CN105885066A - 一种磁性多孔木质纤维微球及其制备方法与应用 - Google Patents

一种磁性多孔木质纤维微球及其制备方法与应用 Download PDF

Info

Publication number
CN105885066A
CN105885066A CN201610239971.0A CN201610239971A CN105885066A CN 105885066 A CN105885066 A CN 105885066A CN 201610239971 A CN201610239971 A CN 201610239971A CN 105885066 A CN105885066 A CN 105885066A
Authority
CN
China
Prior art keywords
wood fibre
magnetic
microsphere
preparation
magnetic porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610239971.0A
Other languages
English (en)
Inventor
张爱萍
谭晓华
冯竟洋
谢君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN201610239971.0A priority Critical patent/CN105885066A/zh
Publication of CN105885066A publication Critical patent/CN105885066A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

本发明属于生物质化学和可再生资源利用领域,具体涉及一种磁性多孔木质纤维微球及其制备方法与应用。本发明以木质纤维全组分为基材,以离子液体为溶剂体系直接溶解天然木质纤维,得到木质纤维溶液,然后通过包埋法负载磁性纳米粒子,以反相悬浮法制备磁性木质纤维微球。本发明制备的磁性多孔木质纤维微球分散性好,可直接利用原材料,产品后处理技术简单,能大规模、低成本的生产制备,简化工艺,减少制备过程中对环境的污染,可以应用于重金属吸附领域。

