CN105899711B - 在无氧化剂情况下的含硅和氧的膜的沉积 - Google Patents

在无氧化剂情况下的含硅和氧的膜的沉积 Download PDF

Info

Publication number
CN105899711B
CN105899711B CN201580004037.4A CN201580004037A CN105899711B CN 105899711 B CN105899711 B CN 105899711B CN 201580004037 A CN201580004037 A CN 201580004037A CN 105899711 B CN105899711 B CN 105899711B
Authority
CN
China
Prior art keywords
osih
siloxane
oxygen
silicon
bonds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580004037.4A
Other languages
English (en)
Other versions
CN105899711A (zh
Inventor
B·S·安德伍德
A·B·玛里克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN105899711A publication Critical patent/CN105899711A/zh
Application granted granted Critical
Publication of CN105899711B publication Critical patent/CN105899711B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32513Sealing means, e.g. sealing between different parts of the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

通过以下步骤在不存在氧化剂的情况下沉积含硅和氧的膜,诸如二氧化硅膜:将硅氧烷前体引入等离子体处理腔室中并且例如通过将所述硅氧烷前体暴露于低能等离子体来离解所述硅氧烷前体的Si‑H键中的至少一些。可以在不氧化易氧化的表面的情况下,在所述易氧化的表面上形成所述含硅和氧的膜。所沉积的含硅和氧的膜可以用作二氧化硅块状层的初始层,使用常规二氧化硅沉积技术(诸如将所述硅氧烷前体暴露于含氧等离子体)在所述初始层的顶部上形成所述二氧化硅块状层。在所述块状层沉积之前或之后,所述初始层可被后处理或被固化以减小Si‑H键的浓度。

Description

在无氧化剂情况下的含硅和氧的膜的沉积
背景
技术领域
本公开的实施例总体涉及含硅和氧的膜的沉积,并且更具体地涉及在不存在氧化剂的情况下的含硅和氧的膜(诸如二氧化硅)的沉积。
背景技术
减小集成电路几何形状的尺寸的障碍在于无法在不氧化易氧化的材料的情况下在易于氧化的材料上使用常规沉积技术来沉积含氧的膜,诸如含Si-O-Si键合的膜,例如二氧化硅膜。含Si-O-Si键的膜在本文中称为含硅和氧的膜。含氧等离子体工艺、高温氧化蒸气退火和用于涂覆含氧的膜的其他技术可容易地使界面层处的下层材料氧化,因为这些源可能甚至穿透沉积的单层。在一些情况(诸如集成电路的制造)中,下层的氧化可能不利于器件的性能。
多种技术已用于在不存在氧化剂的情况下形成膜。例如,在存在惰性气体的情况下,已经使用直接等离子体沉积技术来沉积膜,并且在不存在氧化环境的情况下,已经使用电容耦合的等离子体和电感耦合的等离子体腔室来沉积膜。然而,前述技术无法形成含硅和氧的膜(诸如二氧化硅、氧化硅和其他含硅和氧的膜)所期望的Si-O-Si键合。
因此,需要一种在不使下层材料氧化的情况下沉积含氧的膜(诸如含硅和氧的膜,例如,二氧化硅)的方法。
发明内容
本文所公开的实施例通过以下步骤在不存在氧化剂的情况下在表面(诸如易氧化的表面)上形成含硅和氧的膜:将硅氧烷前体(诸如,具有通式SixOx-1H2x+2的无环硅氧烷前体和具有通式SixOxH2x的环状硅氧烷前体)引入处理腔室中;以及选择性地离解(dissociate)一种或多种硅氧烷前体的Si-H键中的至少一些,诸如通过将所述一种或多种硅氧烷前体暴露于低能等离子体进行离解。所沉积的含硅和氧的膜可以用作二氧化硅块状层的初始层,块状使用常规二氧化硅沉积技术(诸如将硅氧烷前体暴露于含氧的等离子体)将所述二氧化硅块状层形成在所述初始层的顶部上。所述初始层可被后处理(诸如通过紫外线处理或离子注入)以便减小Si-H键的浓度。
附图说明
因此,为了能够详细地理解本发明的上述特征的方式,可参考多个实施例得出上文简要概述的本发明的更具体的描述,并且在附图中示出实施例中的一些。然而应当注意,所附附图仅示出本发明的典型实施例,并且因此不应视为对本发明范围的限制,因为本发明可允许其他等效实施例。
图1是适合于实践本公开的实施例的等离子体处理腔室的一个实施例的横截面图。
具体实施方式
对本公开的各种实施例的描述出于说明的目的而被呈现并且不意在排他性。在不背离所述实施例的范围和精神的情况下,许多的修改和变型将对本领域的普通技术人员是显而易见的。本文所使用的术语被选择来最好地解释市场上出现的技术的实施例的原理、实际应用或技术改进,或使本领域的其他普通技术人员能够理解本文所公开的实施例。
本文所公开的实施例总体提供用于在不存在氧化剂的情况下形成含硅和氧的膜的方法。更具体地,硅氧烷前体被引入等离子体处理腔室中,并且随后被暴露于低能等离子体或远程的非氧自由基源以沉积初始层。低能等离子体或远程的非氧自由基源选择性地离解硅氧烷前体的Si-H键中的至少一些,从而允许在不存在氧自由基或离子的情况下的膜的沉积。硅氧烷前体是具有Si-O-Si键合的分子,因此具有Si-O键和Si-H键两者。硅氧烷前体可以是例如具有通式SixOx-1H2x+2的无环硅氧烷前体和/或具有通式SixOxH2x的环状硅氧烷前体。通过对温度和激活能量进行控制,可在维持Si-O键的同时使Si-H键断裂。由于Si-O键未断裂,因此氧不变为活性物种(例如,氧离子或氧自由基)。因此,结合中的氧将不会可测量地氧化表面。
等离子体处理腔室可以是能够产生低能等离子体或将硅氧烷前体暴露于远程的非氧自由基源的任何等离子体处理腔室。所沉积的含硅和氧的膜可以用作二氧化硅块状层的初始层,块状可以使用常规二氧化硅沉积技术(诸如通过将硅氧烷前体暴露于含氧的等离子体)将所述二氧化硅块状层形成在初始层的顶部上。也可以使用不同的前体气体或方法将其他成分的块状层沉积在初始层的顶部上。本文所公开的实施例允许在不氧化易氧化的表面的情况下,在所述易氧化的表面上沉积含硅和氧的膜。易氧化的表面可例如由金属(诸如铜、银、金、铝、钛或钽)构成。如果表面的任何部分易于氧化,那么这个表面就会被视为是易氧化的。在块状二氧化硅层的沉积过程中,初始层会保护易氧化的表面。在所述块状层的沉积之前或之后,所述初始层可被后处理或被固化以减小Si-H键的浓度。
图1描绘可用来实践本文所公开的实施例的等离子体处理腔室100。可适于执行所公开的实施例的一种等离子体处理腔室是可从加利福尼亚州的圣克拉拉市的应用材料公司(Applied Materials,Santa Clara,Calif.)获得的SiconiTM腔室。构想到,可以在其他适当地适配的等离子体处理腔室(包括从其他制造商处获得的那些)中实践本文所述的方法。合适的等离子体处理腔室包括配置成产生低能等离子体的任何处理腔室或耦合到配置成生成非氧自由基的远程自由基源的任何处理腔室。例如,处理腔室可以是电容耦合或电感耦合的等离子体增强化学气相沉积(PECVD)腔室。PECVD腔室可以是直接等离子体腔室或者包括远程等离子体腔室。如本文所定义,低能等离子体是以250W或更小(诸如小于100W,诸如在约10W与约50W之间)的RF源或偏置功率生成的等离子体。如果使用远程自由基源,那么所述远程自由基源可以是例如电容耦合或电感耦合的远程等离子体源、远程微波等离子体辅助CVD(MPCVD)腔室、远程热丝化学气相沉积(HW-CVD)腔室或远程电子回旋共振(ECR)源。远程等离子体源和远程自由基源分别在与发生沉积的区域空间上分开的区域中生成等离子体和自由基。
等离子体处理腔室100包括腔室主体102、盖组件104和基板支撑组件106。盖组件104设置在腔室主体102的上端,并且基板支撑组件106至少部分地设置在腔室主体102内。盖组件104可用作远程等离子体源。
腔室主体102包括狭缝阀开口108,所述狭缝阀开口108形成在腔室主体的侧壁中,以便接取处理腔室100的内部。选择性地打开和关闭狭缝阀开口108以允许由晶片搬运机械手(未示出)接取腔室主体102的内部。腔室主体102可进一步包括衬里112,所述衬里112包围基板支撑组件106。衬里112可以包括一个或多个孔隙114以及形成在其中的与真空系统流体地连通的泵送通道116。孔隙114提供使气体进入泵送通道116的流动路径,这为处理腔室100内的气体提供出口。腔室主体还包括了介于基座124与分配板168之间的工艺区域109。
真空系统可以包括真空泵118和节流阀120以调节通过处理腔室100的气体的流量。真空泵118耦接到设置在腔室主体102中的真空端口122,并且因此,与形成在衬里112内的泵送通道116流体地连通。除非另外指出,否则术语“气体”和“多种气体”可互换地使用,并且指代一种或多种前体、反应剂、催化剂、载体、净化剂、清洁剂、它们的组合、以及引入腔室主体102中的任何其他流体。
基板支撑组件106包括耦接到轴组件126的基座124。基座124具有适于支撑基板(未示出)的上表面。基座124还可包括RF电极,所述RF电极被配置为阴极并由导电材料制成。阴极可以包括铝板。阴极可直接耦接到轴组件126的中心轴128,从而将RF能量通过连接器150从RF功率源148提供到阴极。屏蔽构件125可绕基座124的外围来设置。屏蔽构件125可以包含诸如铝之类的导电材料。
轴组件126可以包括至少三个管状构件,所述管状构件在腔室主体102内竖直地移动。例如,屏蔽构件125可耦接到轴部分127,所述轴部分127设置在腔室主体102中的开口中。中心轴128设置在轴组件126内并且包括中空部分或芯129。中心轴128由诸如铝之类的导电材料制成并且用作RF电流运载构件。屏蔽构件125的中心轴128和轴部分127被设置在这两者之间的绝缘轴130电气地分离。用于绝缘轴130的材料可以包括对热量和工艺化学物质有抵抗性的陶瓷或聚合物材料,以及其他工艺耐受材料。
基座124可通过连接器150和中心轴128连接到RF功率源148。当RF功率源148不包括集成匹配电路时,匹配电路152可耦接在连接器150与RF功率源148之间。RF功率源148一般能够产生具有从约50kHz至约200MHz的频率以及在约0瓦特与约5000瓦特之间的功率的RF信号。RF功率源148可耦接到基座124中的导电板。来自RF功率源148的RF偏置功率可用于激发并维持由设置在腔室主体102的工艺区域109中的气体形成的等离子体放电。
基板支撑组件106的竖直移动由致动组件138提供。致动组件138可以包括耦接到腔室主体102和致动器142的支撑构件140。
盖组件104可用作远程等离子体源并且包括第一电极154,所述第一电极竖直地设置在第二电极156上方,从而在这两个电极之间限定等离子体容积或空腔160。第一电极154连接到电源158,诸如RF功率源,并且第二电极156连接到地面,从而在这两个电极154、156之间形成电容。第二电极156可以包括形成在等离子体空腔160下方以允许来自等离子体空腔160的气体通过其流动的多个气体通道或孔隙176。盖组件104还可包括将第一电极154与第二电极156电隔离的隔离环166。
盖组件104可以包括第一一个或多个气体入口162(仅示出了一个),所述第一组一个或多个气体入口至少部分地形成在第一电极154内。来自工艺气体源的一种或多种气体可以经由第一组一个或多个气体入口162进入盖组件104。第一组一个或多个气体入口162在其第一端与等离子体空腔160流体地连通,并且在其第二端耦接到一个或多个上游气源和/或其他气体递送部件(诸如气体混合器)。
盖组件104可进一步包括与第二电极156相邻的分配板168和阻挡板170。第二电极156、分配板168和阻挡板170可堆叠并设置在盖支撑板172上,所述盖支撑板172连接到腔室主体102。
阻挡板170可设置在第二电极156与分配板168之间。阻挡板170可与第二电极156良好地热接触和电接触。阻挡板170包括多个孔隙182以提供从第二电极156到分配板168的多个气体通道。孔隙182可被设定尺寸并且绕阻挡板170而定位以向分配板168提供受控的且均匀的流动分配。
