯含铍反萃液,高纯含铍反萃液中的铍离子的浓度为110g/L。将第三步得到的贫有机相用5%至15%的硫酸水溶液进行酸化再生后可以返回第一步作为萃取剂循环使用。本实施例所述的制备高纯含铍反萃液的方法,原料的适用范围广,适合于任意浓度的含铍浸出液(含铍溶液),无论是矿石浸出液还是含铍废液,只需根据铍浓度改变相比和逆流级数即可将铍离子的浓度富集到110g/L,因此,可将本实施例得到的高纯含铍反萃液直接用于盐析反应制备氟铍酸铵,无需在盐析反应之前进行高纯含铍反萃液的浓缩,并且根据本实施例得到的高纯含铍反萃液的杂质含量较低,因此,无需采用双氧水除杂,由此,相应的减少了一个工艺步骤,仅此一个步骤使铍的回收率提升4.6%,从而提高了含铍溶液中的铍的回收率,在使用本实施例所述的高纯含铍反萃液制备下游产品时,能够减少本实施例所述的高纯含铍反萃液的使用量,并且,本实施例中的高纯含铍反萃液的制备方法相对于现有工艺以及公开号为103663506的中国专利文献而言,简化了工艺流程。在本实施例所述的制备高纯含铍反萃液的方法中,含铍溶液经萃取使其大部分铁铝和铍分离,再经草酸洗涤进一步除铁铝,从而降低了本实施例所述的高纯含铍反萃液的杂质含量。本实施例采用氢氟酸做反萃剂,相比大,氢氟酸用量少。在制备本实施例所述的高纯含铍反萃液的过程中,主要产生酸性废液,中和处理即可排放,废渣和废气量少,工艺环保。
实施例6:该高纯含铍反萃液,按下述制备方法得到:第一步,将磷酸类萃取剂、醇和磺化煤油混合在一起后配置成萃取剂,将pH值为3的含铍溶液与萃取剂按体积比为1:2.2进行多级逆流萃取,经过多级逆流萃取后得到萃取有机相和萃余水相,多级逆流萃取至萃取有机相中的铍离子的浓度为2.2g/L,其中,磷酸类萃取剂、醇和磺化煤油的体积比为30:8:62;第二步,将质量百分比为8%的草酸水溶液和萃取有机相按体积比为1:5进行多级逆流洗涤,经过多级逆流洗涤得到洗后萃取有机相和洗涤废液,多级逆流洗涤至洗后萃取有机相中的铁铝杂质的总浓度为10-2g/L;第三步,将体积百分比为44%的氢氟酸水溶液与洗后萃取有机相按体积比为1:28进行多级逆流反萃取,经过多级逆流反萃取得到贫有机相和高纯含铍反萃液,高纯含铍反萃液中的铍离子的浓度为130g/L。将第三步得到的贫有机相用5%至15%的硫酸水溶液进行酸化再生后可以返回第一步作为萃取剂循环使用。本实施例所述的制备高纯含铍反萃液的方法,原料的适用范围广,适合于任意浓度的含铍浸出液(含铍溶液),无论是矿石浸出液还是含铍废液,只需根据铍浓度改变相比和逆流级数即可将铍离子的浓度富集到130g/L,因此,可将本实施例得到的高纯含铍反萃液直接用于盐析反应制备氟铍酸铵,无需在盐析反应之前进行高纯含铍反萃液的浓缩,并且根据本实施例得到的高纯含铍反萃液的杂质含量较低,因此,无需采用双氧水除杂,由此,相应的减少了一个工艺步骤,仅此一个步骤使铍的回收率提升4.8%,从而提高了含铍溶液中的铍的回收率,在使用本实施例所述的高纯含铍反萃液制备下游产品时,能够减少本实施例所述的高纯含铍反萃液的使用量,并且,本实施例中的高纯含铍反萃液的制备方法相对于现有工艺以及公开号为103663506的中国专利文献而言,简化了工艺流程。在本实施例所述的制备高纯含铍反萃液的方法中,含铍溶液经萃取使其大部分铁铝和铍分离,再经草酸洗涤进一步除铁铝,从而降低了本实施例所述的高纯含铍反萃液的杂质含量。本实施例采用氢氟酸做反萃剂,相比大,氢氟酸用量少。在制备本实施例所述的高纯含铍反萃液的过程中,主要产生酸性废液,中和处理即可排放,废渣和废气量少,工艺环保。
实施例7:作为上述实施例的优化,磷酸类萃取剂为不同取代基的磷酸类系列萃取剂。
实施例8:作为上述实施例的优化,磷酸类萃取剂为二-(2- 乙基己基) 磷酸类和3,9- 二乙基三己基醇-6 及2,6,8- 三甲壬醇-4 与五氧化二磷作用合成的十七烷基磷酸类或十二烷基磷酸类或二-( 正丁基) 磷酸类或甲基对- 特- 辛基- 苯基磷酸类。
实施例9:作为上述实施例的优化,醇为辛醇-2 或己醇-1 或甲基异丁酮或异戊醇。