Description

一种磁性多孔木质纤维微球及其制备方法与应用
技术领域
本发明属于生物质化学和可再生资源利用领域,具体涉及一种磁性多孔木质纤维微球及其制备方法与应用。
背景技术
二十一世纪科学与技术已趋向于可再生的原料以及环境友好、可持续发展的过程与方法。木质纤维是地球上最丰富、最廉价的可再生资源,具有价廉、可生物降解、可衍生化、并对环境不产生污染等特点,因此若能把大量的农业纤维原料及工业纤维废料制备成高值化产品具有重要意义。木质纤维主要成分为纤维素、半纤维素和木质素,三者含量占其总量的90%以上。由于缺乏有效的分离途径,现有的木质纤维资源的利用是将其一种或两种组分转化利用,而其他组分结构被破坏,以废弃物的形式排放到环境中,这造成了资源的浪费和环境的污染。
随着资源、能源环境问题的日益严峻,木质纤维生物质的利用趋势是全组分利用。木质纤维全溶体系为其全组分利用带来了前所未有的机遇,拓展了木质纤维功能材料的开发与应用。全溶体系主要包括离子液体、二甲基亚砜/1-甲基咪唑和二甲基亚砜/氯化锂等。木质纤维全溶后可以通过一系列的化学改性,制备出不同用途的功能化高分子材料。
高分子微球是近二十多年来发展起来的一种新型功能化材料。高分子微球可进一步通过共混、表面改性等化学反应在其表面引入多种反应性功能基团,而具有特定反应性,如可通过共价键来结合酶、抗体、细胞等生物活性物质。在最初的研究中,一般选用纤维素为原料制备微球。由于缺乏木质纤维全组分溶剂体系,利用木质纤维全组分为原料制备微球一直以来未有报道。木质纤维全组分溶剂的开发为木质纤维微球的制备提供了可能,而直接利用木质纤维全组分为原料制备微球的方法尚未见报道。
发明内容
为了克服现有技术的不足与缺点,本发明的首要目的在于提供一种磁性多孔木质纤维微球的制备方法。
本发明的另一目的在于提供上述制备方法制备得到的磁性多孔木质纤维微球。
本发明的再一目的在于提供上述磁性多孔木质纤维微球的应用。
本发明的目的通过下述技术方案实现:
一种磁性多孔木质纤维微球的制备方法,包含如下步骤:
(1)将木质纤维充分溶解于离子液体中,得到木质纤维溶液作为水相;
(2)向步骤(1)制备的木质纤维溶液中加入磁流体,混合均匀,得到磁性功能化木质纤维溶液;
(3)将步骤(2)制备的磁性功能化木质纤维溶液分散在油相与表面活性剂的混合溶液中,在温度为90~110℃,转速为300~600rpm的条件下搅拌3~5h,得到反相悬浮体系;
(4)将步骤(3)制备的反相悬浮体系降温至45~60℃,加入交联剂,搅拌反应3~4h;得到交联后的磁性木质纤维微球悬浮液;
(5)将固化剂缓慢加入步骤(4)制备的交联后的磁性木质纤维微球悬浮液中,降温至25~30℃,悬浮液固化以便微球从离子液体中再生;分离微球,洗涤,得到磁性多孔木质纤维微球;
步骤(1)中所述的木质纤维为蔗渣、桉木和菊叶薯蓣等中的至少一种;
步骤(1)中所述的木质纤维优选做如下处理:粉碎过筛,球磨并干燥;
步骤(1)中所述的离子液体优选为1-丁基-3-甲基咪唑氯盐或者1-烯丙基-3-甲基咪唑氯盐;
步骤(1)中所述的木质纤维与离子液体的质量比优选为(2~6):100;
步骤(1)中所述的充分溶解的条件优选为在90~110℃、通氮气的条件下搅拌2~3h;
步骤(2)中所述的磁流体的无机物粒子为Fe、Fe2O3、Fe3O4和铁钴镍合金粒子中的至少一种;
步骤(2)中所述的磁流体与木质纤维溶液质量比优选(1:3)~(1:7);
步骤(2)中所述的混合均匀的条件优选为在90~110℃的条件下,300~600rpm搅拌30~90min;
步骤(3)中所述的油相为真空泵油、液体石蜡或者变压器油;
步骤(3)中所述的表面活性剂为Tween80和Span80中的至少一种;
步骤(3)中所述的油相与木质纤维溶液的体积比为3:1~7:1;
步骤(3)中所述的油相与表面活性剂的质量比为20:1~50:1;
步骤(4)中所述的交联剂为戊二醛;
步骤(4)中所述的交联剂与反相悬浮体系中的木质纤维的质量比为(0.05:1)~(0.2:1);
步骤(5)中所述的固化剂为水、无水乙醇和丙酮中的至少一种;
步骤(5)中所述的洗涤优选采用去离子水洗涤;
所述的磁性多孔木质纤维微球可置于2℃的去离子水中保存或者冷冻干燥后备用;
一种磁性多孔木质纤维微球通过上述制备方法制备得到;
所述的磁性多孔木质纤维微球在生物质化学和可再生资源利用领域中的应用;
所述的磁性多孔木质纤维微球优选在重金属吸附领域中的应用;
本发明的原理:本发明以木质纤维全组分为基材,以离子液体溶剂体系直接溶解天然木质纤维,得到木质纤维溶液,然后通过包埋法负载磁性纳米粒子(例如:以铁钴镍类超顺磁性的无机物粒子为磁流体),以反相悬浮法制备磁性木质纤维微球。
本发明相对于现有技术具有如下的优点及效果:
(1)本发明以木质纤维全组分为基材,以离子液体为溶剂,然后通过包埋法负载磁性纳米粒子(例如:以铁钴镍类超顺磁性的无机物粒子为磁流体),以反相悬浮法制备磁性木质纤维微球。
(2)本发明可以通过改变磁性粒子含量来改变复合微球的磁响应性能,通过改变高分子溶液的浓度、表面活性剂等条件来控制微球的形态和尺寸。
(3)本发明制备的磁性多孔木质纤维微球分散性好,可直接利用原材料,产品后处理技术简单,能大规模、低成本的生产制备,简化工艺,减少制备过程中对环境的污染。
附图说明
图1是实施例2制备的磁性多孔木质纤维微球的形态图。
图2是实施例1制备的磁性多孔木质纤维微球的扫描电镜图。
图3是实施例1制备的磁性多孔木质纤维微球重金属吸附率的结果分析图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
(1)甘蔗渣粉碎后过40目筛,球磨8h于65℃真空箱中干燥24h;将1.0g球磨干燥后的蔗渣分散到50.0g离子液体1-丁基-3-甲基咪唑氯化盐([BMIM]Cl)中,在105℃,通氮气条件下搅拌3h,得到浓度为1.96wt%的木质纤维溶液;
(2)在150mL的三口烧瓶中加入质量为5.34g的FeCl3·6H2O和2.15g的FeCl2·4H2O溶于100mL去离子水中,500r/min机械搅拌10min,迅速加入50mL氨水(25wt%),待溶液完全变黑后继续搅拌2h,反应全过程通氮气进行保护;磁化分离产物,分离上层清液,得到具有超顺磁性的Fe3O4磁流体;
(3)将步骤(2)制备的Fe3O4磁流体加入到步骤(1)制备的木质纤维溶液中,在90℃的条件下,300rpm搅拌90min使其混合均匀;得到磁性功能化木质纤维溶液,其中,木质纤维溶液与磁流体的质量比为3:1;
(4)将步骤(3)制备的磁性功能化木质纤维溶液分散在含有3g Span80和1g Tween80混合的100mL液体石蜡中,在温度为110℃,转速为300rpm的条件下搅拌5h,得到反相悬浮体系,其中,液体石蜡与木质纤维溶液(磁性功能化木质纤维溶液中所含木质纤维溶液)的体积比为3:1;
(5)将步骤(4)制备的反相悬浮体系降温至60℃,加入交联剂戊二醛,磁力搅拌4h,其中交联剂与反相悬浮体系中的木质纤维的质量比为0.15:1,得到交联后的磁性木质纤维微球悬浮液;
(6)将固化剂无水乙醇缓慢加入步骤(4)制备的交联后的磁性木质纤维微球悬浮液中,慢慢降温至25℃,悬浮液固化以便磁性木质纤维微球从离子液体中再生,用磁铁将制得的微球从溶液中分离出来,用去离子水洗涤5次,得到磁性多孔木质纤维微球;
本实施例制备的磁性多孔木质纤维微球的粒径(X射线能谱仪EDS)大小为30~60微米(图2),磁性微球分布均匀,分散性好,磁性为20G.S;该微球可置于2℃的去离子水中保存或者冷冻真空干燥后备用;
磁性多孔木质纤维微球重金属吸附实验:分别配制100mg/L的Pb2+、Cu2+和Cd2+离子溶液,将50mg本实施例制备的磁性多孔木质纤维微球加入到50mL的重金属溶液中,在25℃,200r/min振荡1h,过滤,取清液用电感耦合等离子体原子发射光谱仪(ICP-OES)测定溶液重金属离子含量,结果见图3。
实施例2
(1)甘蔗渣粉碎后过40目筛,球磨8h于65℃真空箱中干燥24h;将6.0g球磨干燥后的蔗渣分散到100g离子液体1-烯丙基-3-甲基咪唑氯盐([AMIM]Cl)中,在95℃,通氮气条件下搅拌2h,得到浓度为5.67wt%的木质纤维溶液;
(2)在250mL的三口烧瓶中加入质量为11.68g的FeCl3·6H2O和4.30g的FeCl2·4H2O溶于200mL去离子水中,500r/min机械搅拌10min,迅速加入20mL氨水(25wt%),待溶液完全变黑后继续搅拌2h,反应过程通氮气进行保护;磁化分离产物,分离上层清液,得到具有超顺磁性的Fe3O4磁流体;
(3)将步骤(2)制备的Fe3O4磁流体加入到步骤(1)制备的木质纤维溶液中,在110℃的条件下,600rpm搅拌30min使其混合均匀;得到磁性功能化木质纤维溶液,其中,木质纤维溶液与磁流体的质量比为7:1;
(4)将步骤(3)制备的磁性功能化木质纤维溶液分散在含有3g Span80的100mL真空泵油中,在温度为90℃,转速为600rpm的条件下搅拌3h,得到反相悬浮体系,其中,真空泵油与木质纤维溶液(磁性功能化木质纤维溶液中所含木质纤维溶液)的体积比为7:1;
(5)将步骤(4)制备的反相悬浮体系降温至55℃,加入交联剂戊二醛,磁力搅拌3h,其中戊二醛与反相悬浮体系中的木质纤维的质量比为0.2:1,得到交联后的磁性木质纤维微球悬浮液;
(6)将固化剂无水乙醇缓慢加入步骤(4)制备的交联后的磁性木质纤维微球悬浮液中,慢慢降温至30℃,悬浮液固化以便磁性木质纤维微球从离子液体中再生,用磁铁将制得的微球从溶液中分离出来,用去离子水洗涤3次,得到磁性多孔木质纤维微球;
本实施例制备的磁性多孔木质纤维微球的粒径大小为270~1000微米(图1),磁性微球分布均匀,分散性好,磁性为26G.S;该微球置于2℃的去离子水中保存或者冷冻真空干燥后备用。
实施例3
(1)甘蔗渣粉碎后过40目筛,球磨8h于65℃真空箱中干燥24h;将3.0g球磨干燥后的蔗渣分散到100g离子液体1-烯丙基-3-甲基咪唑氯盐([AMIM]Cl)中,在90℃,通氮气条件下搅拌3h,得到浓度为2.84wt%的木质纤维溶液;
(2)在250mL的三口烧瓶中加入质量为11.68g的FeCl3·6H2O和4.30g的FeCl2·4H2O溶于200mL去离子水中,500r/min机械搅拌10min,迅速加入20mL氨水(25wt%),待溶液完全变黑后继续搅拌2h,反应过程通氮气进行保护;磁化分离产物,分离上层清液,得到具有超顺磁性的Fe3O4磁流体;
(3)将步骤(2)制备的Fe3O4磁流体加入到步骤(1)制备的木质纤维溶液中,在100℃的条件下,450rpm搅拌60min使其混合均匀;得到磁性功能化木质纤维溶液,其中,木质纤维溶液与磁流体的质量比为6:1;
(4)将步骤(3)制备的磁性功能化木质纤维溶液分散在含有6g Tween80的100mL真空泵油中,在温度为100℃,转速为500rpm的条件下搅拌4h,得到反相悬浮体系,其中,真空泵油与木质纤维溶液(磁性功能化木质纤维溶液中所含木质纤维溶液)的体积比为6:1;
(5)将步骤(4)制备的反相悬浮体系降温至45℃,加入交联剂戊二醛,磁力搅拌4h,其中戊二醛与反相悬浮体系中的木质纤维的质量比为0.05:1,得到交联后的磁性木质纤维微球悬浮液;
(6)将固化剂无水乙醇缓慢加入步骤(4)制备的交联后的磁性木质纤维微球悬浮液中,慢慢降温至28℃,悬浮液固化以便磁性木质纤维微球从离子液体中再生,用磁铁将制得的微球从溶液中分离出来,用去离子水洗涤4次,得到磁性多孔木质纤维微球;
本实施例制备的磁性多孔木质纤维微球的粒径大小为100~200微米,磁性微球分布均匀,分散性好,磁性为22G.S;该微球置于2℃的去离子水中保存或者冷冻真空干燥后备用。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种磁性多孔木质纤维微球的制备方法,其特征在于包含如下步骤:
(1)将木质纤维充分溶解于离子液体中,得到木质纤维溶液作为水相;
(2)向步骤(1)制备的木质纤维溶液中加入磁流体,混合均匀,得到磁性功能化木质纤维溶液;
(3)将步骤(2)制备的磁性功能化木质纤维溶液分散在油相与表面活性剂的混合溶液中,在温度为90~110℃,转速为300~600rpm的条件下搅拌3~5h,得到反相悬浮体系;
(4)将步骤(3)制备的反相悬浮体系降温至45~60℃,加入交联剂,搅拌反应3~4h;得到交联后的磁性木质纤维微球悬浮液;
(5)将固化剂缓慢加入步骤(4)制备的交联后的磁性木质纤维微球悬浮液中,降温至25~30℃,悬浮液固化微球再生;分离微球,洗涤,得到磁性多孔木质纤维微球。
2.根据权利要求1所述的磁性多孔木质纤维微球的制备方法,其特征在于:
步骤(1)中所述的木质纤维为蔗渣、桉木和菊叶薯蓣中的至少一种。
3.根据权利要求1所述的磁性多孔木质纤维微球的制备方法,其特征在于:
步骤(1)中所述的离子液体为1-丁基-3-甲基咪唑氯盐或者1-烯丙基-3-甲基咪唑氯盐;
步骤(1)中所述的木质纤维与离子液体的质量比为(2~6):100。
4.根据权利要求1所述的磁性多孔木质纤维微球的制备方法,其特征在于:
步骤(2)中所述的磁流体的无机物粒子为Fe、Fe2O3、Fe3O4和铁钴镍合金粒子中的至少一种;
步骤(2)中所述的磁流体与木质纤维溶液质量比为(1:3)~(1:7)。
5.根据权利要求1所述的磁性多孔木质纤维微球的制备方法,其特征在于:
步骤(3)中所述的油相为真空泵油、液体石蜡或者变压器油;
步骤(3)中所述的表面活性剂为Tween80和Span80中的至少一种。
6.根据权利要求1所述的磁性多孔木质纤维微球的制备方法,其特征在于:
步骤(3)中所述的油相与木质纤维溶液的体积比为3:1~7:1;
步骤(3)中所述的油相与表面活性剂的质量比为20:1~50:1。
7.根据权利要求1所述的磁性多孔木质纤维微球的制备方法,其特征在于:
步骤(4)中所述的交联剂为戊二醛;
步骤(4)中所述的交联剂与反相悬浮体系中的木质纤维的质量比为(0.05:1)~(0.2:1)。
8.根据权利要求1所述的磁性多孔木质纤维微球的制备方法,其特征在于:
步骤(5)中所述的固化剂为水、无水乙醇和丙酮中的至少一种。
9.一种磁性多孔木质纤维微球,其特征在于:通过权利要求1~8任一项所述的制备方法制备得到。
10.权利要求9所述的磁性多孔木质纤维微球在生物质化学和可再生资源利用领域中的应用。
CN201610239971.0A 2016-04-18 2016-04-18 一种磁性多孔木质纤维微球及其制备方法与应用 Pending CN105885066A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610239971.0A CN105885066A (zh) 2016-04-18 2016-04-18 一种磁性多孔木质纤维微球及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610239971.0A CN105885066A (zh) 2016-04-18 2016-04-18 一种磁性多孔木质纤维微球及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN105885066A true CN105885066A (zh) 2016-08-24

Family

ID=56705091

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610239971.0A Pending CN105885066A (zh) 2016-04-18 2016-04-18 一种磁性多孔木质纤维微球及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN105885066A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106955666A (zh) * 2017-03-30 2017-07-18 黑龙江大学 一种用农林废弃物制备生物质磁性碳微球的方法
CN108585101A (zh) * 2017-10-27 2018-09-28 卢伟 一种重金属污水处理用无机材料杂化的多孔生物质微球的回收方法
CN109331798A (zh) * 2018-11-16 2019-02-15 江苏科技大学 一种固相微萃取材料的制备方法
CN110038533A (zh) * 2019-04-04 2019-07-23 深圳市南科征途有限公司 高磁性微粒径纳米磁珠及其制备方法
US10737256B2 (en) * 2017-07-24 2020-08-11 Malek Alkasrawi Catalyst and method for fractionating lignocellulosic material
CN114272907A (zh) * 2021-12-30 2022-04-05 洛阳双罗铼材料科技有限公司 一种磁性木质纤维素纳米微球及其应用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101250267A (zh) * 2008-04-14 2008-08-27 武汉大学 一种纤维素微球及其制备方法和用途
CN101274985A (zh) * 2008-05-12 2008-10-01 武汉大学 一种磁性纤维素微球及其制备方法和用途
CN101612540A (zh) * 2009-08-06 2009-12-30 浙江大学 一种以离子液体为溶剂制备纤维素微球的方法
CN101780391A (zh) * 2009-01-21 2010-07-21 王树森 一种纤维素磁性微球及其制备方法
CN103497346A (zh) * 2013-10-11 2014-01-08 中国科学院大学 一种再生木质微球及其制备方法
CN103804699A (zh) * 2014-02-10 2014-05-21 广西民族大学 一种木薯淀粉磁性微球及其制备方法
CN104437396A (zh) * 2014-11-04 2015-03-25 广西大学 一种木质素胺微球的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101250267A (zh) * 2008-04-14 2008-08-27 武汉大学 一种纤维素微球及其制备方法和用途
CN101274985A (zh) * 2008-05-12 2008-10-01 武汉大学 一种磁性纤维素微球及其制备方法和用途
CN101780391A (zh) * 2009-01-21 2010-07-21 王树森 一种纤维素磁性微球及其制备方法
CN101612540A (zh) * 2009-08-06 2009-12-30 浙江大学 一种以离子液体为溶剂制备纤维素微球的方法
CN103497346A (zh) * 2013-10-11 2014-01-08 中国科学院大学 一种再生木质微球及其制备方法
CN103804699A (zh) * 2014-02-10 2014-05-21 广西民族大学 一种木薯淀粉磁性微球及其制备方法
CN104437396A (zh) * 2014-11-04 2015-03-25 广西大学 一种木质素胺微球的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUANYUAN GE等: ""Lignin microspheres: An effective and recyclable natural polymer-based adsorbent for lead ion removal"", 《MATERIALS AND DESIGN》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106955666A (zh) * 2017-03-30 2017-07-18 黑龙江大学 一种用农林废弃物制备生物质磁性碳微球的方法
CN106955666B (zh) * 2017-03-30 2019-10-18 黑龙江大学 一种用农林废弃物制备生物质磁性碳微球的方法
US10737256B2 (en) * 2017-07-24 2020-08-11 Malek Alkasrawi Catalyst and method for fractionating lignocellulosic material
US11077435B2 (en) 2017-07-24 2021-08-03 Wisys Technology Foundation, Inc. Catalyst and method for fractionating lignocellulosic material
CN108585101A (zh) * 2017-10-27 2018-09-28 卢伟 一种重金属污水处理用无机材料杂化的多孔生物质微球的回收方法
CN108585101B (zh) * 2017-10-27 2020-12-11 新沂市锡沂高新材料产业技术研究院有限公司 一种重金属污水处理用无机材料杂化的多孔生物质微球的回收方法
CN109331798A (zh) * 2018-11-16 2019-02-15 江苏科技大学 一种固相微萃取材料的制备方法
CN109331798B (zh) * 2018-11-16 2021-04-02 江苏科技大学 一种固相微萃取材料的制备方法
CN110038533A (zh) * 2019-04-04 2019-07-23 深圳市南科征途有限公司 高磁性微粒径纳米磁珠及其制备方法
CN114272907A (zh) * 2021-12-30 2022-04-05 洛阳双罗铼材料科技有限公司 一种磁性木质纤维素纳米微球及其应用方法

Similar Documents

Publication Publication Date Title
CN105885066A (zh) 一种磁性多孔木质纤维微球及其制备方法与应用
Zhang et al. Polyethylenimine functionalized Fe3O4/steam-exploded rice straw composite as an efficient adsorbent for Cr (VI) removal
Li et al. Role of sulfonation in lignin-based material for adsorption removal of cationic dyes
Li et al. Removal U (VI) from artificial seawater using facilely and covalently grafted polyacrylonitrile fibers with lysine
Lin et al. Synthesis and evaluation of thiosemicarbazide functionalized corn bract for selective and efficient adsorption of Au (III) from aqueous solutions
Gong et al. A novel self-crosslinked gel microspheres of Premna microphylla turcz leaves for the absorption of uranium
Huang et al. Facile synthesis of sodium lignosulfonate/polyethyleneimine/sodium alginate beads with ultra-high adsorption capacity for Cr (VI) removal from water
Liu et al. Persimmon tannin functionalized polyacrylonitrile fiber for highly efficient and selective recovery of Au (III) from aqueous solution
Gao et al. Removal of heavy metal and sulfate ions by cellulose derivative-based biosorbents
Zhao et al. Rapid adsorption of dyes from aqueous solutions by modified lignin derived superparamagnetic composites
Chen et al. Highly stable and activated Cerium-based MOFs superstructures for ultrahigh selective uranium (VI) capture from simulated seawater
CN106345424A (zh) 羟丙基瓜尔胶/纳米纤维素交联吸附膜的制备方法及应用
Zhang et al. Polyethylenimine grafted H 2 O 2-oxidized cellulose membrane as a novel biosorbent for Cr (VI) adsorption and detoxification from aqueous solution
Bai et al. Preparation of a 3D multi-branched chelate adsorbent for high selective adsorption of uranium (VI): acrylic and diaminomaleonitrile functionalized waste hemp fiber
Zhu et al. Fe3O4@ chitosan‐bound boric acid composite as pH‐responsive reusable adsorbent for selective recognition and capture of cis‐diol‐containing shikimic acid
Chen et al. Removal of Pb (II) and V (V) from aqueous solution by glutaraldehyde crosslinked chitosan and nanocomposites
Zhu et al. CO2-in-water Pickering emulsion-assisted polymerization-induced self-assembly of raspberry-like sorbent microbeads for uranium adsorption
Zhang et al. Persimmon tannin/graphene oxide composites: Fabrication and superior adsorption of germanium ions in aqueous solution
Zou et al. Electrospun poly (2‐aminothiazole)/cellulose acetate fiber membrane for removing Hg (II) from water
Liu et al. Efficient extraction of radionuclides with MXenes/persimmon tannin functionalized cellulose nanofibers: performance and mechanism
Kim et al. Cationic surface-modified regenerated nanocellulose hydrogel for efficient Cr (VI) remediation
Yang et al. Graphene oxide-cellulose composite for the adsorption of uranium (VI) from dilute aqueous solutions
Li et al. Functionalised poplar catkins aerogels: Synthesis, characterisation and application to adsorb Cu (II) and Pb (II) from wastewater
Gao et al. Persimmon peel-based ion-imprinted adsorbent with enhanced adsorption performance of gallium ions
Du et al. Designed synthesis of multifunctional lignin-based adsorbent for efficient heavy metal ions removal and electromagnetic wave absorption

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160824

RJ01 Rejection of invention patent application after publication