CN105858691A - 沉淀法制备花状氧化镁微球的方法 - Google Patents

沉淀法制备花状氧化镁微球的方法 Download PDF

Info

Publication number
CN105858691A
CN105858691A CN201610328226.3A CN201610328226A CN105858691A CN 105858691 A CN105858691 A CN 105858691A CN 201610328226 A CN201610328226 A CN 201610328226A CN 105858691 A CN105858691 A CN 105858691A
Authority
CN
China
Prior art keywords
magnesium oxide
flower
mgo
magnesium
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610328226.3A
Other languages
English (en)
Other versions
CN105858691B (zh
Inventor
张立春
徐洪琳
吕弋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201610328226.3A priority Critical patent/CN105858691B/zh
Publication of CN105858691A publication Critical patent/CN105858691A/zh
Application granted granted Critical
Publication of CN105858691B publication Critical patent/CN105858691B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种简单方便、省时而又温和的实验方法实现了花状氧化镁微球的可控制备:首先六水氯化镁作为镁源和无水碳酸钠在表面活性剂(PEG200)的作用下,得到产物前驱体沉淀,煅烧后得到粒径均一,热稳定性、结晶性、催化性能和热传导性能优异的花状氧化镁微球。该方法巧妙的利用表面活性剂来控制反应产物的形貌,克服了以往氧化镁制备过程中的合成条件苛刻、反应过程复杂、不环保等缺点,具有操作简单、省时间、反应条件温和,重现性好等优点,适合进一步放大、推广。

Description

沉淀法制备花状氧化镁微球的方法
技术领域
本发明涉及花状氧化镁微球的沉淀法制备技术,属于金属氧化物材料制备领域。
背景技术
金属氧化物是指金属元素与氧元素两种元素组成的氧化物,被广泛应用于生活中,此外,金属氧化物也是一种重要的催化剂,作为主催化剂、助催化剂和载体被应用于催化领域。因此,掌握氧化镁的制备方法具有重要的经济效益和现实意义。目前,在已报道的文献中,氧化镁的制备方法有很多,例如:电子束蒸发法、化学气相沉积法、均匀沉淀法、溶胶凝胶法等。虽然以上方法均能制备出不同粒径的氧化镁,但由于其制备工艺复杂,制备条件严苛,甚至容易对环境造成污染,不利于氧化镁的工业化应用。我们仍然需要探索出一种制备方法简单,设备要求低,省时且绿色的制备工艺。
无机微粒表面与聚合物之间的作用力, 除静电作用、范德华力之外, 还能形成氢键或配位键。纳米微粒表面吸附了高分子分子后, 相当于形成了一层保护膜, 对粒子间由于高表面活性引起的缔合力起到减弱或屏蔽作用,阻止粒子间产生絮凝现象;而且由于聚合物的吸附产生空间位阻斥力,也能进一步阻止离子间产生聚合现象(Dance I. G,. Choy A., Scudder M. L. J. Am. Chem. Soc., 1984, 106, 6285)。我们利用表面活性剂来控制氧化镁的形貌,在非常温和的条件下合成具有花状形貌的氧化镁微球颗粒。
发明内容
本发明的目的在克服已有制备氧化镁技术的缺点,有效利用表面活性剂对无机微粒表面的保护作用,提供一种极其简单、高效的花状氧化镁微球制备方法。该方法包含以下步骤:
(1)三水碳酸镁前驱体溶液的制备。将一定量的MgCl2•6H2O溶解在纯水中,并恒温至30℃,同时将一定量的无水碳酸钠和聚乙二醇(PEG200)溶解在水中,逐滴加入到氯化镁溶液中,磁力搅拌30分钟至均匀混合;
(2)成核和生长过程。将反应好的溶液及产生的沉淀物在室温下静置30分钟。
(3)纯化过程。将沉淀抽滤,并用纯水洗涤3次,收集得到白色的疏松的产物三水碳酸镁。
(4)干燥、煅烧过程。将所得的前驱体在70℃烘箱中干燥24小时,取出后移入马弗炉在一定温度下煅烧3小时,即得到花状氧化镁微球。
本发明的合成方法特征是:
a 反应原料的廉价、易得性。溶剂:纯水。镁氧源:金属盐类(MgCl2•6H2O,无水碳酸钠)。表面活性剂:有机分子聚合物(聚乙二醇200)
b 反应温和性:巧妙利用表面活性剂对氧化镁的分散效果,从而有效地控制晶粒的生长和防止粒子团聚,反应在常温常压下即可顺利完成。
c 反应的环保性:本合成方法中不涉及任何对环境产生污染的环节和产物,是一种绿色且廉价的合成方法,这在工业化应用上具有重大的现实意义。
d 材料的实用性:本方法制得的MgO粒径范围在10~20 μm之间,分散性良好,重现性好,具有花瓣样的层状二级结构,具有优异的热稳定性和催化性能,比表面积达184.27m2/g,在一定实验条件下,能高效地催化多种易挥发有机物的氧化反应。
附图说明
图1.为本发明制备的典型的MgO的SEM图;
图2.为本发明制备的典型的MgO的HRTEM图;
图3.为本发明制备的典型的MgO的XRD图;
图4.为本发明制备的典型的MgO的BET图。
具体实施方式
下面通过实例阐述本发明所述花状MgO微球材料的制备方法。本实例在以本发明为方案前提下进行实施,给出了详细具体的操作过程:
1) 分别称取5.0825 g的MgCl2•6H2O溶于50 mL纯水的烧杯中,磁力搅拌混合均匀并恒温至30℃,称取5.2995 g的Na2CO3和0.1 g的PEG200溶于另一个50 mL纯水的烧杯中,磁力搅拌混合均匀;
2) 将后者逐滴加入恒温氯化镁溶液中,均匀搅拌30 min后静置30 min。得到上清液澄清,底部有白色沉淀的混合物;
3) 将得到的产物用纯水洗涤并抽滤3次,再转移到烘箱内以70℃的温度干燥24小时;
4) 将干燥后的产物转移到马弗炉中,以550℃煅烧3小时,所得产物即为花状MgO微球;
5) 将产物收集用于XRD,SEM,TEM,HRTEM等材料表征分析。

Claims (7)

1.一种沉淀法制备花状氧化镁微球的方法,该方法主要包括以下步骤:
a 反应原料(聚乙二醇200,无水碳酸钠,六水氯化镁)形成三水碳酸镁前驱体,并成核;b 三水碳酸镁在沉淀过程中生长成花状;抽滤、洗涤、干燥、煅烧前驱体得到花状MgO微球。
2.如权利要求一所述的方法,在30 ℃的反应温度下,六水氯化镁和无水碳酸钠摩尔比为1:2,反应时间为30 min。
3.如权利要求一所述的方法巧妙利用表面活性剂聚乙二醇(含聚合度200 及其它不同聚合度)来控制MgO的形貌,可实现在常温常压条件下得到花状氧化镁微球,且煅烧前后形貌基本维持不变。
4.通常反应温度越低,产物生成的时间越长,而本合成方法反应时间为30 min也能实现MgO的高效制备。
5.如权利要求一所述的方法合成的氧化镁为高纯度的立方相的方镁石,其外观为疏松的白色粉末,无臭,无味,无毒。
6.如权利要求一所述的方法得到的花状MgO微球,粒径范围10~30 μm,具有优异的热稳定性、结晶性、催化性能、热传导性能。
7.如权利要求一所述的MgO制备过程操作简单、反应条件温和、重现性好,克服了传统制备方法的条件苛刻、反应多步复杂、不环保等缺点。
CN201610328226.3A 2016-05-18 2016-05-18 沉淀法制备花状氧化镁微球的方法 Active CN105858691B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610328226.3A CN105858691B (zh) 2016-05-18 2016-05-18 沉淀法制备花状氧化镁微球的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610328226.3A CN105858691B (zh) 2016-05-18 2016-05-18 沉淀法制备花状氧化镁微球的方法

Publications (2)

Publication Number Publication Date
CN105858691A true CN105858691A (zh) 2016-08-17
CN105858691B CN105858691B (zh) 2018-04-13

Family

ID=56635050

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610328226.3A Active CN105858691B (zh) 2016-05-18 2016-05-18 沉淀法制备花状氧化镁微球的方法

Country Status (1)

Country Link
CN (1) CN105858691B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109437256A (zh) * 2018-11-13 2019-03-08 武汉纺织大学 一种微纳米氧化镁阻燃剂及其制备方法
CN110560026A (zh) * 2019-09-19 2019-12-13 江苏晶晶新材料有限公司 氧化镁固体碱蒽醌降解物再生催化剂的制备方法和应用
CN113086997A (zh) * 2021-04-07 2021-07-09 山东理工大学 纳米棒阵列组装的大尺寸海胆球状三水碳酸镁和多孔氧化镁及其制备方法
CN113184883A (zh) * 2021-05-11 2021-07-30 青海施丹弗化工有限责任公司 一种连续化生产纳米氧化镁的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103936083A (zh) * 2013-01-23 2014-07-23 中国石油化工股份有限公司 镍镁复合氧化物及其制备方法
CN105347366A (zh) * 2015-12-15 2016-02-24 营口镁质材料研究院有限公司 一种纳米级氧化镁微粉的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103936083A (zh) * 2013-01-23 2014-07-23 中国石油化工股份有限公司 镍镁复合氧化物及其制备方法
CN105347366A (zh) * 2015-12-15 2016-02-24 营口镁质材料研究院有限公司 一种纳米级氧化镁微粉的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AWASMI PURWAJANTI ET AL.: "Synthsis of Magnesium Oxide Hierarchical Microspheres:A Deal-Functional Material for Water remediation", 《APPL. MATER. INTERFACES》 *
YANG QU ET AL.: "Fabrication of a 3D Hierarchical Flower-Like MgO Microsphere and Its Application as Heterogeneous Catalyst", 《EUR.J.INORG.CHEM》 *
王维等: "PEG对沉淀法制备纳米MgO形貌的影响", 《人工晶体学报》 *
程文婷: "聚乙二醇辅助合成氧化镁及其处理含铅溶液的性能", 《中国科学:化学》 *
金艳花等: "碳酸铵直接沉淀法制备纳米氧化镁的研究", 《无机盐工业》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109437256A (zh) * 2018-11-13 2019-03-08 武汉纺织大学 一种微纳米氧化镁阻燃剂及其制备方法
CN110560026A (zh) * 2019-09-19 2019-12-13 江苏晶晶新材料有限公司 氧化镁固体碱蒽醌降解物再生催化剂的制备方法和应用
CN113086997A (zh) * 2021-04-07 2021-07-09 山东理工大学 纳米棒阵列组装的大尺寸海胆球状三水碳酸镁和多孔氧化镁及其制备方法
CN113086997B (zh) * 2021-04-07 2022-11-15 山东理工大学 纳米棒阵列组装的大尺寸海胆球状三水碳酸镁和多孔氧化镁及其制备方法
CN113184883A (zh) * 2021-05-11 2021-07-30 青海施丹弗化工有限责任公司 一种连续化生产纳米氧化镁的方法

Also Published As

Publication number Publication date
CN105858691B (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
Smalenskaite et al. A comparative study of co-precipitation and sol-gel synthetic approaches to fabricate cerium-substituted MgAl layered double hydroxides with luminescence properties
Li et al. Synthesis of CeO2 nanoparticles by mechanochemical processing and the inhibiting action of NaCl on particle agglomeration
CN101792164B (zh) 一种真空冷冻干燥制备纳米氧化铝的方法
CN105858691A (zh) 沉淀法制备花状氧化镁微球的方法
Zhao et al. Synthesis and characterization of CaTiO 3 particles with controlled shape and size
Kutty et al. Low temperature synthesis of nanocrystalline magnesium aluminate spinel by a soft chemical method
CN102660220A (zh) 一种石墨烯负载四氧化三铁纳米复合材料的制备方法
CN109126760B (zh) 一种高分散纳米金属氧化物复合的炭材料及其制备方法和应用
Maghsoudlou et al. Synthesis and sintering of nano-sized forsterite prepared by short mechanochemical activation process
Du et al. Morphology and structure features of ZnAl2O4 spinel nanoparticles prepared by matrix-isolation-assisted calcination
Ahmed A simple route to synthesis and characterization of CoAl2O4 nanocrystalline via combustion method using egg white (ovalbumine) as a new fuel
CN108083316A (zh) 一种纳米稀土氧化物粉体的制备方法
Wang et al. Facile synthesis and characterization of ZnO octahedral superstructures from solid-state transformation of Zn (II)–organic coordination polymers
Su et al. Synthesis of MgAl 2 O 4 spinel nanoparticles using a mixture of bayerite and magnesium sulfate
CN105271364B (zh) 利用金属有机骨架mof-5材料作为前驱物制备多孔氧化锌微球的方法
CN106082298B (zh) 一种铈铋复合氧化物纳米棒材料的制备方法
Alhaji et al. Modification of Pechini sol–gel process for the synthesis of MgO-Y2O3 composite nanopowder using sucrose-mediated technique
CN110937620B (zh) 一种非化学计量比锌铝尖晶石及其制备方法
CN114105177A (zh) 一种类球形纳米γ-氧化铝的制备方法
CN111905730B (zh) 一种0d/1d/2d复合镁铝双金属氧化物纳米催化材料的制备方法及应用
CN112723409B (zh) 一种SrTiO3多面体的制备方法
KR102403099B1 (ko) 포르스테라이트 미립자의 제조 방법
CN101343043B (zh) 两性金属化合物纳米材料及其制备方法
Chandradass et al. Synthesis and characterization of zirconia doped alumina nanopowder by citrate–nitrate process
Li et al. A general and facile method to prepare uniform gamma-alumina hollow microspheres from waste oil shale ash

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant