CN105862012B - Li3PO4基复合电解质薄膜及其制备方法与离子器件 - Google Patents

Li3PO4基复合电解质薄膜及其制备方法与离子器件 Download PDF

Info

Publication number
CN105862012B
CN105862012B CN201610365331.4A CN201610365331A CN105862012B CN 105862012 B CN105862012 B CN 105862012B CN 201610365331 A CN201610365331 A CN 201610365331A CN 105862012 B CN105862012 B CN 105862012B
Authority
CN
China
Prior art keywords
source
reaction
film
lihmds
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610365331.4A
Other languages
English (en)
Other versions
CN105862012A (zh
Inventor
孔向阳
杨元才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201610365331.4A priority Critical patent/CN105862012B/zh
Publication of CN105862012A publication Critical patent/CN105862012A/zh
Application granted granted Critical
Publication of CN105862012B publication Critical patent/CN105862012B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明公开了一种固态电解质薄膜,薄膜为以Li3PO4为基的复合薄膜,包括Li3PO4‑Li2S、Li3PO4‑Li3N、Li3PO4‑TiOx和Li3PO4‑Li4SiO4等组合方式,复合薄膜的复合方式包括混合复合和层状复合,复合薄膜的离子电导率为5.52×10‑5‑1.82mS/cm,本发明的固态电解质薄膜以Li3PO4为基,并通过和含锂或易于嵌锂的化合物复合,大大提高了Li3PO4本身的电导率,本发明还公开了使用固态电解质薄膜的离子器件,包括Au/LiPOS/Li3PO4/Pt器件结构,具有离子单向导通特性的二极管效应;Au/LiTiPO/LiPOS/Pt器件结构,为记忆特性的离子忆阻器;Au/Li/Li3PO4/LiPOS/Li2S/Pt器件结构,为有储能特性的双电层电容器。

Description

Li3PO4基复合电解质薄膜及其制备方法与离子器件
技术领域
本发明涉及新能源材料与薄膜生长及器件技术领域,尤其涉及一种固态电解质薄膜及其制备方法、离子器件。
背景技术
目前,以离子为主要载流子的固态离子器件,在能源、信息以及生物技术领域受到广泛的关注。发现新的固体电解质,是推动新一代固态离子器件的关键,其中固体电解质薄膜尤为得到重视。但是,目前能够应用的固体电解质薄膜很少,锂磷氮氧玻璃(LiPON)薄膜是其中之一,但其离子电导率相对较低,大约10-6S/cm。LiPON制备方法是用Li3PO4与氮气等离子的磁控反应溅射制备而成(X.Yu等,J. Electrochem.Soc.144(1997)524)。由于LiPON与金属锂接触电化学性能稳定,作为固体电解质,已应用于商业化金属锂负极的固态薄膜电池。
固态薄膜的制备有很多种技术,如磁控溅射、化学气相沉积、溶胶-凝胶沉积以及静电喷涂沉积等。化学气相原子层沉积(ALD)是一种新兴薄膜生长技术,已经在新型半导体材料和新能源技术领域得到一定的应用。其特点是能够在相对较低的温度下,制备出一系列薄膜材料,并具有成分和厚度可控以及保形生长等特点。基于这些优势,ALD技术已经能沉积包括金属、金属氧化物以及复杂组分的多元材料薄膜。迄今为止,ALD技术在固态电解质薄膜也得到应用,一些研究组也报道合成了一些含锂的化合物薄膜,如T.Aaltonen等报道合成的LiLaTiOx薄膜(J.Mater. Chem.20(2010)2877),以及LixAlyO薄膜(J.Chem.Mater.23(2011)4669); J.等报道的Li3PO4薄膜(J.Electrochem.Soc.159(2012)A259); Y.Peng等报道的LixAlySizO薄膜(J.Mater.ChemA 2(2014)9566.)。但这些现有的用ALD技术制备的薄膜,离子导电率较低,很难用作固态电解质,制作离子器件。
Li3PO4是典型的固体电解质,但其离子电导率非常低,室温下晶态的Li3PO4的离子电导率仅为4.2x10-18S/cm,这是由于晶格结构中没有足够的空位可以使锂离子发生迁移。但Li3PO4形成非晶态结构的薄膜,产生一些缺陷,室温锂离子电导率提高到10-8S/cm,并且具有良好的机械性能和电化学稳定性。在此基础上,上个世纪90年代,美国橡树林国家实验室报道了在N2气氛中,反应溅射沉积掺杂N元素的Li3PO4非晶薄膜LiPON,室温离子导电率比未掺杂的Li3PO4非晶薄膜高40倍,达到3.3×10-6S/cm。LiPON的离子导电性增加,是由于非晶的网状结构中共价键N-O键部分替代了P-O键。随后更多的深入研究,如通过改变沉积LiPON的工艺参数以及掺杂N的含量,但LiPON离子电导很难有显著的提高。
本发明采用ALD薄膜制备技术,研制具有高离子导电性的固态电解质薄膜,并在此基础上,研制以固态离子为主要载流子的离子器件。特别地,研制多层结构的层状薄膜器件,设计以如离子单向导通特性的二极管,具有记忆特性的离子忆阻器,以及薄膜储能器件等。
发明内容
本发明所要解决的技术问题是采用ALD薄膜制备技术,研制具有高离子导电性的固态电解质薄膜,为了解决上述问题,本发明提供一种固态电解质薄膜,薄膜为以Li3PO4为基的复合薄膜,包括Li3PO4-Li2S、Li3PO4-Li3N、Li3PO4-TiOx和 Li3PO4-Li4SiO4等组合方式,复合薄膜的复合方式包括混合复合和层状复合,复合薄膜的离子电导率为5.52×10-5-1.82×10-3S/cm。
本发明进一步还公开了固态电解质薄膜的制备方法,为化学气相原子层沉积方法,包括如下步骤:
步骤一:采用LiHMDS作为锂源,采用TMPO作为磷源,采用TBS作为硅源,采用TTIP作为钛源,采用H2S作为硫源,采用氮气等离子体作为氮源,采用臭氧用于金属有机物的分解反应;
步骤二:将锂源LiHMDS加热到60~65℃,将磷源TMPO加热到45~50℃,从而使锂源LiHMDS、磷源TMPO、硅源TBS、钛源TTIP、硫源H2S和臭氧等前躯体源能够在室温20℃低气压下气化挥发;根据反应程序选择相应的前驱体源,并通过高纯氩气作载气将相应的前驱体源输送到沉积设备的反应腔;
步骤三:通过锂源LiHMDS与磷源TMPO反应生成Li3PO4,通过锂源LiHMDS 与硫源H2S反应生成Li2S,通过锂源LiHMDS与氮气等离子体反应生成Li3N,通过锂源LiHMDS与硅源TBS反应生成Li4SiO4,通过钛源TTIP与臭氧反应生成 TiOx,每个反应都在沉积设备的反应腔中根据复合需要交替进行沉积过程;环境气氛为高纯氩气,温度范围为200~250℃,气压值范围为5~20mBar。
进一步地,每次沉积的原料供应量在5-10μl量级,每次沉积的反应时间在 100毫秒量级。
进一步地,步骤三的沉积过程中,每次反应的时间为1-2秒,氩气吹扫1-2 秒,每次反应的沉积次数为1-10次,每个反应完成一次沉积作为一次循环,且至少包括一个生成Li3PO4的反应,从而制得混合复合薄膜。
进一步地,只有两种反应交替进行沉积,其中一种为生成Li3PO4的反应。
进一步地,通过控制反应次数与和循环次数得到所需厚度的混合复合薄膜层,不同反应得到的混合复合薄膜层依次叠加,从而得到层状复合薄膜。
进一步地,每层混合复合薄膜层通过70-100个循环次数得到。
进一步地,沉积Li3PO4至所需厚度,并和混合复合薄膜层叠加。
本发明公开了使用固态电解质薄膜的离子器件,包括Au/LiPOS/Li3PO4/Pt 器件结构,具有离子单向导通特性的二极管效应;Au/LiTiPO/LiPOS/Pt器件结构,为记忆特性的离子忆阻器;Au/Li/Li3PO4/LiPOS/Li2S/Pt器件结构,为有储能特性的双电层电容器。
进一步地,离子器件的复合薄膜在Pt/SiO2/Si基片上沉积。
本发明具有如下有益效果:
1、本发明的固态电解质薄膜以Li3PO4为基,并通过和含锂或易于嵌锂的化合物复合,大大提高了Li3PO4本身的电导率。
2、本发明的固态电解质薄膜的制备方法,能够精确控制固态电解质薄膜中组分的含量以及复合层的厚度。
3、使用本发明的固态电解质薄膜能够构成多种离子器件,性能稳定,应用范围较广。
附图说明
图1是本发明实施例1的沉积在Pt/SiO2/Si基片上的LiPOS薄膜的SEM照片;
图2是本发明实施例1的LiPOS复合薄膜的交流阻抗谱EIS,插图为沉积在 SiO2/Si基片上的LiPOS的SEM照片;
图3是本发明实施例2的LiPON复合薄膜的交流阻抗谱EIS,插图为沉积在 SiO2/Si基片上的LiPON的SEM照片;
图4是本发明实施例3LiSiPO复合薄膜的交流阻抗谱EIS,插图为沉积在 SiO2/Si基片上的LiPON的SEM照片;
图5是本发明实施例4复合薄膜Au/Li3PO4/LiPOS/Pt器件结构与二极管特性
图6是本发明实施例5复合薄膜Au/LiTiPO/LiPOS/Pt器件结构与忆阻器特性
图7是本发明实施例6复合薄膜Li/Li3PO4/LiPOS/Li2S/Pt器件结构与储能特性。
具体实施方式
下面结合附图并参照数据进一步详细描述本发明。应理解,实施方式只是为了举例说明本发明,而非以任何方式限制发明的范围。
本发明公开的固态电解质薄膜,为以Li3PO4为基的复合薄膜,包括 Li3PO4-Li2S、Li3PO4-Li3N、Li3PO4-TiOx和Li3PO4-Li4SiO4等组合方式,即通过Li3PO4组份和Li2S、Li3N、TiOx和Li4SiO4等组份通过化学气相原子层沉积方法分别复合而成,其复合方式包括混合复合和层状复合。混合复合指每种组合方式的组份之间的均匀混合,层状复合指每种组合方式形成的复合薄膜层之间的叠加复合。
化学气相原子层沉积方法(ALD)作为薄膜制备的新方法,可以获得从几埃到几百纳米厚度的薄膜,而且化学成分与沉积厚度可控。由于ALD薄膜沉积过程,是通过控制反应程序,交替前驱体进行化学反应,从而在基片上沉积来实现的。这个过程可以制备复合薄膜。本发明以Li3PO4为基元,采用ALD薄膜沉积技术,制备Li3PO4与其他含锂或易于嵌锂的化合物复合的薄膜。这里选择的含锂或易于嵌锂的化合物,如Li3N和Li2S,TiOx和Li4SiO4,都适合ALD制备薄膜。
本发明公开的固态电解质薄膜的制备方法,包括如下步骤:
步骤一:采用LiHMDS作为锂源,采用TMPO作为磷源,采用TBS作为硅源,采用TTIP作为钛源,采用H2S作为硫源,采用氮气等离子体作为氮源,采用臭氧用于金属有机物的分解反应;采用电容式等离子发生器产生N2等离子;臭氧发生器产生O3
步骤二:将锂源LiHMDS加热到60~65℃,将磷源TMPO加热到45~50℃,从而使锂源LiHMDS、磷源TMPO、硅源TBS、钛源TTIP、硫源H2S和臭氧等前躯体源能够在室温20℃低气压下气化挥发;根据反应程序选择相应的前驱体源,并通过高纯氩气作载气将相应的前驱体源输送到沉积设备的反应腔,反应程序包括生成Li3PO4的反应程序、生成Li2S的反应程序、Li3N的反应程序、Li4SiO4的反应程序和TiOx的反应程序;
步骤三:通过锂源LiHMDS与磷源TMPO反应生成Li3PO4,通过锂源LiHMDS 与硫源H2S反应生成Li2S,通过锂源LiHMDS与氮气等离子体反应生成Li3N,通过锂源LiHMDS与硅源TBS反应生成Li4SiO4,通过钛源TTIP与臭氧反应生成 TiOx,每个反应都在沉积设备的反应腔中根据需要交替进行沉积过程;环境气氛为高纯氩气,温度范围为200~250℃,气压值范围为5~20mBar,其中复合需要包括Li3PO4-Li2S复合需要、Li3PO4-Li3N复合需要、Li3PO4-TiOx复合需要和 Li3PO4-Li4SiO4复合需要,每次复合过程中均有Li3PO4反应的参与。
通过ALD每次反应的原料供应量是通过质量流量计控制,每次沉积反应的时间以及是通过电磁阀控制的脉冲开关时间以及高纯氩气吹扫时间实现的。原料供应量可以控制在5~10μl量级,反应时间可以控制在100毫秒量级。理论上,控制原料供应量以及反应时间,以及沉积的次数,可以达到薄膜成分与层厚的精确控制。
ALD技术制备混合复合薄膜:是通过控制反应程序,交替不同的前驱体反应,沉积不同的材料。由于每种反应每次沉积的厚度都是亚埃级的,交替反应沉积可以达到均匀复合的效果,每次反应的沉积次数为1-10次,即每个反应完成一次沉积作为一次循环,从而得到混合复合薄膜。如制备Li3PO4-Li2S复合薄膜,一次循环为先锂源LiHMDS与磷源TMPO反应10次,沉积Li3PO4,然后锂源LiHMDS 与H2S气体反应6次,沉积Li2S。复合薄膜的组分由两种不同反应的次数控制。完成这两个过程称为一个循环,控制交替反应的循环数,可以得到一定厚度的复合薄膜。同样,其他类型的复合薄膜,如Li3PO4-Li3N、Li3PO4-TiO2和 Li3PO4-Li4SiO4等,ALD工艺特征基本类似,选择不同的前躯体反应,获得不同成分的复合薄膜。
ALD技术制备层状复合薄膜:通过控制反应次数与循环次数得到所需厚度的混合复合薄膜层,不同反应得到的混合复合薄膜层依次叠加,从而得到层状复合薄膜,每层混合复合薄膜层通过10次以上沉积得到。其特征是先沉积一种材料达到设计的厚度,随后再沉积另外一种材料达到设计的厚度。每种薄膜材料的厚度可以控制循环反应次数实现。两种不同材料的薄膜叠加沉积,可以构筑双层薄膜器件;也可以叠加沉积三层或多层含不同材料的薄膜,构筑实现设计功能的器件。
ALD技术制备混合复合薄膜,如Li3PO4-Li2S、Li3PO4-Li3N、Li3PO4-TiO2和 Li3PO4-Li4SiO4,可分别简称为LiPOS,LiPON,LiTiPO以及LiSiPO。
实施例1
ALD技术制备混合复合薄膜LiPOS,其制备工艺的特征:加热锂源LiHMDS至 60℃,加热磷源TMPO至50℃。用高纯氩气200mm3/S的流量作作载气,每次反应锂源LiHMDS的供给量为5μl,磷源TMPO供给量为10μl,H2S气体供给流量20mm3/S。锂源LiHMDS与磷源TMPO的每次反应时间是1秒,氩气吹扫1秒;锂源LiHMDS与H2S 气体每次反应时间是500毫秒,高纯氩气吹扫1秒。ALD反应腔体环境气氛为高纯氩气,温度控制在220℃,气压10mBar。
锂源LiHMDS与磷源TMPO的反应10次反应后,锂源LiHMDS与H2S气体进行6次反应,此为1个LiPOS沉积循环。50个这样的循环,可以在基片上沉积出均匀的 LiPOS薄膜,厚度大约60纳米。图1是在Pt/SiO2/Si基片上沉积的LiPOS薄膜SEM 照片,从照片可以看出薄膜厚度均匀一致。
由于沉积的薄膜厚度太薄,容易造成短路,很难用上下电极测量薄膜的交流阻抗谱EIS。将LiPOS薄膜沉积在表面绝缘的SiO2/Si基片上,180个循环,大约沉积厚度为220纳米,如2中插图(下)SEM照片所示;在复合薄膜上面蒸镀金,用掩模制作平面平行电极,电极尺寸如图2中插图(上)所示,平面电极为矩形,长为1.0cm,宽0.4cm;平行电极的间距为1.0cm。由于SiO2/Si对于锂离子基本绝缘,不导电;平面金电极对锂离子具有阻塞作用,采用交流阻抗谱EIS,可以测量复合薄膜电学行为。由图2EIS谱表明,薄膜电导是以离子为主要载流子,电子导电相对可以忽略,可算出离子电导率为1.82×10-3S/cm。
实施例2
ALD技术制备混合复合薄膜LiPON,其制备工艺的特征:加热锂源LiHMDS至 65℃,加热磷源TMPO至45℃。用高纯氩气200mm3/S的流量作作载气,每次反应锂源LiHMDS的供给量为5μl,磷源TMPO供给量为10μl,N2气体供给流量25mm3/S, 等离子体发生器功率60W。锂源LiHMDS与磷源TMPO的每次反应时间是1秒,氩气吹扫1秒;锂源LiHMDS与氮等离子体每次反应时间是2秒,高纯氩气吹扫1秒。 ALD反应腔体环境气氛为高纯氩气,温度控制在220℃,气压20mBar。
锂源LiHMDS与磷源TMPO的反应10次反应后,锂源LiHMDS与与氮等离子体进行10次反应,此为1个LiPON沉积循环。100个这样的循环,可以在基片上沉积出厚度大约120纳米均匀的LiPON薄膜。图3是LiPON复合薄膜沉积在SiO2/Si基片上的SEM照片以及交流阻抗谱EIS。在LiPON复合薄膜上面蒸镀金,用掩模制作平面平行电极,电极尺寸与工艺与实施例1相同,由此计算得到ALD生长的 LiPON离子电导率为5.52×10-5S/cm.
实施例3
ALD技术制备混合复合薄膜LiSiPO,其制备工艺的特征:加热锂源LiHMDS 至60℃,加热磷源TMPO至50℃。用高纯氩气200mm3/S的流量作作载气,每次反应锂源LiHMDS的供给量为5μl,磷源TMPO供给量为10μl,硅源TBS供给量为10μl。锂源LiHMDS与磷源TMPO的每次反应时间是1秒,氩气吹扫1秒;锂源LiHMDS与硅源TBS每次反应时间是2秒,高纯氩气吹扫2秒。ALD反应腔体环境气氛为高纯氩气,温度控制在250℃,气压10mBar。
锂源LiHMDS与磷源TMPO的反应10次反应后,锂源LiHMDS与硅源TBS进行10 次反应,此为1个LiSiPO沉积循环。100个这样的循环,可以在基片上沉积厚度大约80纳米。图4是LiSiPO复合薄膜沉积在SiO2/Si基片上的SEM照片以及交流阻抗谱EIS。制作平行电极与EIS测量参数与实施例相同,由此计算得到ALD 生长的LiSiPO复合薄膜离子电导率为2.98×10-4S/cm.
本发明还公开了一些离子器件。ALD技术制备层状复合薄膜,可以构筑特定功能的器件。由于复合薄膜主要载流子是离子,可以称为离子器件。如制备两层的复合薄膜,在Pt/SiO2/Si基片上,沉积Li3PO4/LiPOS,构成 Au/Li3PO4/LiPOS/Pt器件,发现具有单向导通的二极管效应;在Pt/SiO2/Si基片上沉积LiTiPO/LiPOS,构成Au/LiTiPO/LiPOS/Pt器件,发现具有电阻随电流大小与方向变化的忆阻器效应;在Pt/SiO2/Si基片上制备的三层复合薄膜Li3PO4/LiPOS/Li2S,构成Li/Li3PO4/LiPOS/Li2S/Pt器件,表现有储能特性的双电层电容器。
实施例4
ALD技术制备层状复合薄膜,在Pt/SiO2/Si基片上沉积Li3PO4/LiPOS,构成 Au/Li3PO4/LiPOS/Pt器件。先沉积LiPOS复合薄膜,工艺参数与实施例1中相同,沉积70个LiPOS循环,得到厚度为85纳米的LiPOS膜,在此基础上叠加沉积Li3PO4薄膜,让锂源LiHMDS与磷源TMPO的交替反应沉积,连续反应800次,得到60纳米的Li3PO4薄膜。ALD沉积得到的Li3PO4/LiPOS双层薄膜的SEM照片如涂所示。在双层薄膜表面蒸镀金电极后,构成Au/Li3PO4/LiPOS/Pt器件。测量器件的电学性能,发现具有单向导通的二极管效应:当以Pt为正极,正向加压0~4V,电流呈非线性上升;减小加载电压,电流形成滞回现象;电压减小至零,反相加电压至-4V,电流几乎为零,如图5所示。由于交流阻抗谱表明,Li3PO4与LiPOS的电子电导可以忽略,器件中的载流子为离子,这是单向导通特性的二极管效应,此器件为离子型二极管。
实施例5
ALD技术制备双层状LiTiPO/LiPOS复合薄膜,基片为Pt/SiO2/Si,构筑 Au/LiTiPO/LiPOS/Pt器件。先沉积LiPOS复合薄膜,工艺参数与实施例1中相同,沉积100个LiPOS循环,得到厚度为120纳米的LiPOS膜。在此基础上叠加沉积 LiTiPO薄膜。
ALD沉积LiTiPO薄膜,工艺特征如下:锂源LiHMDS每次反应的供给量为5μl,磷源TMPO供给量为10μl,钛源TTIP供给量为10μl。由于锂源LiHMDS与钛源TTIP,不发生反应,选择与臭氧O3反应生成TiOx。锂源LiHMDS与磷源TMPO的每次反应时间是1秒,氩气吹扫1秒;钛源TTIP与臭氧O3每次反应时间是2秒,高纯氩气吹扫2秒。ALD反应腔体环境气氛为高纯氩气,温度控制在250℃,气压10mBar。锂源LiHMDS与磷源TMPO的反应10次反应后,钛源TTIP与臭氧O3进行5次反应,此为 1个LiTiPO沉积循环。沉积100个LiTiPO循环,得到厚度为110纳米的LiTiPO膜。
ALD沉积得到的LiTiPO/LiPOS双层薄膜的SEM照片以及 Au/LiTiPO/LiPOS/Pt器件如图6所示。在双层薄膜表面蒸镀金电极后,构筑 Au/LiTiPO/LiPOS/Pt器件。测量器件的电学性能时发现,当以Pt为正极,正向加压0~4V,电流呈非线性上升;减小小加载电压,电流没有滞回现象;电压减小至零,反相加电压至-4V,电流反向呈非线性上升,但幅度较正向电流小,如图6所示。结果还表明,同样的大小的加载电压,正向电流是反向电流的三倍。这说明器件中存在正向电阻(低阻)与反向电阻(高阻)。如果定义高阻值为“1”,低阻值为“0”,可以设计离子型忆阻器,则这种电阻就可以实现存储数据的功能。
实施例6
ALD技术制备还可以制备三层或多层状复合薄膜,这里提供一种在 Pt/SiO2/Si基片上沉积三层Li3PO4/LiPOS/Li2S复合薄膜,然后在三层复合薄膜表面蒸镀金属Li电极以及Au集流体,构筑Au/Li//Li3PO4/LiPOS/Li2S/Pt器件。三层Li3PO4/LiPOS/Li2S复合薄膜的结构,先沉积厚度100nm的Li2S,然后再沉积60nm LiPOS,60nm的Li3PO4。工艺参数与实施例1中相同,通过程序控制反应,让锂源LiHMDS与磷源TMPO、H2S气体交替反应,得到设计的厚度与器件结构,如图7(左)所示。以Pt为正极,Au-Li为负极,可以对这个多层薄膜进行充放电,其工作曲线也如图7(右)所示,器件可以充电到0.45V,然后10微安放电 350秒。由于此器件中锂离子为主要载流子,表明此器件可以认为是固态锂离子薄膜电容,具有一定的储能特性。
本发明主要公开用ALD技术可以制备一系列以Li3PO4为基的高离子导电性的固态电解质薄膜,并以发明的固态电解质膜,制备以离子为主要载流子的离子器件,包括离子型二极管,离子型忆阻器,以及具有储能特性的固态锂离子薄膜电容。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

1.一种Li3PO4基复合电解质薄膜的制备方法,其特征在于,所述制备方法为化学气相原子层沉积方法,包括如下步骤:
步骤一:采用LiHMDS作为锂源,采用TMPO作为磷源,采用TBS作为硅源,采用TTIP作为钛源,采用H2S作为硫源,采用氮气等离子体作为氮源,采用臭氧用于金属有机物的分解反应;
步骤二:将锂源LiHMDS加热到60~65℃,将磷源TMPO加热到45~50℃,从而使锂源LiHMDS、磷源TMPO、硅源TBS、钛源TTIP、硫源H2S和臭氧等前躯体源能够在室温20℃低气压下气化挥发;根据反应程序选择相应的前驱体源,并通过高纯氩气作载气将相应的前驱体源输送到沉积设备的反应腔;
步骤三:通过锂源LiHMDS与磷源TMPO反应生成Li3PO4,通过锂源LiHMDS与硫源H2S反应生成Li2S,通过锂源LiHMDS与氮气等离子体反应生成Li3N,通过锂源LiHMDS与硅源TBS反应生成Li4SiO4,通过钛源TTIP与臭氧反应生成TiOx,每个反应都在沉积设备的反应腔中根据复合需要交替进行沉积过程;环境气氛为高纯氩气,温度范围为200~250℃,气压值范围为5~20mBar。
2.如权利要求1所述的制备方法,其特征在于,每次沉积的原料供应量在5-10μl量级,每次沉积的反应时间在100毫秒量级。
3.如权利要求1所述的制备方法,其特征在于,步骤三的沉积过程中,每次反应的时间为1-2秒,氩气吹扫1-2秒,每次反应的沉积次数为1-10次,每个反应完成一次沉积作为一次循环,且至少包括一个生成Li3PO4的反应,从而制得混合复合薄膜。
4.如权利要求3所述的制备方法,其特征在于,只有两种反应交替进行沉积。
5.如权利要求3所述的制备方法,其特征在于,通过控制反应次数与循环次数得到所需厚度的混合复合薄膜层,不同反应得到的混合复合薄膜层依次叠加,从而得到层状复合薄膜。
6.如权利要求5所述的制备方法,其特征在于,每层混合复合薄膜层通过70-100个循环次数得到。
7.如权利要求5所述的制备方法,其特征在于,沉积Li3PO4至所需厚度,并和混合复合薄膜层叠加。
8.由权利要求1-7中任一项所述的制备方法制备得到的Li3PO4基复合电解质薄膜,其特征在于,所述复合电解质薄膜包括以下组合方式:Li3PO4-Li2S、Li3PO4-Li3N、Li3PO4-TiOx和Li3PO4-Li4SiO4,所述复合电解质薄膜的复合方式包括混合复合和层状复合,所述复合电解质薄膜的离子电导率为5.52×10-5-1.82×10-3S/cm。
9.一种使用如权利要求8所述的复合电解质薄膜的离子器件,其特征在于,包括Au/LiPOS/Li3PO4/Pt器件结构,具有离子单向导通特性的二极管效应;Au/LiTiPO/LiPOS/Pt器件结构,为记忆特性的离子忆阻器;Au/Li/Li3PO4/LiPOS/Li2S/Pt器件结构,为有储能特性的双电层电容器。
10.如权利要求9所述的离子器件,其特征在于,所述离子器件的复合电解质薄膜通过在Pt/SiO2/Si基片上沉积得到。
CN201610365331.4A 2016-05-27 2016-05-27 Li3PO4基复合电解质薄膜及其制备方法与离子器件 Active CN105862012B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610365331.4A CN105862012B (zh) 2016-05-27 2016-05-27 Li3PO4基复合电解质薄膜及其制备方法与离子器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610365331.4A CN105862012B (zh) 2016-05-27 2016-05-27 Li3PO4基复合电解质薄膜及其制备方法与离子器件

Publications (2)

Publication Number Publication Date
CN105862012A CN105862012A (zh) 2016-08-17
CN105862012B true CN105862012B (zh) 2018-06-05

Family

ID=56642664

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610365331.4A Active CN105862012B (zh) 2016-05-27 2016-05-27 Li3PO4基复合电解质薄膜及其制备方法与离子器件

Country Status (1)

Country Link
CN (1) CN105862012B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11106966B2 (en) 2017-03-13 2021-08-31 International Business Machines Corporation Battery-based neural network weights
CN109390633A (zh) * 2017-08-08 2019-02-26 中国电子科技集团公司第十八研究所 一种微型固态薄膜锂电池的制备方法
CN109065944A (zh) * 2018-08-06 2018-12-21 汉能移动能源控股集团有限公司 一种固态电解质膜的制备方法
KR102275269B1 (ko) * 2018-12-26 2021-07-09 한양대학교 에리카산학협력단 메모리 소자 및 그 제조 방법
CN111430787B (zh) * 2020-03-03 2022-03-15 桂林电子科技大学 复合薄膜固体电解质及其制备方法与应用
CN112289931A (zh) * 2020-10-30 2021-01-29 深圳先进技术研究院 一种忆阻器的制备方法、忆阻器及存储器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103268954B (zh) * 2013-05-20 2015-04-22 天津师范大学 LiSiPON锂离子电池固态电解质薄膜及其制备方法与应用
WO2016057426A1 (en) * 2014-10-06 2016-04-14 University Of Maryland, College Park Protection layers for metal anodes
CN105514491B (zh) * 2015-12-29 2018-06-26 湖州创亚动力电池材料有限公司 一种全固态无机固体锂离子电解质的制备

Also Published As

Publication number Publication date
CN105862012A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
CN105862012B (zh) Li3PO4基复合电解质薄膜及其制备方法与离子器件
Yoon et al. Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films
Lee et al. Coexistence of unipolar and bipolar resistive switching characteristics in ZnO thin films
Perng et al. Synthesis of ion conducting Li x Al y Si z O thin films by atomic layer deposition
CN103972611B (zh) 复合保护层、光电极结构以及光电化学电池
CN108701764A (zh) 相关电子材料的阻挡层
Porro et al. Multiple resistive switching in core–shell ZnO nanowires exhibiting tunable surface states
Park et al. Effects of sputtering pressure on the characteristics of lithium ion conductive lithium phosphorous oxynitride thin film
Paek et al. A study on properties of yttrium-stabilized zirconia thin films fabricated by different deposition techniques
Rezugina et al. Ni-YSZ films deposited by reactive magnetron sputtering for SOFC applications
WO1999019534A1 (en) Plasma enhanced chemical vapor deposition (pecvd) method of forming vanadium oxide films and vanadium oxide thin-films prepared thereby
TWI392759B (zh) 透明導電薄膜及其形成方法
CN105668559A (zh) 一种批量多衬底制备石墨烯薄膜的方法
Yan et al. Nano-oxide thin films deposited via atomic layer deposition on microchannel plates
Zhao et al. Atomic layer deposition of indium‐Tin‐oxide as multifunctional coatings on V2O5 thin‐film model electrode for lithium‐ion batteries
Wang et al. Coexistence of bipolar and unipolar resistive switching characteristics of thin TiO2 film grown on Cu foil substrate for flexible nonvolatile memory device
JP2007158318A (ja) 有機金属化学気相成長法によるPrMnO3/CaMnO3超格子構造を有するPrxCa1−xMnO3薄膜の形成方法
WO2019090805A1 (zh) 锂电池夹心式复合正极材料及其制备方法以及一种锂电池正极
US8465796B2 (en) Method of manufacturing unit cell of solid oxide fuel cell using decalcomania process
Meda et al. Lipon thin films grown by plasma-enhanced metalorganic chemical vapor deposition in a N2–H2–Ar gas mixture
WO2020185834A1 (en) Solution-phase electrodeposition of artificial solid electrolyte interphase (sei) layers on battery electrodes
TWI650893B (zh) 蓄電裝置
Dumaisnil et al. Promising performances for a La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3-δ cathode with a dense interfacial layer at the electrode-electrolyte interface
Hu et al. Ionic conductivity in LixTaOy thin films grown by atomic layer deposition
JP2011171248A (ja) 固体電解質及び全固体型リチウム二次電池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant