CN105886522A - 一种高效的细菌转化方法 - Google Patents

一种高效的细菌转化方法 Download PDF

Info

Publication number
CN105886522A
CN105886522A CN201410668128.5A CN201410668128A CN105886522A CN 105886522 A CN105886522 A CN 105886522A CN 201410668128 A CN201410668128 A CN 201410668128A CN 105886522 A CN105886522 A CN 105886522A
Authority
CN
China
Prior art keywords
transformation
culture medium
210rpm
room temperature
luria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410668128.5A
Other languages
English (en)
Other versions
CN105886522B (zh
Inventor
邱志刚
李君文
丁诚实
金敏
谌志强
杨栋
王新为
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Hygiene and Environmental Medicine Academy of Military Medical Sciences of Chinese PLA
Original Assignee
Institute of Hygiene and Environmental Medicine Academy of Military Medical Sciences of Chinese PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Hygiene and Environmental Medicine Academy of Military Medical Sciences of Chinese PLA filed Critical Institute of Hygiene and Environmental Medicine Academy of Military Medical Sciences of Chinese PLA
Priority to CN201410668128.5A priority Critical patent/CN105886522B/zh
Publication of CN105886522A publication Critical patent/CN105886522A/zh
Application granted granted Critical
Publication of CN105886522B publication Critical patent/CN105886522B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种高效的细菌转化方法,其主要内容包括:(1)纳米氧化铝可用于细菌的转化;(2)革兰氏阴性菌HB101、K12可基于纳米氧化铝作用发生转化;(3)革兰氏阳性菌金黄色葡萄球菌可基于纳米氧化铝作用发生转化。本发明的技术和方法不要求低温条件,室温即可实现;本发明步骤简便,无热激步骤;本发明高效,细菌转化效率高于统CaCl2法;本发明不但能实现革兰氏阴性菌转化,也可以实现革兰氏阳性菌转化。因此本发明中的技术和方法简单、高效、通用,非常适合实验室科研及工程菌制备等领域。