分配板168可以是双通道喷淋头。分配板168可以包括多个孔隙178或通路以分配通过所述分配板168的气体的流动。分配板168可以包括第二组一个或多个气体入口192(仅示出了一个),所述第二组一个或多个气体入口至少部分地形成在气体分配板168内。第二组一个或多个气体入口192在其第一端与气体分配板168的多个孔隙178中的至少一些流体地连通,并在其第二端耦接到经选择成形成含硅和氧的膜的一个或多个前体气体源。孔隙178可被设定尺寸并且定位在分配板168周围以向待处理的基板所位于的腔室主体102提供受控的且均匀的流动分配。来自第一一个或多个气体入口162的气体和形成在等离子体空腔160中的自由基可以穿过孔隙178的第一部分,并且来自第二组一个或多个气体入口192的气体可以穿过孔隙178的第二部分。
形成初始层的方法包括可按任何顺序来执行的以下步骤:将硅氧烷前体引入工艺区域109中;以及将硅氧烷前体暴露于低能等离子体或远程地形成的非氧自由基。可选地,,可以将一种或多种惰性气体引入处理区域109中。
将硅氧烷前体引入处理腔室100的工艺区域109中以提供用于形成含硅和氧的初始层(诸如,二氧化硅初始层)的物种。可以从气体入口192将硅氧烷前体供应到气体分配板168,如参考图1所述,或者通过其他合适的手段。硅氧烷前体是具有Si-O-Si键合的分子。硅氧烷前体可以包括例如具有化学通式SixOx-1H2x+2的无环硅氧烷前体和具有通式SixOxH2x(环状)的环状化合物前体。代表性的前体包括二硅氧烷(SiH3OSiH3)、三硅氧烷(SiH3OSiH2OSiH3)、四硅氧烷(SiH3OSiH2OSiH2OSiH3)和环三硅氧烷(-SiH2OSiH2OSiH2O-)(以下示出)。
可选地,可以将次前体(secondary precursor)引入处理腔室100的工艺区域109中以便更改初始层的所得成分。也可将次前体从气体入口192供应到气体分配板168,如参考图1所述,或者通过其他合适的手段。次前体是除了硅氧烷前体以外的具有至少一个Si-H键的分子。次前体的使用可产生由硅和氧以及一种或多种不同元素构成的初始层,诸如SiON或SiOC。代表性的次前体包括三甲硅烷基胺、二甲硅烷基甲烷、三甲硅烷基甲烷和四甲硅烷基甲烷(以下示出)。
Figure BDA0001044252980000061
在替代性实施例中,可使用次前体中的一种或多种来沉积初始层而不使用硅氧烷前体,从而产生SiC、SiN、SiCN或其他初始层。例如,三甲硅烷基胺可以用于产生SiN初始层;二甲硅烷基甲烷、三甲硅烷基甲烷和四甲硅烷基甲烷中的一种或多种可以用于形成SiC初始层;并且三甲硅烷基胺与二甲硅烷基甲烷、三甲硅烷基甲烷和四甲硅烷基甲烷中的一种或多种的组合可以用于产生SiCN初始层。在又一实施例中,使用次前体来形成初始层的第一部分而无需硅氧烷前体,并且随后使用硅氧烷前体以及可选的次前体来形成初始层的第二部分。或者,可以使用硅氧烷前体来形成初始层的第一部分而无需次前体,并且可以使用次前体以及使用或不使用硅氧烷前体形成初始层的第二部分。
可选地,可以将一种或多种惰性气体引入处理腔室100的处理区域109中。一种或多种惰性气体可以是可产生并维持等离子体以形成初始层的等离子体形成气体。可将一种或多种惰性气体从气体入口192供应到气体分配板168,如参考图1所述,或者通过其他合适的手段。合适的惰性气体的示例包括氩、氦、氮和它们的组合。例如,可以使用氦和氮混合物。
为了使用低能等离子体来沉积膜,生成低能等离子体以选择性地使前体的Si-H键中的至少一些断裂来形成初始层。通过将来自RF功率源148的足够的RF偏置功率施加到基座124的RF电极而在处理腔室100中形成等离子体。可由小于约250W(诸如小于约100W,诸如在约10W与约50W之间)的偏置RF功率来生成等离子体。或者,可由小于10W的RF偏置功率来生成等离子体。
为了使用远程地形成的非氧自由基来沉积膜,可以将一种或多种非惰性的气体以及可选的一种或多种惰性气体引入远程自由基源中。例如,可从气体入口162将一种或多种非惰性的气体以及可选的一种或多种非惰性气体引入等离子体容积160中。可以将等离子体容积160中生成的自由基和其他中性物种引入处理腔室100的处理区域109中,但防止带电物种到达处理区域(诸如通过阻挡板170)。合适的非惰性的气体包括例如氢。合适的惰性气体包括例如氩、氦和氙。一旦将惰性气体与非惰性的气体的混合物(诸如包括氢和氩的混合物)引入等离子体容积160中,RF功率源158就将功率施加到第一电极154,以产生并维持含氢自由基的低能等离子体。可由小于约250W(诸如小于约100W,诸如在约10W与约50W之间)的RF源功率来生成等离子体。或者,可由小于约10W的RF源功率来生成等离子体。氢自由基行进通过第二电极156、阻挡板170和分配板168,并进入工艺区域109中,在所述工艺区域109中,氢自由基选择性地离解前体的Si-H键中的至少一些,从而导致初始层的沉积。在替代实施例中,远程地形成的自由基可由以下方式生成:HW-CVD腔室;微波等离子体辅助CVD(MPCVD);不同的远程等离子体源(诸如电感耦合的远程等离子体源);或者可离解氢并与工艺容积109隔离开的任何其他源或设备。
可以在范围从约10℃至约600℃(诸如在10℃与300℃之间,诸如在10℃与50℃之间)的温度下沉积初始层。在初始层沉积过程中的压力可以从约0.25Torr至约10Torr。沉积可以继续,直到初始层达到了约
Figure BDA0001044252980000071
或更厚(诸如约
Figure BDA0001044252980000072
)的厚度。或者,沉积可以继续,直到初始层达到了小于约
Figure BDA0001044252980000073
的厚度。沉积的初始层包含至少一些Si-H键,如果需要,可以在之后的后处理步骤中去除所述至少一些Si-H键。
在替代实施例中,初始层形成在具有易氧化的表面的基板上。易氧化的表面可由金属(诸如,例如铜、银、金、铝、钛或钽)构成。在不存在氧自由基和氧离子的情况下形成初始层,这允许在不氧化易氧化的表面的情况下形成初始层。
在使用低能等离子体的初始层的沉积的代表性的示例中,将惰性气体氦和氩分别以2000sccm和500sccm的流率从气体入口192引入处理腔室100的工艺区域109中。处理腔室100的压力和温度为约1000mTorr和约15℃。通过将50W的RF偏置功率从RF功率源148施加到基座124内的RF电极来生成并维持等离子体。随后,以582sccm的流率将二硅氧烷引入腔室中。沉积进行90秒并且形成具有约
Figure BDA0001044252980000074
的厚度的二氧化硅层。在替代实施例中,执行预调谐的等离子体匹配,并且在生成等离子体前,将二硅氧烷引入腔室中。
可选地,二氧化硅的块状层可以形成在初始层的顶部上。块状层可以具有大于初始层厚度的厚度。可以使用常规工艺(诸如通过将一种或多种硅氧烷和/或一种或多种其他含硅的前体(诸如硅烷)暴露于含氧等离子体)和/或使用更高的RF偏置功率(诸如250W以上的RF偏置功率)来形成块状层。在形成块状层的过程中,可以通过气体入口192将硅氧烷、其他含硅的前体和氧引入处理腔室100中,并且可以通过将足够的RF偏置功率从RF功率源148施加到基座124的RF电极来生成等离子体。初始层在块状二氧化硅层的沉积过程中保护易氧化的表面免受含氧等离子体的影响,从而允许在不氧化易氧化的表面的情况下,在易氧化的表面上形成具有期望的厚度的二氧化硅块状层。或者,可以使用公知的方法在初始层的顶部上形成其他成分的块状层。例如,SiOC、SiON和SiN块状层可以沉积在初始层的顶部上。
同样可选地,初始层可被后处理或被固化,以便减小初始层中的Si-H键的浓度。可在初始层被沉积之后或在初始层和块状层两者都被沉积之后执行固化步骤。代表性的固化工艺是在约1Torr与约100Torr之间、在约200℃下、在氮和氦气氛下并使用具有UVA、UVB和UVC信号和170nm的较低波长的宽带1200W UV灯泡来执行的紫外线固化工艺。然而,波长可以小于170nm,诸如小于150nm。或者,利用400W电源功率和高达5000W的偏置功率在20mTorr下执行具有氮的离子注入。在另一实施例中,利用处于约1000V至约15000V的电子束处理初始层,-100V的偏置功率被供应到中间的喷淋头,电流在1-20mA之间变化,并且压力在约1mTorr至约100mTorr的范围内。在另一实施例中,后处理工艺是伴随热干燥工艺的直接等离子体(诸如,高密度等离子体)。
在进一步的实施例中,可使用电子束固化来后处理或固化初始层。电子束固化或电子束处理涉及将所沉积的初始层暴露于电子束。在电子束处理过程中的基板温度一般可以是如上相对于处理所述那样。在所公开的实施例中,电子束能量可在从约0.5keV至约30keV,约1keV至约15keV,或约5keV至约10keV的范围内。在本文所述实施例中,曝光剂量可在从约1μθονα2至约400μθονα2,从约5μθονα2至约300μθονα2,或从约50μθονα2至约200μθονα2的范围内。最后,在实施例中,电子束电流可在从约1mA至约80mA或约5mA至约20mA的范围内,并且可在处理工艺期间跨基板扫描电子束电流。
使用本文所公开的方法来形成的含硅和氧的膜(诸如二氧化硅膜)允许在不氧化易氧化的表面的情况下将块状二氧化硅层以及其他成分的层形成在易氧化的表面(诸如金属)上。通过提供一种在不氧化下层易氧化的材料的情况下沉积含硅和氧的膜的方法,本文所公开的实施例允许集成电路几何形状的尺寸的持续减小。
尽管上述内容针对本发明的实施例,但可设计本发明的其他以及进一步的实施例而不背离本发明的基本范围,并且本发明的范围是由所附权利要求书来确定。

Claims (20)

1.一种用于沉积含硅和氧的膜的方法,所述方法包括以下步骤:
将包含有一种或多种硅氧烷前体的工艺气体引入处理腔室,所述处理腔室具有设置在其中的基板,其中所述一种或多种硅氧烷前体选自由具有化学式SixOx-1H2x+2的无环硅氧烷和具有化学式SixOxH2x的环状硅氧烷构成的组,所述硅氧烷前体具有一个或多个Si-H键和一个或多个Si-O键;以及
选择性地离解所述一种或多种硅氧烷前体的Si-H键中的至少一些,以将由硅和氧组成的初始层沉积在所述基板的第一表面上方,其中Si-O键基本上被维持并且所述初始层在不存在氧化剂的情况下被沉积;以及
在所述初始层上形成由硅和氧组成的块状层,包括:
将含氧等离子体或由大于250W的RF源或偏置功率形成的等离子体引入所述处理腔室中。
2.根据权利要求1所述的方法,其特征在于,选择性地离解所述Si-H键中的至少一些的步骤进一步包括以下步骤:将所述一种或多种硅氧烷前体暴露于以250W或更小的RF源或偏置功率生成的等离子体。
3.根据权利要求2所述的方法,其特征在于,所述工艺气体包含具有至少一个Si-H键的一种或多种次前体。
4.根据权利要求2所述的方法,其特征在于,所述一种或多种硅氧烷前体包括选自由以下各项构成的组中的至少一种硅氧烷前体:二硅氧烷(SiH3OSiH3)、三硅氧烷(SiH3OSiH2OSiH3)、四硅氧烷(SiH3OSiH2OSiH2OSiH3)和环三硅氧烷(-SiH2OSiH2OSiH2O-)。
5.根据权利要求3所述的方法,其特征在于,所述一种或多种次前体包括选自由以下各项构成的组中的至少一种前体:三甲硅烷基胺、二甲硅烷基甲烷、三甲硅烷基甲烷和四甲硅烷基甲烷。
6.根据权利要求4所述的方法,其中所述初始层具有至少
Figure FDA0002220292010000011
的厚度。
7.根据权利要求4所述的方法,进一步包括以下步骤:后处理所述初始层以消除所述Si-H键的部分。
8.根据权利要求2所述的方法,其特征在于,所述基板的所述第一表面是易氧化的表面。
9.根据权利要求1所述的方法,其特征在于,选择性地离解所述Si-H键中的至少一些的步骤进一步包括将所述一种或多种硅氧烷前体暴露于远程地形成的氢自由基。
10.根据权利要求1所述的方法,其特征在于,所述一种或多种硅氧烷前体包括选自由以下各项构成的组中的至少一种硅氧烷前体:二硅氧烷(SiH3OSiH3)、三硅氧烷(SiH3OSiH2OSiH3)、四硅氧烷(SiH3OSiH2OSiH2OSiH3)和环三硅氧烷(-SiH2OSiH2OSiH2O-)。
11.一种用于沉积含硅和氧的膜的方法,所述方法包括以下步骤:
将具有可氧化的表面的基板定位在处理腔室中;
使用工艺气体将由硅和氧组成的初始层形成在所述可氧化的表面上,所述工艺气体包含:
一种或多种硅氧烷前体,所述一种或多种硅氧烷前体选自由具有化学式SixOx-1H2x+2的无环硅氧烷和具有化学式SixOxH2x的环状硅氧烷构成的组,所述硅氧烷前体具有一个或多个Si-H键和一个或多个Si-O键;以及
具有至少一个Si-H键的一种或多种次前体,使用以250W或更小的RF源或偏置功率生成的等离子体来激活所述工艺气体,其中所述初始层在不存在氧化剂的情况下被沉积;以及
在所述初始层上形成由硅和氧组成的块状层,包括:
将含氧等离子体或由大于250W的RF源或偏置功率形成的等离子体引入所述处理腔室中。
12.根据权利要求11所述的方法,其特征在于,形成所述初始层的步骤进一步包括将所述一种或多种硅氧烷前体或所述工艺气体暴露于低能等离子体。
13.根据权利要求11所述的方法,其特征在于,所述一种或多种硅氧烷前体包括选自由以下各项构成的组中的至少一种硅氧烷前体:二硅氧烷(SiH3OSiH3)、三硅氧烷(SiH3OSiH2OSiH3)、四硅氧烷(SiH3OSiH2OSiH2OSiH3)和环三硅氧烷(-SiH2OSiH2OSiH2O-)。
14.根据权利要求11所述的方法,其特征在于,所述一种或多种次前体包括选自由以下各项构成的组中的至少一种前体:三甲硅烷基胺、二甲硅烷基甲烷、三甲硅烷基甲烷和四甲硅烷基甲烷。
15.根据权利要求11所述的方法,其特征在于,所述初始层具有至少
Figure FDA0002220292010000021
的厚度。
16.根据权利要求11所述的方法,进一步包括以下步骤:后处理所述含硅和氧的膜以消除在所述含硅和氧的膜中的所述Si-H键中的至少一些。
17.根据权利要求11所述的方法,进一步包括以下步骤:将所述一种或多种硅氧烷前体暴露于远程地形成的氢自由基。
18.根据权利要求11所述的方法,其特征在于,所述一种或多种硅氧烷前体包括二硅氧烷。
19.根据权利要求11所述的方法,其特征在于,所述等离子体离解所述Si-H键中的至少一些,同时维持所述Si-O键。
20.一种用于沉积含硅和氧的膜的方法,所述方法包括以下步骤:
将具有可氧化表面的基板引入处理腔室中;
在所述可氧化表面上形成由硅和氧组成的初始层,包括:
将一种或多种硅氧烷前体引入所述处理腔室中,其中所述一种或多种硅氧烷前体选自由以下各项构成的组:二硅氧烷(SiH3OSiH3)、三硅氧烷(SiH3OSiH2OSiH3)、四硅氧烷(SiH3OSiH2OSiH2OSiH3)和环三硅氧烷(-SiH2OSiH2OSiH2O-),所述一种或多种硅氧烷前体具有一个或多个Si-O键;
将一种或多种次前体引入所述处理腔室中,所述一种或多种次前体具有至少一个Si-H键,其中所述一种或多种次前体选自由以下各项构成的组:三甲硅烷基胺、二甲硅烷基甲烷、三甲硅烷基甲烷和四甲硅烷基甲烷;以及
选择性地离解所述一种或多种硅氧烷前体的所述Si-H键中的至少一些,其中所述Si-H键通过暴露于等离子体或通过暴露于远程地形成的氢自由基来离解,并且其中基本上维持所述Si-O键;以及
在所述初始层上形成由硅和氧组成的块状层,包括:
将含氧等离子体或由大于250W的RF源或偏置功率形成的等离子体引入所述处理腔室中,其中所述初始层在不存在氧化剂的情况下被沉积。
CN201580004037.4A 2014-01-24 2015-01-05 在无氧化剂情况下的含硅和氧的膜的沉积 Active CN105899711B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461931209P 2014-01-24 2014-01-24
US61/931,209 2014-01-24
PCT/US2015/010177 WO2015112324A1 (en) 2014-01-24 2015-01-05 Deposition of silicon and oxygen-containing films without an oxidizer

Publications (2)

Publication Number Publication Date
CN105899711A CN105899711A (zh) 2016-08-24
CN105899711B true CN105899711B (zh) 2020-01-07

Family

ID=53681834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580004037.4A Active CN105899711B (zh) 2014-01-24 2015-01-05 在无氧化剂情况下的含硅和氧的膜的沉积

Country Status (5)

Country Link
US (1) US10790139B2 (zh)
JP (1) JP2017505382A (zh)
KR (1) KR102339803B1 (zh)
CN (1) CN105899711B (zh)
WO (1) WO2015112324A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160138161A1 (en) * 2014-11-19 2016-05-19 Applied Materials, Inc. Radical assisted cure of dielectric films
WO2017070192A1 (en) * 2015-10-22 2017-04-27 Applied Materials, Inc. METHODS OF DEPOSITING FLOWABLE FILMS COMPRISING SiO and SiN
JP7069159B2 (ja) * 2016-12-27 2022-05-17 エヴァテック・アーゲー 高周波容量結合エッチング反応器
US10790140B2 (en) 2017-02-14 2020-09-29 Applied Materials, Inc. High deposition rate and high quality nitride
KR102416568B1 (ko) * 2017-08-14 2022-07-04 삼성디스플레이 주식회사 금속 산화막 형성 방법 및 플라즈마 강화 화학기상증착 장치
US11201035B2 (en) * 2018-05-04 2021-12-14 Tokyo Electron Limited Radical source with contained plasma
JP2022519663A (ja) * 2019-02-06 2022-03-24 エヴァテック・アーゲー イオンを生成する方法および装置
WO2021024858A1 (ja) 2019-08-08 2021-02-11 日本碍子株式会社 半導体製造装置用部材

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200529360A (en) * 2004-02-27 2005-09-01 Taiwan Semiconductor Mfg Copper dual damascene and fabrication method thereof
CN101473426A (zh) * 2006-06-22 2009-07-01 应用材料股份有限公司 用于从下向上填充间隙的介电材料沉积与回蚀方法
CN103258785A (zh) * 2012-02-15 2013-08-21 瑞萨电子株式会社 制造多孔绝缘膜的方法和包含所述多孔绝缘膜的半导体器件

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989407A (ja) 1982-11-15 1984-05-23 Mitsui Toatsu Chem Inc アモルフアスシリコン膜の形成方法
EP1123991A3 (en) * 2000-02-08 2002-11-13 Asm Japan K.K. Low dielectric constant materials and processes
US7423166B2 (en) * 2001-12-13 2008-09-09 Advanced Technology Materials, Inc. Stabilized cyclosiloxanes for use as CVD precursors for low-dielectric constant thin films
AU2003282988A1 (en) * 2002-10-21 2004-05-13 Massachusetts Institute Of Technology Pecvd of organosilicate thin films
CN1787186A (zh) * 2004-12-09 2006-06-14 富士通株式会社 半导体器件制造方法
US8530361B2 (en) * 2006-05-23 2013-09-10 Air Products And Chemicals, Inc. Process for producing silicon and oxide films from organoaminosilane precursors
US7498273B2 (en) * 2006-05-30 2009-03-03 Applied Materials, Inc. Formation of high quality dielectric films of silicon dioxide for STI: usage of different siloxane-based precursors for harp II—remote plasma enhanced deposition processes
US7825038B2 (en) 2006-05-30 2010-11-02 Applied Materials, Inc. Chemical vapor deposition of high quality flow-like silicon dioxide using a silicon containing precursor and atomic oxygen
US7902080B2 (en) 2006-05-30 2011-03-08 Applied Materials, Inc. Deposition-plasma cure cycle process to enhance film quality of silicon dioxide
US7790634B2 (en) 2006-05-30 2010-09-07 Applied Materials, Inc Method for depositing and curing low-k films for gapfill and conformal film applications
US8232176B2 (en) 2006-06-22 2012-07-31 Applied Materials, Inc. Dielectric deposition and etch back processes for bottom up gapfill
US7745352B2 (en) * 2007-08-27 2010-06-29 Applied Materials, Inc. Curing methods for silicon dioxide thin films deposited from alkoxysilane precursor with harp II process
EP2193541A1 (en) * 2007-09-18 2010-06-09 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of forming silicon-containing films
WO2011058947A1 (ja) * 2009-11-11 2011-05-19 日本電気株式会社 抵抗変化素子、半導体装置、および抵抗変化素子の形成方法
US10211310B2 (en) * 2012-06-12 2019-02-19 Novellus Systems, Inc. Remote plasma based deposition of SiOC class of films

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200529360A (en) * 2004-02-27 2005-09-01 Taiwan Semiconductor Mfg Copper dual damascene and fabrication method thereof
CN101473426A (zh) * 2006-06-22 2009-07-01 应用材料股份有限公司 用于从下向上填充间隙的介电材料沉积与回蚀方法
CN103258785A (zh) * 2012-02-15 2013-08-21 瑞萨电子株式会社 制造多孔绝缘膜的方法和包含所述多孔绝缘膜的半导体器件

Also Published As

Publication number Publication date
US20160336174A1 (en) 2016-11-17
KR102339803B1 (ko) 2021-12-14
JP2017505382A (ja) 2017-02-16
CN105899711A (zh) 2016-08-24
WO2015112324A1 (en) 2015-07-30
US10790139B2 (en) 2020-09-29
KR20160113197A (ko) 2016-09-28

Similar Documents

Publication Publication Date Title
CN105899711B (zh) 在无氧化剂情况下的含硅和氧的膜的沉积
US7989365B2 (en) Remote plasma source seasoning
KR101221582B1 (ko) 플라즈마-강화 화학 기상 증착〔pecvd〕에 의한 낮은 응력을 갖는 낮은-k 유전체를 생성하기 위한 저온 공정
TWI541376B (zh) 共形的氮碳化矽及氮化矽薄膜之低溫電漿輔助化學氣相沉積
US20130288485A1 (en) Densification for flowable films
US20190214228A1 (en) Radical assisted cure of dielectric films
TW201216359A (en) Plasma processing apparatus and plasma processing method
TW200532848A (en) Deposition of low dielectric constant films by N2O addition
TW200403766A (en) Method for curing low dielectric constant film by electron beam
US20160017487A1 (en) Integrated pre-clean and deposition of low-damage layers
CN113195786A (zh) 用于间隙填充的远程氢等离子体暴露以及掺杂或未掺杂硅碳化物沉积
US20150167160A1 (en) Enabling radical-based deposition of dielectric films
TW201621080A (zh) 用於先進互連應用之超薄介電質擴散阻障物層與蝕刻終止層
JP2009290026A (ja) 中性粒子を用いた半導体装置の成膜方法
KR102141670B1 (ko) 저온 경화 모듈러스 강화
TWI325897B (en) Stress reduction of sioc low k films
JP2013546182A (ja) マイクロ波プラズマを用いる誘電膜堆積方法
US20200388483A1 (en) Methods of post treating silicon nitride based dielectric films with high energy low dose plasma
US20160017495A1 (en) Plasma-enhanced and radical-based cvd of porous carbon-doped oxide films assisted by radical curing
US10515796B2 (en) Dry etch rate reduction of silicon nitride films
TWI774754B (zh) 自對準觸點與閘極處理流程
KR100466684B1 (ko) 불소 첨가 카본막 및 그 형성 방법
US20200381248A1 (en) Methods of post treating dielectric films with microwave radiation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant