CN105896982A - 一种buck倍频电路 - Google Patents

一种buck倍频电路 Download PDF

Info

Publication number
CN105896982A
CN105896982A CN201610317263.4A CN201610317263A CN105896982A CN 105896982 A CN105896982 A CN 105896982A CN 201610317263 A CN201610317263 A CN 201610317263A CN 105896982 A CN105896982 A CN 105896982A
Authority
CN
China
Prior art keywords
switching tube
igbt
buck
igbt switching
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610317263.4A
Other languages
English (en)
Inventor
段建东
肖倩
凡绍桂
张东
孙力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201610317263.4A priority Critical patent/CN105896982A/zh
Publication of CN105896982A publication Critical patent/CN105896982A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Abstract

一种BUCK倍频电路,涉及大功率直流降压技术领域。本发明是为了解决现有的大功率直流降压电路开关管开关频率低,导致电感比较大,大电流时电感体积就会很大,并且电感上电流纹波比较大,导致产生人耳听觉范围内不可忍受的噪声的问题。本发明n个IGBT开关管Gn并联为开关管组,直流电源的正极连接开关管组的正极,开关管组的负极同时连接滤波电感L的一端和续流二极管D的负极,续流二极管D的正极同时连接直流电源DC的负极、滤波电容C的负极和电阻R的一端,滤波电容C的正极同时连接滤波电感L的另一端和电阻R的另一端。它用在大容量蓄电池组、锂电池组以及超级电容组充电领域。

Description

一种BUCK倍频电路
技术领域
本发明涉及大功率直流降压技术。
背景技术
大功率BUCK电路被广泛用在大容量蓄电池组、锂电池组以及超级电容组充电领域。由于大功率BUCK电路电压、电流等级比较高,一般选择IGBT开关管容量很大,而大容量IGBT开关管开关频率比较低。
较低的开关频率会导致输出滤波电感比较大,大电流时电感体积就会很大。而且电感上电流纹波比较大,且电流纹波频率为开关频率,一般在人耳听觉范围内,这样就会产生人耳无法忍受的噪音,此种变换器不适合应用在人流量比较大或者要求变换器具有小体积的场合,比如地铁站储能、公交站储能、以及一些舰船储能。
发明内容
本发明是为了解决现有的大功率直流降压电路开关管开关频率低,导致电感比较大,大电流时电感体积就会很大,并且电感上电流纹波比较大,导致产生人耳听觉范围内不可忍受的噪声的问题。现提供一种BUCK倍频电路。
一种BUCK倍频电路,它包括直流电源DC、滤波电感L、滤波电容C、电阻R、续流二极管D和n个IGBT开关管Gn,n为倍频数,
n个IGBT开关管Gn并联为开关管组,
直流电源的正极连接开关管组的正极,开关管组的负极同时连接滤波电感L的一端和续流二极管D的负极,续流二极管D的正极同时连接直流电源DC的负极、滤波电容C的负极和电阻R的一端,
滤波电容C的正极同时连接滤波电感L的另一端和电阻R的另一端。
一种BUCK倍频电路,在一个工作周期中,n个IGBT开关管Gn依次进行了一次开启和关闭,每个IGBT开关管Gn开启时,滤波电感电流iL开始上升,此时该IGBT开关管Gn占空比小于1/n,则此时的电流上升值为:
式中,L为滤波电感,T为IGBT开关周期,
每个IGBT开关管Gn关闭时,电流通过续流二极管D续流,此时滤波电感L的电流iL开始下降,滤波电容C的电压Vo开始下降;
n个IGBT开关管Gn占空比D为:
式中,Vo为滤波电容C的电压,Vin为直流电源DC的电压,
每个IGBT开关管Gn的占空比为:
式中,Dgn为每个IGBT开关管的占空比,
将公式3带入公式1,得到:
因此,每个GBT开关管Gn的占空比为D/n。
本发明的有益效果为:n个开关管并联就可以实现n倍频,在一个工作周期中,n个IGBT开关管依次进行了一次开启和关闭,每个IGBT开关管开启时,滤波电感L的电流iL开始上升,此时该IGBT开关管占空比为小于1/n,每个IGBT开关管关闭时,电流通过续流二极管D续流,此时滤波电感L的电流iL开始下降,滤波电容C的电压Vo开始下降;在一个循环周期中电感电流iL循环了n次,电感纹波电流变为原来单个IGBT开关管的1/n,所以相同纹波电流要求的设计中,电感为原电感值的1/n。本发明采用n个开关管并联代替之前的单开关管,通过合理安排n个开关管导通顺序,使各并联开关管交替工作以至于使输出滤波电感纹波减小,且开关频率提高n倍,当电感纹波电流频率大于20KHz时,噪音超出了人耳听觉范围,从而达到降低噪音的目的。本发明的优点为:1、可使大功率BUCK电路低噪音:通过倍频技术,将输出滤波电感上电流频率提升到20KHz以上,使震动超出人耳听觉范围;2、可减小输出滤波电感体积:通过倍频技术,使频率提高,从而在达到相同电流纹波的情况下,有效减小电感值,从而减小电感体积;3、由于多个开关管并联,提高了BUCK控制器可靠性,当某个开关管故障时,可以降频继续工作,实现冗余备份。
附图说明
图1为具体实施方式一所述的一种BUCK倍频电路的原理图;
图2为具体实施方式一所述的一种BUCK倍频电路中n为3时的驱动波形图;
图3为具体实施方式一所述的一种BUCK倍频电路中n为3时的工作波形图,i0表示滤波电感电流iL的平均值。
具体实施方式
具体实施方式一:参照图1具体说明本实施方式,本实施方式所述的一种BUCK倍频电路,它包括直流电源DC、滤波电感L、滤波电容C、电阻R、续流二极管D和n个IGBT开关管Gn,n为倍频数,
n个IGBT开关管Gn并联为开关管组,
直流电源的正极连接开关管组的正极,开关管组的负极同时连接滤波电感L的一端和续流二极管D的负极,续流二极管D的正极同时连接直流电源DC的负极、滤波电容C的负极和电阻R的一端,
滤波电容C的正极同时连接滤波电感L的另一端和电阻R的另一端。
本实施方式中,采用n个开关管并联代替之前的单开关管,通过合理安排n个开关管导通顺序,使各并联开关管交替工作以至于使输出滤波电感纹波减小,且开关频率提高n倍,当电感纹波电流频率大于20KHz时,噪音超出了人耳听觉范围,从而达到降低噪音的目的。通过合理安排各开关管开关时序,实现输出滤波电感电流纹波n倍频,采用n个并联开关管代替单个开关管,当某个开关管失效时,可以降频运行,实现系统冗余备份。
具体实施方式二:参照图2具体说明本实施方式,本实施方式是对具体实施方式一所述的一种BUCK倍频电路作进一步说明,本实施方式中,每个IGBT开关管(Gn)的频率为T,第n个IGBT开关管(Gn)比第n-1个IGBT开关管(Gn)滞后T/n。
具体实施方式三:参照图1至图3具体说明本实施方式,本实施方式是对具体实施方式一所述的一种BUCK倍频电路作进一步说明,本实施方式中,在一个工作周期中,n个IGBT开关管Gn依次进行了一次开启和关闭,每个IGBT开关管Gn开启时,滤波电感电流iL开始上升,此时该IGBT开关管Gn占空比小于1/n,则此时的电流上升值为:
式中,L为滤波电感,T为IGBT开关周期,
每个IGBT开关管Gn关闭时,电流通过续流二极管D续流,此时滤波电感L的电流iL开始下降,滤波电容C的电压Vo开始下降;
n个IGBT开关管Gn占空比D为:
式中,Vo为滤波电容C的电压,Vin为直流电源DC的电压,
每个IGBT开关管Gn的占空比为:
式中,Dgn为每个IGBT开关管的占空比,
将公式3带入公式1,得到:
因此,每个GBT开关管Gn的占空比为D/n。
本实施方式中,如图2所示,当n为3时,为3个IGBT开关管(Gn)并联连接,每个开关管频率为T,而G2开关管比G1开关管滞后T/n(n为并联IGBT数量)开通;G3开关管滞后G2开关管T/n开通,以此类推,Gn开关管滞后G(n-1)开关管T/n开通。而每个IGBT开关管占空比最大为T/n。
如图3所示,在t0-t1时间段,G1开启,电感电流开始上升,此时G1占空比为Dg1<1/n(n为并联IGBT数量),则此时电流上升值为:
&Delta;i L = V i n L D g 1 T
Vin为输入电源电压,L为滤波电感,T为IGBT开关周期。
在t1-t2时间段,此时G1关闭,电流通过续流二极管D续流,此时电流开始下降,滤波电容电压Vo开始下降。
在t2-t3时间段,G2开启,电感电流开始上升,此时G2占空比为Dg2<1/n(n为并联IGBT数量),则此时电流上升值为:
&Delta;i L = V i n L D g 2 T
在t3-t4时间段,此时G2关闭,电流通过续流二极管D续流,此时电流开始下降,滤波电容电压Vo开始下降。
在t4-t5时间段,G3开启,电感电流开始上升,此时G3占空比为Dg3<1/n(n为并联IGBT数量),则此时电流上升值为:
&Delta;i L = V i n L D g 3 T
在t5-t6时间段,此时G3关闭,电流通过续流二极管D续流,此时电流开始下降,滤波电容电压Vo开始下降。
在t6时刻以后G1重新开启,开启下一个循环周期,在一个循环周期中电感电流iL循环了3次。

Claims (3)

1.一种BUCK倍频电路,其特征在于,它包括直流电源DC、滤波电感L、滤波电容C、电阻R、续流二极管D和n个IGBT开关管Gn,n为倍频数,
n个IGBT开关管Gn并联为开关管组,
直流电源的正极连接开关管组的正极,开关管组的负极同时连接滤波电感L的一端和续流二极管D的负极,续流二极管D的正极同时连接直流电源DC的负极、滤波电容C的负极和电阻R的一端,
滤波电容C的正极同时连接滤波电感L的另一端和电阻R的另一端。
2.根据权利要求1所述的一种BUCK倍频电路,其特征在于,每个IGBT开关管Gn的频率为T,第n个IGBT开关管Gn比第n-1个IGBT开关管Gn滞后T/n。
3.根据权利要求1或2所述的一种BUCK倍频电路,其特征在于,
在一个工作周期中,n个IGBT开关管Gn依次进行了一次开启和关闭,每个IGBT开关管Gn开启时,滤波电感电流iL开始上升,此时该IGBT开关管Gn占空比小于1/n,则此时的电流上升值为:
式中,L为滤波电感,T为IGBT开关周期,
每个IGBT开关管Gn关闭时,电流通过续流二极管D续流,此时滤波电感L的电流iL开始下降,滤波电容C的电压Vo开始下降;
n个IGBT开关管Gn占空比D为:
式中,Vo为滤波电容C的电压,Vin为直流电源DC的电压,
每个IGBT开关管Gn的占空比为:
式中,Dgn为每个IGBT开关管的占空比,
将公式3带入公式1,得到:
因此,每个GBT开关管Gn的占空比为D/n。
CN201610317263.4A 2016-05-12 2016-05-12 一种buck倍频电路 Pending CN105896982A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610317263.4A CN105896982A (zh) 2016-05-12 2016-05-12 一种buck倍频电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610317263.4A CN105896982A (zh) 2016-05-12 2016-05-12 一种buck倍频电路

Publications (1)

Publication Number Publication Date
CN105896982A true CN105896982A (zh) 2016-08-24

Family

ID=56716074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610317263.4A Pending CN105896982A (zh) 2016-05-12 2016-05-12 一种buck倍频电路

Country Status (1)

Country Link
CN (1) CN105896982A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107959418A (zh) * 2017-11-08 2018-04-24 北京科诺伟业科技股份有限公司 一种开关式交错dc-dc变换器
CN111162568A (zh) * 2018-11-08 2020-05-15 中车永济电机有限公司 充电电路、电子设备及控制方法
CN113991989A (zh) * 2021-12-27 2022-01-28 深圳市永联科技股份有限公司 电流纹波调整单元及相关产品
CN115133789A (zh) * 2022-07-11 2022-09-30 湖南众源科技有限公司 一种双极电压脉冲电源拓扑结构及控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4290101A (en) * 1977-12-29 1981-09-15 Burroughs Corporation N Phase digital inverter
JPH11113253A (ja) * 1997-10-06 1999-04-23 Hitachi Ltd 昇圧チョッパー回路
CN102403885A (zh) * 2011-11-17 2012-04-04 深圳市联赢激光股份有限公司 一种大功率激光电源用多分频脉冲宽度调制控制电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4290101A (en) * 1977-12-29 1981-09-15 Burroughs Corporation N Phase digital inverter
JPH11113253A (ja) * 1997-10-06 1999-04-23 Hitachi Ltd 昇圧チョッパー回路
CN102403885A (zh) * 2011-11-17 2012-04-04 深圳市联赢激光股份有限公司 一种大功率激光电源用多分频脉冲宽度调制控制电路

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107959418A (zh) * 2017-11-08 2018-04-24 北京科诺伟业科技股份有限公司 一种开关式交错dc-dc变换器
CN111162568A (zh) * 2018-11-08 2020-05-15 中车永济电机有限公司 充电电路、电子设备及控制方法
CN113991989A (zh) * 2021-12-27 2022-01-28 深圳市永联科技股份有限公司 电流纹波调整单元及相关产品
CN115133789A (zh) * 2022-07-11 2022-09-30 湖南众源科技有限公司 一种双极电压脉冲电源拓扑结构及控制方法
CN115133789B (zh) * 2022-07-11 2023-09-01 湖南众源科技有限公司 一种双极电压脉冲电源拓扑结构及控制方法

Similar Documents

Publication Publication Date Title
CN105958823B (zh) 一种电流连续型高增益开关升压准z源变换器电路
CN106549577A (zh) 非隔离双向高增益dc/dc变换器及变频控制方法
US10243455B2 (en) Bidirectional DC-DC converter
CN205847093U (zh) 一种电流连续型高增益开关升压准z源变换器电路
CN104009633B (zh) 一种电流连续型高增益dc-dc变换器电路
CN102969893A (zh) 一种高增益升压型直流变换器
CN105896993A (zh) 一种多单元二极管电容网络高增益隔离型直流变换器
CN105896982A (zh) 一种buck倍频电路
CN103618444B (zh) 三绕组耦合电感zvs/zcs双管升压变换器
CN103560666A (zh) 具有低纹波的四开关升降压变换器及其控制方法
CN105939108A (zh) 一种开关电感型准开关升压dc-dc变换器
CN107517016A (zh) 具有抑制耦合电感漏感影响的高升压比y源逆变器
CN105939112A (zh) 一种高增益准开关升压dc-dc变换器
CN105939107A (zh) 一种混合型准开关升压dc-dc变换器
CN105939126A (zh) 一种开关电感型混合准z源逆变器
CN109951072A (zh) 基于Sepic电路的新型软开关高升压比变换器及其工作方法
CN106936300A (zh) 一种非隔离型低输入电流纹波高效高增益dc_dc变换器
CN205847124U (zh) 一种开关电感型混合准z源逆变器
CN104578806B (zh) 级联双向软开关dc/dc电路拓扑
CN106329921A (zh) 一种三电平Buck变换器及其控制方法
CN103780118A (zh) 一种谐振直流环节三电平软开关逆变电路
CN205847090U (zh) 一种混合型准开关升压dc‑dc变换器
CN206117540U (zh) 一种开关升压型高增益准z源逆变器
CN205847086U (zh) 一种开关电容型高增益准z源dc‑dc变换器
CN205847091U (zh) 一种开关电感型准开关升压dc‑dc变换器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160824

WD01 Invention patent application deemed withdrawn after publication