Description

一种高效的细菌转化方法
技术领域
本发明属于分子生物学与基因工程技术领域,具体涉及一种基于纳米氧化铝的高效细菌转化方法。
背景技术
把外源基因导入受体细菌中,使之具有新的可遗传性状的过程称之为转化,是现代基因工程与分子生物学最重要的操作技术之一。转化效率的高低决定后续工作的开展,而细菌的状态是影响转化效率最关键的因素之一。目前革兰氏阳性细菌发生转化比较困难,高效成熟的技术尚处于探索之中。革兰氏阴性细菌以大肠杆菌为例感受态细胞的获得方法主要有两种,CaCl2法和电转化法,其缺陷要么是步骤复杂转化率低,要么是需要特定的仪器设备条件,且对于低温环境和细菌的对数生长状态都有较高的要求。纳米材料能引起细菌细胞膜的氧化损伤,引起皱褶甚至孔洞,造成膜功能通透性的改变。因此探究一种基于纳米材料作用的转化效率高、操作步骤简单、温度和细菌生长条件要求低、革兰氏阴性菌和阳性菌通用的细菌转化方法对分子生物学与基因工程技术领域具有重要的意义。
发明内容
本发明的目的是提供一种基于纳米铝高效细菌转化方法。本发明用纳米氧化铝处理方法实现细菌转化,可以用100ng质粒与108细胞作用获得105-107个转化子。
本发明的技术方案概述如下:
一种基于纳米氧化铝的高效细菌转化方法,包括以下步骤:
(1)挑取新活化的细菌单克隆,接种到10ml Luria-Bertani培养基,在37℃、210rpm条件下振荡培养至OD600约为1;
(2)将(1)中的菌体按1%接种到10ml Luria-Bertani培养基,在37℃、210rpm条件下振荡培养12h;
(3)用Luria-Bertani培养基将(2)中的菌体稀释100倍,取1.5ml菌体稀释液置于灭菌的1.5ml离心管中,在室温下离心,弃上清收集细菌,离心参数为5000×10min;
(4)向离心管中加入浓度10mmol/L的纳米氧化铝(颗粒直径小于50nm)100μl与细菌细胞震荡混匀,室温下静止作用一定时间;
(5)将菌液过0.22μm微孔滤膜,滤除去纳米氧化铝颗粒;
(6)灭菌生理盐水冲洗微孔滤膜回收细胞,在室温下离心菌液,弃上清去除残留的纳米氧化铝,离心参数为5000×10min;
(7)用100μl生理盐水重悬菌体细胞备用;
(8)加入100ng质粒DNA,涡轮振荡2min;
(9)加Luria-Bertani培养基900μl,在37℃、210rpm条件下振荡复苏1h;
(10)菌液涂布在含有相应抗生素的选择性平板上,37℃培养,生长的菌落即为转化成功的克隆。
附图说明
图1为本发明采用的纳米铝原子力显微镜照片,其中(a)2D,(b)3D。
具体实施方式
下面结合具体实施例对本发明作进一步的说明:
实施例1本发明大肠杆菌HB101转化pBR322质粒及转化效率检测
材料:pBR322质粒、大肠杆菌HB101、纳米氧化铝(颗粒<50nm)、CaCl2
试剂:LB液体培养基:蛋白胨10g,酵母提取物5g,氯化钠10g,蒸馏水定容至1000ml,121℃灭菌20min。LB固体培养基为液体配方加入1.5%的琼脂。
主要实施步骤如下:
一、本发明大肠杆菌HB101转化pBR322质粒及转化效率检测
(1)挑取新活化的细菌单克隆,接种到10ml LB培养基,37℃,210rpm,振荡培养,至OD600约为1;
(2)将菌体按1%接种到10mi LB培养基,37℃,210rpm,振荡培养12h;
(3)菌体稀释100倍,1.5ml菌体稀释液/1.5mlEP管,室温,5000rpm,离心10min,弃上清,收集细胞;
(4)每1.5mlEP管加入10mM纳米氧化铝(颗粒直径小于50nm)100μl,室温作用9h;
(5)作用体系过0.22μm微孔滤膜,回收细胞,除去纳米铝颗粒;
(6)灭菌的生理盐水冲洗,室温,5000rpm,离心10min,弃上清去除残留的纳米铝;
(7)重悬菌体细胞备用;
(8)取100μl菌体细胞(108)置于1.5mlEP管,加入100ngDNA,涡轮振荡2min;
(9)加LB液体培养基900μl,37℃,210rpm,振荡复苏1h;
(10)转化菌体倾注在抗性平板中,含Amp 80μg/ml、Tet 50mg/ml,37℃培养,待长出菌落后观察计数。
二、CaCl2法大肠杆菌HB101转化pBR322质粒及转化效率检测(作为本发明方法的对比)
(1)挑取新活化的细菌单克隆,接种到10ml LB培养基,37℃,210rpm,振荡培养,至OD600约为1;
(2)将菌体按1%接种到10ml LB培养基,37℃,210rpm,振荡培养12h;
(3)菌体稀释100倍,1.5ml菌体稀释液/1.5mlEP管,室温,5000rpm,离心10min,弃上清,收集细胞;
(4)每1.5mlEP管加入1.5ml 100mM冰冷的CaCl2中,轻吹,4℃作用30min;
(5)4℃,5000rpm,离心10min,弃上清,收集细胞;
(6)菌体重悬于冰冷的CaCl2中,轻吹,4℃备用;
(7)取100μl感受细胞(108)置于1.5mlEP管,加入100ng pBR322质粒,轻轻摇匀,冰上放置30min;
(8)42℃水浴,放置90s热激;
(9)快速置冰浴,保持2min;
(10)加LB液体培养基900μl,37℃,210rpm,振荡复苏1h。
(11)转化菌体倾注在抗性平板中,含Amp 80μg/ml、Tet 50mg/ml,37℃培养,待长出菌落后观察计数。
本发明方法转化效率7.30±0.91×107/μg pBR322plasmid
传统CaCl2方法转化效率3.65±0.51×106/μg pBR322plasmid
结论:由上述结果可知,本发明方法可实现革兰氏阴性菌大肠杆菌HB101转化pBR322质粒,其转化效率是传统氯化钙法的20倍左右。
实施例2本发明大肠杆菌K12转化pBR322质粒及转化效率检测
材料:pBR322质粒、大肠杆菌K12、纳米氧化铝(颗粒<50nm)
试剂:LB液体培养基:蛋白胨10g,酵母提取物5g,氯化钠10g,蒸馏水定容至1000ml,121℃灭菌20min。LB固体培养基为液体配方加入1.5%的琼脂。
主要实施步骤如下:
(1)挑取新活化的细菌单克隆,接种到10ml LB培养基,37℃,210rpm,振荡培养,至OD600约为1;
(2)将菌体按1%接种到10ml LB培养基,37℃,210rpm,振荡培养12h;
(3)菌体稀释100倍,1.5ml菌体稀释液/1.5mlEP管,室温,5000rpm,离心10min,弃上清,收集细胞;
(4)每1.5mlEP管加入10mM纳米氧化铝(颗粒直径小于50nm)100μl,室温作用9h;
(5)作用体系过0.22μm微孔滤膜,回收细胞,除去纳米铝颗粒;
(6)灭菌的生理盐水冲洗,室温,5000rpm,离心10min,弃上清去除残留的纳米氧化铝;
(7)重悬菌体细胞备用;
(8)取100μl菌体细胞(108)置于1.5mlEP管,加入100ngDNA,涡轮振荡2min;
(9)加LB液体培养基900μl,37℃,210rpm,振荡复苏1h;
(10)转化菌体倾注在抗性平板中,含Amp 80μg/ml、Tet 50mg/ml,37℃培养,待长出菌落后观察计数。
本发明方法转化效率3.53±1.28x105/μg pBR322plasmid
结论:由上述结果可知,本发明方法可以实现革兰氏阴性菌大肠杆菌K12转化pBR322质粒。
实施例3本发明金黄色葡萄球菌转化pBR322质粒及转化效率检测
材料:pBR322质粒、金黄色葡萄球菌、纳米氧化铝(颗粒<50nm)
试剂:LB液体培养基:蛋白胨10g,酵母提取物5g,氯化钠10g,蒸馏水定容至1000ml,121℃灭菌20min。LB固体培养基为液体配方加入0.9%的琼脂。
主要实施步骤如下:
(1)挑取新活化的细菌单克隆,接种到10ml LB培养基,37℃,210rpm,振荡培养,至OD600约为1;
(2)将菌体按1%接种到10ml LB培养基,37℃,210rpm,振荡培养12h;
(3)菌体稀释100倍,1.5ml菌体稀释液/1.5mlEP管,室温,5000rpm,离心10min,弃上清,收集细胞;
(4)每1.5mlEP管加入10mM纳米氧化铝(颗粒直径小于50nm)100μl,室温作用9h;
(5)作用体系过0.22μm微孔滤膜,回收细胞,除去纳米氧化铝颗粒;
(6)灭菌的生理盐水冲洗,室温,5000rpm,离心10min,弃上清去除残留的纳米氧化铝;
(7)重悬菌体细胞备用;
(8)取100μl菌体细胞(108)置于1.5mlEP管,加入100ngDNA,涡轮振荡2min;
(9)加LB液体培养基900μl,37℃,210rpm,振荡复苏1h;
(10)转化菌体倾注在抗性平板中,含Amp 80μg/ml、Tet 50mg/ml,37℃培养,待长出菌落后观察计数。
本发明方法转化效率2.96±0.56x106/μg pBR322plasmid
结论:由上述结果可知,本发明方法可以实现革兰氏阳性菌金黄色葡萄球菌转化pBR322质粒。

Claims (1)

1.一种高效的细菌转化方法,其特征包括以下步骤:
(1)挑取新活化的细菌单克隆,接种到10ml Luria-Bertani培养基,在37℃、210rpm条件下振荡培养至OD600约为1;
(2)将(1)中的菌体按1%接种到10ml Luria-Bertani培养基,在37℃、210rpm条件下振荡培养12h;
(3)用Luria-Bertani培养基将(2)中的菌体稀释100倍,取1.5ml菌体稀释液置于灭菌的1.5ml离心管中,在室温下离心,弃上清收集细菌,离心参数为5000×10min;
(4)向离心管中加入浓度10mmol/L的纳米氧化铝(颗粒直径小于50nm)100μl与细菌细胞震荡混匀,室温下静止作用一定时间;
(5)将菌液过0.22μm微孔滤膜,滤除去纳米氧化铝颗粒;
(6)灭菌生理盐水冲洗微孔滤膜回收细胞,在室温下离心菌液,弃上清去除残留的纳米氧化铝,离心参数为5000×10min;
(7)用100μl生理盐水重悬菌体细胞备用;
(8)加入100ng质粒DNA,涡轮振荡2min;
(9)加Luria-Bertani培养基900μl,在37℃、210rpm条件下振荡复苏1h;
(10)菌液涂布在含有相应抗生素的选择性平板上,37℃培养,生长的菌落即为转化成功的克隆。
CN201410668128.5A 2014-11-20 2014-11-20 一种高效的细菌转化方法 Active CN105886522B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410668128.5A CN105886522B (zh) 2014-11-20 2014-11-20 一种高效的细菌转化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410668128.5A CN105886522B (zh) 2014-11-20 2014-11-20 一种高效的细菌转化方法

Publications (2)

Publication Number Publication Date
CN105886522A true CN105886522A (zh) 2016-08-24
CN105886522B CN105886522B (zh) 2019-10-25

Family

ID=56698580

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410668128.5A Active CN105886522B (zh) 2014-11-20 2014-11-20 一种高效的细菌转化方法

Country Status (1)

Country Link
CN (1) CN105886522B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106755039A (zh) * 2016-12-20 2017-05-31 南京农业大学 一种提高细菌转化效率的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703509A (zh) * 2012-06-25 2012-10-03 江苏大学 一种提高改良的Shewanella oneidensis MR-1遗传转化的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703509A (zh) * 2012-06-25 2012-10-03 江苏大学 一种提高改良的Shewanella oneidensis MR-1遗传转化的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHIGANG QIU ET AL: "Nanoalumina promoters the horizontal transfer of multiresistance genes mediated by plasmids across genera", 《PNAS》 *
邱志刚: "纳米材料促进质粒介导的细菌耐药基因接合转移及机制研究", 《中国博士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106755039A (zh) * 2016-12-20 2017-05-31 南京农业大学 一种提高细菌转化效率的方法

Also Published As

Publication number Publication date
CN105886522B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
Alves et al. Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation
Prestel et al. An examination of the bacteriophages and bacteria of the Namib desert
de Kerchove et al. Impact of alginate conditioning film on deposition kinetics of motile and nonmotile Pseudomonas aeruginosa strains
Lederberg Mechanism of action of penicillin
Yu et al. Isolation and characterization of bacteriophages against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit
CN109251898B (zh) 一株金黄色葡萄球菌噬菌体及其应用
Gašić et al. Isolation and characterization of Xanthomonas euvesicatoria bacteriophages
CN112029733B (zh) 一株高裂解性溶藻弧菌噬菌体rdp-vp-19001及其应用
AU2020100853A4 (en) Proteus mirabilis phage rdp-sa-16033 and industrial production process thereof
CN109022476B (zh) 一种地衣芽孢杆菌CRISPR-Cas9基因编辑系统及其应用
Abdel-Haliem et al. Isolation and characterization of bacteriophages of Helicobacter pylori isolated from Egypt
CN105886522A (zh) 一种高效的细菌转化方法
EP3456813B1 (en) Enterococcus faecalis strains for production of monoclonal phage preparations
Harris et al. A rapid and efficient electroporation method for transformation of Halomonas sp. O-1
CN109762770B (zh) 一株广谱抗噬菌体的大肠埃希氏菌bl21(de3)-pr及其应用
Maharjan et al. Isolation and characterization of lytic bacteriophage against multi-drug resistant Pseudomonas aeruginosa
Suneel et al. Identification and characterization of Lactococcus garvieae and antimicrobial activity of its bacteriocin isolated from cow’s milk
CN105602973B (zh) 一种简便的dna转导方法
Tan et al. Isolation and characterization of lytic bacteriophages from sewage water
JP2007252351A (ja) 青枯れ病菌感染性バクテリオファージ
Mason et al. Using scanning electron microscopy to study microbial communities in speleothem samples collected from Iron Curtain Cave
JP5755416B2 (ja) グラム陽性菌の形質転換方法
Azzam et al. Antibacterial activity of cupric oxide nanoparticles against pathogenic bacteria
KR101590337B1 (ko) 아미노클레이를 이용한 원핵 또는 진핵생물의 형질전환 방법
Hung et al. Gene disruption in Coccidioides using hygromycin or phleomycin resistance markers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: No. 1, Dali Road, peace zone, Tianjin City

Applicant after: Institute of environmental medicine and occupational medicine, Academy of Military Medical Sciences, Academy of Military Sciences

Address before: No. 1, Dali Road, peace zone, Tianjin City

Applicant before: Inst. of Hygienics and Environmental Medical Science, Academy of Military Medici

GR01 Patent grant
GR01 Patent grant