实施例10:该氟铍酸铵的制备方法,按下述方法进行:向高纯含铍反萃液中通入液氨进行盐析反应,当高纯含铍反萃液中的pH值为7至9时,停止通入液氨,然后将经过盐析反应后的溶液依序经过冷却结晶和过滤后得氟铍酸铵。将上述实施例所述的高纯含铍反萃液用于氟铍酸铵的制备方法时,由于上述实施例所述的高纯含铍反萃液的铍离子浓度高达70g/L至150g/L,一方面,无需将上述实施例所述的高纯含铍反萃液浓缩即可进入盐析工序;另一方面,在制备产量相同的氟铍酸铵时,相对于现有工艺制备氟铍酸铵对氟铍酸溶液的使用量,上述实施例所述的高纯含铍反萃液的使用量较低。根据本实施例所述的氟铍酸铵的制备方法得到的氟铍酸铵的分析结果如表1所示,通过表1可以看出,根据本实施例所述的氟铍酸铵的制备方法得到的氟铍酸铵的杂质含量低。目前国内某厂现有工艺:浸出液(含铍溶液)到氢氧化铍再到氟铍酸铵,铍的回收率达到70%,而根据本实施例所述的氟铍酸铵的制备方法,铍的回收率提高到94%至98%。同时,由于根据上述实施例得到的高纯含铍反萃液的杂质含量较低,因此,在氟铍酸铵的制备工艺中,无需采用双氧水除杂,由此,相应的减少了一个工艺步骤,仅此一个步骤使铍的回收率提升4.8%,从而提高了含铍溶液中的铍的回收率。
实施例11:该氟化铍的制备方法,按下述方法进行:第一步,向高纯含铍反萃液中通入液氨进行盐析反应,当高纯含铍反萃液中的pH值为7至9时,停止通入液氨,然后将经过盐析反应后的溶液依序经过冷却结晶和过滤后得氟铍酸铵;第二步,将氟铍酸铵在温度为400℃至800℃的条件下煅烧120分钟至180分钟后得到氟化铍。将上述实施例所述的高纯含铍反萃液用于氟化铍的制备方法时,由于上述实施例所述的高纯含铍反萃液的铍离子浓度高达70g/L至150g/L,能够具有以下的有益效果:一方面,无需将上述实施例所述的高纯含铍反萃液浓缩即可进入盐析工序;另一方面,在本实施例所述的氟化铍的制备方法中,相对于现有工艺制备氟化铍对氟铍酸溶液的使用量,上述实施例所述的高纯含铍反萃液的使用量较低,根据上述实施例得到的高纯含铍反萃液的杂质含量较低,使得根据本实施例所述的氟化铍的制备方法得到的氟化铍的杂质含量相应降低。根据本实施例所述的氟化铍的制备方法得到的氟化铍的分析结果如表2所示,国内某厂生产的氟化铍的分析结果如表2所示,通过表2可以看出,根据本实施例所述的氟化铍的制备方法得到的氟化铍的铁杂质含量低于国内某厂生产的氟化铍的铁杂质含量,根据本实施例所述的氟化铍的制备方法得到的氟化铍的铝杂质含量低于国内某厂生产的氟化铍的铝杂质含量,即说明根据本实施例所述的氟化铍的制备方法得到的氟化铍的杂质含量低于现有工艺制备的氟化铍的杂质含量。
实施例12:该金属铍的制备方法,按下述方法进行:第一步,向高纯含铍反萃液中通入液氨进行盐析反应,当高纯含铍反萃液中的pH值为7至9时,停止通入液氨,然后将经过盐析反应后的溶液依序经过冷却结晶和过滤后得氟铍酸铵;第二步,将氟铍酸铵在温度为400℃至800℃的条件下煅烧120分钟至180分钟后得到煅烧物,将煅烧物和镁锭发生还原反应后得到金属铍。将上述实施例所述的高纯含铍反萃液用于氟铍酸铵的制备方法时,由于上述实施例所述的高纯含铍反萃液的铍离子浓度高达70g/L至150g/L,一方面,无需将上述实施例所述的高纯含铍反萃液浓缩即可进入盐析工序;另一方面,在本实施例所述的金属铍的制备方法中,上述实施例所述的高纯含铍反萃液的使用量相对于现有工艺制备金属铍对氟铍酸溶液的使用量较低,根据上述实施例得到的高纯含铍反萃液的杂质含量较低,使得根据本实施例所述的金属铍的制备方法得到的金属铍的纯度相应得到提高。
综上所述,本发明所述的高纯含铍反萃液的铍离子的浓度高达70g/L至150g/L,其高于采用现有工艺制得的含铍溶液,为下游氟铍酸铵、氟化铍和金属铍的制备提供了高浓度条件,并且,采用本发明所述的高纯含铍反萃液的制备方法、氟铍酸铵的制备方法、氟化铍的制备方法和金属铍的制备方法时,原料的适用范围广,适合于任意浓度的含铍浸出液,无论是矿石浸出液还是含铍废液,只需根据铍浓度改变相比和逆流级数即可将铍离子的浓度富集到70g/L至150g/L,因此,本发明所述的高纯含铍反萃液及其制备方法、氟铍酸铵的制备方法、氟化铍的制备方法和金属铍的制备方法具有广阔的应用前景,为铍材料的研究和发展提供了新手段,同时,根据本发明所述的氟铍酸铵的制备方法、氟化铍的制备方法和金属铍的制备方法,能够提高铍的回收率,能够降低产物的杂质含量,在本发明的工艺中,主要产生酸性废液,中和处理即可排放,废渣和废气量少,工艺环保,适应经济发展与环境保护并存的理念。
以上技术特征构成了本发明的实施例,其具有较强的适应性和实施效果,可根据实际需要增减非必要的技术特征,来满足不同情况的需求。

Claims (8)

1.一种高纯含铍反萃液,其特征在于按下述方法得到:第一步,将磷酸类萃取剂、醇和磺化煤油混合在一起后配置成萃取剂,将pH值为1至3的含铍溶液与萃取剂按体积比为1:0.5至6进行多级逆流萃取,经过多级逆流萃取后得到萃取有机相和萃余水相,多级逆流萃取至萃取有机相中的铍离子的浓度为1.8g/L至3.6g/L,其中,磷酸类萃取剂、醇和磺化煤油的体积比为10至40:4至15:50至90;第二步,将质量百分比为5%至25%的草酸水溶液和萃取有机相按体积比为1:3至6进行多级逆流洗涤,经过多级逆流洗涤得到洗后萃取有机相和洗涤废液,多级逆流洗涤至洗后萃取有机相中的铁铝杂质的总浓度为10-3g/L至10-2g/L;第三步,将体积百分比为40%至55%的氢氟酸水溶液与洗后萃取有机相按体积比为1:20至35进行多级逆流反萃取,经过多级逆流反萃取得到贫有机相和高纯含铍反萃液,高纯含铍反萃液中的铍离子的浓度为70g/L至150g/L。
2.根据权利要求1所述的高纯含铍反萃液,其特征在于磷酸类萃取剂为不同取代基的磷酸类系列萃取剂。
3.根据权利要求2所述的高纯含铍反萃液,其特征在于磷酸类萃取剂为二-(2- 乙基己基) 磷酸类和3,9- 二乙基三己基醇-6 及2,6,8- 三甲壬醇-4 与五氧化二磷作用合成的十七烷基磷酸类或十二烷基磷酸类或二-( 正丁基) 磷酸类或甲基对- 特- 辛基- 苯基磷酸类。
4.根据权利要求1或2或3所述的高纯含铍反萃液,其特征在于醇为辛醇-2 或己醇-1或甲基异丁酮或异戊醇。
5.一种根据权利要求1或2或3或4所述高纯含铍反萃液的制备方法,其特征在于按下述方法进行:第一步,将磷酸类萃取剂、醇和磺化煤油混合在一起后配置成萃取剂,将pH值为1至3的含铍溶液与萃取剂按体积比为1:0.5至6进行多级逆流萃取,经过多级逆流萃取后得到萃取有机相和萃余水相,多级逆流萃取至萃取有机相中的铍离子的浓度为1.8g/L至3.6g/L,其中,磷酸类萃取剂、醇和磺化煤油的体积比为10至40:4至15:50至90;第二步,将质量百分比为5%至25%的草酸水溶液和萃取有机相按体积比为1:3至6进行多级逆流洗涤,经过多级逆流洗涤得到洗后萃取有机相和洗涤废液,多级逆流洗涤至洗后萃取有机相中的铁铝杂质的总浓度为10-3g/L至10-2g/L;第三步,将体积百分比为40%至55%的氢氟酸水溶液与洗后萃取有机相按体积比为1:20至35进行多级逆流反萃取,经过多级逆流反萃取得到贫有机相和高纯含铍反萃液,高纯含铍反萃液中的铍离子的浓度为70g/L至150g/L。
6.一种使用权利要求1或2或3或4所述的高纯含铍反萃液制备氟铍酸铵的方法,其特征在于按下述方法进行:向高纯含铍反萃液中通入液氨进行盐析反应,当高纯含铍反萃液中的pH值为7至9时,停止通入液氨,然后将经过盐析反应后的溶液依序经过冷却结晶和过滤后得氟铍酸铵。
7.一种使用权利要求1或2或3或4所述的高纯含铍反萃液制备氟化铍的方法,其特征在于按下述方法进行:第一步,向高纯含铍反萃液中通入液氨进行盐析反应,当高纯含铍反萃液中的pH值为7至9时,停止通入液氨,然后将经过盐析反应后的溶液依序经过冷却结晶和过滤后得氟铍酸铵;第二步,将氟铍酸铵在温度为400℃至800℃的条件下煅烧120分钟至180分钟后得到氟化铍。
8.一种使用权利要求1或2或3或4所述的高纯含铍反萃液制备金属铍的方法,其特征在于按下述方法进行:第一步,向高纯含铍反萃液中通入液氨进行盐析反应,当高纯含铍反萃液中的pH值为7至9时,停止通入液氨,然后将经过盐析反应后的溶液依序经过冷却结晶和过滤后得氟铍酸铵;第二步,将氟铍酸铵在温度为400℃至800℃的条件下煅烧120分钟至180分钟后得到煅烧物,将煅烧物和镁锭发生还原反应后得到金属铍。
CN201610265157.6A 2016-04-26 2016-04-26 高纯含铍反萃液及其制备方法、氟铍酸铵、氟化铍和金属铍的制备方法 Active CN105907962B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610265157.6A CN105907962B (zh) 2016-04-26 2016-04-26 高纯含铍反萃液及其制备方法、氟铍酸铵、氟化铍和金属铍的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610265157.6A CN105907962B (zh) 2016-04-26 2016-04-26 高纯含铍反萃液及其制备方法、氟铍酸铵、氟化铍和金属铍的制备方法

Publications (2)

Publication Number Publication Date
CN105907962A CN105907962A (zh) 2016-08-31
CN105907962B true CN105907962B (zh) 2018-09-07

Family

ID=56752706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610265157.6A Active CN105907962B (zh) 2016-04-26 2016-04-26 高纯含铍反萃液及其制备方法、氟铍酸铵、氟化铍和金属铍的制备方法

Country Status (1)

Country Link
CN (1) CN105907962B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107794383B (zh) * 2016-11-18 2019-08-27 湖南有色金属研究院 一种从含硫酸铍溶液中生产氟铍酸和氟铍化铵的方法
CN109082540A (zh) * 2018-09-25 2018-12-25 陆世强 一种制备粗铍粉的方法及制备超高纯金属铍的方式
JPWO2021039875A1 (zh) * 2019-08-30 2021-03-04
CN110589858B (zh) * 2019-10-08 2022-06-17 昆明先导新材料科技有限责任公司 一种用工业级铍制备氟化铍的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2356963C2 (ru) * 2008-02-05 2009-05-27 Государственное образовательное учреждение высшего профессионального образования "Уральский государственный технический университет-УПИ" Способ извлечения бериллия из бериллсодержащего сподуменового концентрата
CN102851502A (zh) * 2012-04-26 2013-01-02 广州有色金属研究院 一种萃取分离铍的方法
CN103468975A (zh) * 2013-08-23 2013-12-25 西北矿冶研究院 一种从选矿富集比低的金绿宝石型铍精矿中提取铍的方法
CN103556186A (zh) * 2013-11-05 2014-02-05 浙江科菲冶金科技股份有限公司 一种硫酸体系中铜和铍的选择性分离方法
CN103601222A (zh) * 2013-11-25 2014-02-26 中国科学院上海有机化学研究所 一种高纯度氟铍酸铵的制备方法及其应用
CN103818937A (zh) * 2013-12-30 2014-05-28 新疆有色金属研究所 从含铍溶液中制取氧化铍或高纯氧化铍的方法
RU2563065C2 (ru) * 2009-07-07 2015-09-20 Сайтек Текнолоджи Корп. Способ извлечения молибдена из водных кислотных растворов

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2356963C2 (ru) * 2008-02-05 2009-05-27 Государственное образовательное учреждение высшего профессионального образования "Уральский государственный технический университет-УПИ" Способ извлечения бериллия из бериллсодержащего сподуменового концентрата
RU2563065C2 (ru) * 2009-07-07 2015-09-20 Сайтек Текнолоджи Корп. Способ извлечения молибдена из водных кислотных растворов
CN102851502A (zh) * 2012-04-26 2013-01-02 广州有色金属研究院 一种萃取分离铍的方法
CN103468975A (zh) * 2013-08-23 2013-12-25 西北矿冶研究院 一种从选矿富集比低的金绿宝石型铍精矿中提取铍的方法
CN103556186A (zh) * 2013-11-05 2014-02-05 浙江科菲冶金科技股份有限公司 一种硫酸体系中铜和铍的选择性分离方法
CN103601222A (zh) * 2013-11-25 2014-02-26 中国科学院上海有机化学研究所 一种高纯度氟铍酸铵的制备方法及其应用
CN103818937A (zh) * 2013-12-30 2014-05-28 新疆有色金属研究所 从含铍溶液中制取氧化铍或高纯氧化铍的方法

Also Published As

Publication number Publication date
CN105907962A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
CN105907962B (zh) 高纯含铍反萃液及其制备方法、氟铍酸铵、氟化铍和金属铍的制备方法
CN102676853B (zh) 物料联动循环利用的稀土分离方法
US9752213B2 (en) Method for comprehensively recovering rare earth elements and fluorine element in a bastnaesite treatment process
CN109097599A (zh) 一种协同萃取分离锰与钙、镁的方法
CN101787451A (zh) 提高酸性磷型萃取剂萃取分离稀土元素效率的方法
CN105256143B (zh) 从氧氯化锆废酸液中提取钪及其他稀土的方法
CN102134644A (zh) 一种利用钽铌尾矿锂云母制备碳酸锂除氟的新方法
CN103614560B (zh) 一种钛白废酸中回收钪的方法
CN100584969C (zh) 从硫酸稀土溶液中萃取分离四价铈、钍及少铈三价稀土的工艺方法
CN106185852A (zh) 一种利用磷矿制备净化磷酸的方法
CN110747357B (zh) 一种双磷酸萃取剂用于萃取分离锆铪的方法
CN106756023A (zh) 深度分离硫酸锰中钙镁杂质的方法
CN111020196B (zh) 一种基于poaa从放射性废渣浸出液中分离钍和富集稀土方法
CN105161746A (zh) 酸性富钒液制备钒电池电解液的方法
CN104651619B (zh) 含有钪及稀土稳定的氧化锆陶瓷废料中分离回收钪的方法
CN102139907A (zh) 一种从含铈溶液中分离回收含铈化合物的方法
CN109897976A (zh) La-Nd轻稀土预分离三出口萃取分离工艺
CN103818937B (zh) 从含铍溶液中制取氧化铍或高纯氧化铍的方法
CN104630489B (zh) 从氯氧化锆母液中回收氧化钪的方法
CN106854706B (zh) 一种hf-h2so4体系铀铌分离方法
CN109055783A (zh) 含稀土氧化物废料中稀土氧化物的回收方法
CN105948082B (zh) 以碱式碳酸铍制备氟铍酸铵的方法、氟化铍和金属铍的制备方法
CN107815541A (zh) 氢氟酸反萃P204有机相中负载的Fe3+及反萃液处理的方法
CN106399685B (zh) 一种铀、铁、钍、稀土萃取分离工艺
CN109097606B (zh) 一种分馏萃取联产纯镝和纯铥的分离工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant