CN105850016B - 用于不间断电源系统的重复伺服机构控制器 - Google Patents

用于不间断电源系统的重复伺服机构控制器 Download PDF

Info

Publication number
CN105850016B
CN105850016B CN201480065788.2A CN201480065788A CN105850016B CN 105850016 B CN105850016 B CN 105850016B CN 201480065788 A CN201480065788 A CN 201480065788A CN 105850016 B CN105850016 B CN 105850016B
Authority
CN
China
Prior art keywords
controller
control loop
output
servo mechanism
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480065788.2A
Other languages
English (en)
Other versions
CN105850016A (zh
Inventor
陈贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vertiv Corp
Original Assignee
Liebert Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebert Corp filed Critical Liebert Corp
Publication of CN105850016A publication Critical patent/CN105850016A/zh
Application granted granted Critical
Publication of CN105850016B publication Critical patent/CN105850016B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Inverter Devices (AREA)

Abstract

用于UPS系统的重复伺服机构控制器具有内部控制回路和外部控制回路。内部控制回路调节逆变器电流,而外部控制回路调节逆变器电压。外部控制回路包括与谐波伺服机构控制器和前馈控制器组合的重复控制器。

Description

用于不间断电源系统的重复伺服机构控制器
相关申请的交叉引用
本申请要求于2014年11月14日提交的美国发明专利申请第14/541,667号的优先权,并且要求于2013年12月4日提交的美国临时申请第61/911,600号的权益。通过引用将上述申请的全部公开内容合并到本文中。
技术领域
本公开内容涉及对不间断电源系统的控制,尤其涉及对不间断电源(“UPS”)系统的重复伺服机构控制。
背景技术
本部分提供与本公开内容相关的背景信息,该背景信息未必是现有技术。
图1是现有技术不间断电源(“UPS”)系统100的示例的基本框图。UPS系统100包括整流器/充电器102、电池104、DC总线106、逆变器108、旁路开关110、控制模块112和输出变压器114。应当理解的是,某些UPS系统不包括输出变压器,并且备用DC电源可以不是电池,在这种情况下,整流器/充电器102将不包括充电器。还应当理解的是,整流器/充电器102可以仅包括整流器,并且UPS系统100具有单独的充电器。在UPS系统100处于双转换模式进行操作的情况下,在UPS系统100的输入116处提供交流(“AC”)电力。整流器/充电器102将进来的AC电力转换成直流(“DC”)电力。该DC电力被提供给电池104以对电池进行充电。该DC电力还被提供给耦接至逆变器108的输入的DC总线106。逆变器108将DC电力转换成AC输出电力,然后经由输出变压器114将该AC输出电力提供给负载118。如果正常的AC电源发生故障,则电池104将电力提供给DC总线106,通过逆变器108将电力转换成AC输出电力。在某些情况下,UPS系统100被切换至旁路模式,在旁路模式中,旁路开关110关闭。AC电力然后从输入116经由输出变压器114直接流动至负载118(或者,在没有输出变压器的UPS系统中,AC电力直接流动至负载118)。在双转换电力流动路径中的UPS系统100的诸如整流器/充电器102或逆变器108的部件发生故障的情况下,或者在AC电源的质量足以使其可以用于直接为负载118提供电力而不通过双转换路径来决定的情况下,可以将UPS系统100切换至旁路模式。
控制模块112控制整流器/充电器102、逆变器108和旁路开关110。控制模块112监控输入电压、输入电流、输出电压和输出电流并且控制整流器/充电器102以对电池进行充电,并且调节包括总线电压的DC电力,并且还控制逆变器108以调节包括AC电压的AC输出电力。
用于UPS系统的简单重复控制器是用于在各种负载,尤其是非线性负载情况下,进行谐波抑制的良好的控制器。然而重复控制的固有缺点是其不能提供快速、子周期响应,快速、子周期响应是UPS系统的最重要特性之一,以不仅保持精确的正弦电压并且提供快速的瞬时响应。重复控制的另一缺点是难以在不牺牲稳定状态电压性能的情况下稳定。
重复控制是在处理周期信号中具体使用的控制方法。该控制方法使用参考或干扰的周期性来提供良好的谐波抑制。本领域技术人员明白下面示出的重复控制器的离散传递函数:
RPC(Z)=Z^(-(N-k))/(1-(Q(Z)·Z)^(-N))*Kopt*S(Z)*Z^(-k)
(等式1,重复控制器的离散传递函数)
其中,Q(Z)是小于1的恒定增益,N是在固定采样速率下每一周期的样本数,S(Z)是补偿器,以及Kopt是针对控制回路的最佳瞬时且稳定状态性能的优化增益。Z是Z转换的符号。Z=ejwt,其中,w=2*π*T,T=1/fs是采样周期,并且fs是采样速率。k是采样周期T中的所有采样中的第k个。
该重复控制器的缺点之一是在各种类型的负载情况下难以稳定。上面的等式1中所示的增益Q(Z)是稳定重复控制器的关键。Q(Z)必须小于1,并且增益越小,在各种类型负载情况下控制器越稳定。然而,Q(Z)增益越小,稳定状态控制器的性能越不准确。因此,在不牺牲稳定状态控制器的性能的情况下,难以具有针对各种类型的负载鲁棒稳定的重复控制器。
该重复控制器另一固有缺点是其不能提供快速、子周期响应,快速、子周期响应是UPS系统的最重要的特性之一。UPS系统在市电中断的时间快速响应,并且提供快速瞬时响应是重要的。
发明内容
本部分提供对本公开内容的一般概述,而不是其全部范围或其所有特征的全面公开。
根据本发明的一个方面,用于UPS系统的重复伺服机构控制器具有内部控制回路和外部控制回路。内部控制回路调节逆变器电流,而外部控制回路调节逆变器电压。外部控制回路包括与谐波伺服机构控制器和前馈控制器组合的重复控制器。
在一个方面中,内部控制回路使用内部控制回路的离散滑动模式电流控制器,通过在耦接至PWM驱动信号生成器的离散滑动模式电流控制器的输出处生成的PWM电压信号来控制不间断电源系统的逆变器的输出电流,其中,该PWM驱动信号生成器生成PWM驱动信号,以用于通过PWM驱动信号来控制逆变器的半导体开关器件,PWM驱动信号均具有由PWM电压信号的水平确定的占空比。外部控制回路包括输出加法器,该输出加法器具有耦接至前馈控制器、重复控制器和伺服机构控制器中的每一个的相应输出的输入的输出加法器。输出加法器的输出耦接至内部控制回路的输入。输入加法器将逆变器的输出电压与参考电压相加以生成误差信号,该误差信号被提供至重复控制器的输入和伺服机构控制器的输入。前馈控制器具有接收参考电压的输入。
在一个方面中,重复控制器被配置成消除所有谐波,并且伺服机构控制器的频率补偿器被配置为单纯基频的补偿器。
在一个方面中,重复控制器被配置成通过用以下等式限定的传递函数来消除所有谐波:RPC(Z)=Z^(-(N-k))/(1-(Q(Z)·Z)^(-N))*Kopt*S(Z)*Z^(-k),其中,Q(Z)是小于1的恒定增益,N是在固定采样速率下每一周期的样本数。S(Z)是补偿器,Kopt是针对重复控制器的控制回路的最佳瞬时且稳定状态性能的优化增益。Z是Z转换的符号。Z=ejwt,其中,w=2*π*T,T=1/fs是采样周期,并且fs是采样速率,以及k是采样周期T中的所有采样中的第k个。
根据本文中所提供的描述,其他适用领域将变得明显。本概述中的描述和具体示例仅意在出于说明的目的而不意在限制本公开内容的范围。
附图说明
本文中所描述的附图仅是为了所选择的实施方式的说明性目的而不是所有可能的实现的说明性目的,并且不意在限制本公开内容的范围。
图1是现有技术UPS系统的基本框图;
图2是现有技术谐波伺服机构控制器的基本框图;
图3是根据本公开内容的一个方面的谐波伺服机构控制器的基本框图,该谐波伺服机构控制器具有仅具有基频的补偿器的频率补偿器;
图4是根据本公开内容的一个方面的重复伺服机构控制器的基本框图;以及
图5示出了用于将abc三相转换成dp0参考系的转换等式。
贯穿附图的若干视图,相应的附图标记指示相应的部件。
具体实施方式
现在将参照附图来更充分地描述示例实施方式。
根据本公开内容的一个方面,具有上面等式1的传递函数的重复控制器与在“Uninterruptible Power Supply”的美国专利第6,917,124图26至图33以及具体随附的描述中所描述的谐波伺服机构控制器组合。US6,917,124的全部公开内容通过引用而被合并。(作为本文中所使用的术语,伺服机构(有时缩写为伺服)控制器是使用误差-感测-负反馈来校正受控制的器件的性能的自动控制器。)该谐波伺服机构控制器的一个优点是比重复控制器更容易稳定。通过将具有上面等式1的传递函数的重复控制器与该谐波伺服机构控制器组合,可以克服重复控制器的缺点之一。然而,因为重复控制器消除了所有谐波,所以谐波伺服机构控制器仅需要具有基频的补偿器。图2是US6,917,124的图32和图33中所示的谐波伺服机构控制器的简化框图。图3是根据本公开内容的该谐波伺服机构控制器的修改的框图,使得该修改的谐波伺服机构控制器的频率补偿器是仅具有基频的补偿器。在图3中,存在两个等式线路。第一线路针对Q轴而第二线路针对D轴,其中,Q轴和D轴是转换成dq0静止参考系的abc三相的结果。图5示出了用于将abc三相转换成dq0参考系的转换等式。D轴和Q轴利用同一等式,因此接下来是对一般参数的限定并且适用于D轴和Q轴两者的等式。Vref”(k)是样本k处的参考电压指令;Vload”(k)是样本k处的负载电压测量;e是计算出的err=Vref”(k)-Vload”(k);谐波伺服补偿器块中的等式是伺服控制器的状态空间等式。通过解该状态空间等式来计算Xservo(k)。Kq1、Kq2、Kd1和Kd2是伺服控制器的增益并且Kq1、Kq2、Kd1和Kd2基于调整结果。Xplant(k)是样本k处的所测量的电压和电流的阵列。Vinv(k)是样本k处的所测量的逆变器电压(或负载电压),Iinv(k)是样本k处的所测量的逆变器电流,Iload(k)是样本k处的所测量的负载电流,Vpwm(k)是样本k处的PWM电压指令。Icmd是从伺服电压控制器生成的电流指令。例如,注意如果系统具有输出变压器,则Xplant(k)可以根据受控系统具有何种电部件而变化。
根据本公开内容的一个方面,具有等式1的传递函数的重复控制器与图3的谐波伺服机构控制器连同前馈控制器组合在一起,以改善瞬时响应。这样做提供了鲁棒且可靠的伺服机构控制器,该伺服机构控制器不仅提供快速瞬时响应而且提供精确稳定状态正弦波输出。前馈控制器的等式可以如下简单表示:V前馈=Kff*V”ref。其中,Kff是前馈控制器的增益,Vref是输出电压的参考电压指令。应当理解的是,引用重复控制器、谐波伺服机构控制器和前馈控制器是引用它们各自的控制功能,而不意指它们是分立的控制器件。虽然这些控制功能可以在不同的控制器件中实现,但是它们也可以在同一控制器件(例如,如下文所讨论的数字信号处理器或微处理器)中一起实现。
图4是根据本公开内容的一个方面的重复伺服机构控制器400的框图。该重复伺服机构控制器具有两个控制回路-外部控制回路402和内部控制回路404。外部控制回路402包括输入加法器406、前馈控制器408、重复控制器410、谐波伺服机构控制器412、输出加法器414和限流器416。内部控制回路404包括输入加法器418、滑动模式电流控制器420和三级SVPWM驱动信号生成器422(即,PWM驱动信号生成器的示例)。
参考外部控制回路402,输入加法器406具有参考信号输入426以及反馈信号输入428,在参考信号输入426处提供有参考信号(Vref),反馈信号输入428耦接至逆变器424(图4中的设备G(Z))的电压输出。参考信号(Vref)还被提供至前馈控制器408的输入430,并且前馈控制器408的输出432被提供至输出加法器414的输入434。输入加法器406的输出436被耦接至重复控制器410的输入438和谐波伺服机构控制器412的输入,其中,由输入加法器406在输入加法器406处生成误差信号(Veff)。重复控制器410的输出442耦接至输出加法器414的输入446,并且谐波伺服机构控制器412的输出444耦接至输出加法器414的输入448。输出加法器414具有提供外部控制回路402的输出的输出450,外部控制回路402通过限流器416而耦接至内部控制回路404的输入加法器418的参考输入452,并且参考输入452提供内部控制回路404的输入。输入加法器418的反馈信号输入454接收来自逆变器424的电流反馈信号。输入加法器418的输出456耦接至滑动模式电流控制器420的输入458,并且滑动模式电流控制器420的输出460耦接至三级SVPWM驱动信号生成器422的输入462。三级SVPWM驱动信号生成器422的输出(或多个输出)464耦接至逆变器424的多个功率半导体开关器件的开关控制输入466,其中,在三级SVPWM驱动信号生成器422处生成PWM驱动信号以控制对逆变器424的这些功率半导体开关器件(图4中未示出)的切换。
内部控制回路404使用与在US6,917,124图27和具体随附的描述中公开的离散滑动模式电流控制器相同的离散滑动模式电流控制器来调节逆变器电流。内部控制回路404提供快速瞬时响应。其在以及时的方式限制逆变器电流以防止由于过载情况而逆变器损坏方面是有用的。滑动模式电流控制器420还具有零过冲,这改善了对负载暂态的响应。如US6,917,124中所讨论的,离散时间系统状态空间等式可以被描述为:x(k+1)=A*x(k)+B*u(k)+E*d(k);y(k)=C*x(k),其中,在dq静止参考系中x=[Vinv,Iinv],u是对系统的PWM控制输入,d是作为干扰的负载电流,y是系统输出,k表示第k个样本,A、B、C、E是由系统电特性所确定的系统参数。应用离散时间滑动模式理论并且解系统等式,得到的PWM电压指令为u(k)=(CB)-1(Icmd-CA*x(k)-CE*d(k))。
外部控制回路402使用与上文所讨论的谐波伺服机构控制器412和前馈控制器408组合的具有等式1的传递函数的上文所讨论的重复控制器410来调节逆变器电压。如图4中所示的,重复控制器410、谐波伺服机构控制器412和前馈控制器408并联布置(除了Vout反馈不被提供至前馈控制器408)。重复控制器410与谐波伺服机构控制器412一起工作以提供优异的谐波抑制,从而提供准确的稳定状态性能并且还提供更容易稳定的控制器。前馈控制器408与滑动模式电流控制器420一起提供快速瞬时响应以及用于UPS系统保护的电流限制。应当理解的是,图4中所示的重复伺服机构控制器400是对US6,917,124的图27中所示的伺服机构控制器的改进。
根据本公开内容的上面所描述的方面的重复伺服机构控制器400不仅提供优异的谐波抑制能力,而且提供更好且更快速的瞬时性能以及更准确的稳定状态性能。重复控制器410与谐波伺服机构控制器412的组合改善了UPS系统的输出波形性能,从而克服了两个单独控制器的缺点,并且获得了具有更鲁棒的且可靠性能的优异混合控制器。另外,该重复伺服机构控制器对于各种类型的负载更容易稳定。
可以在诸如控制模块112(图1)的UPS系统的控制模块中示例地实现重复伺服机构控制器400。该控制模块可以例如是数字处理器(DSP)或微处理器,或者该控制模块可以例如包括数字处理器(DSP)或微处理器,其中,该数字处理器(DSP)或微处理器被编程有实现重复伺服机构控制器的软件。应当理解的是,可以使用诸如现场可编程门阵列(FPGA)、复杂可编程逻辑器件(CPLD)或专用集成电路(ASIC)的其他逻辑器件。
出于说明和描述的目的,已经提供了实施方式的前述描述。该描述不意在穷举或限制本公开内容。特定实施方式的各元件或特征通常不限于该特定实施方式,而是在适用的情况下,即使其没有特别示出或描述,也可互换并且可以用在所选择的实施方式中。特定实施方式的各元件或特征也可以以很多方式变化。这样的变化不被认为是偏离本公开内容,并且所有这样的修改意在被包括在本公开内容的范围内。

Claims (6)

1.一种重复伺服机构不间断电源系统控制器,包括:
内部控制回路,所述内部控制回路使用所述内部控制回路的离散滑动模式电流控制器,通过在耦接至PWM驱动信号生成器的所述离散滑动模式电流控制器的输出处生成的PWM电压信号来控制所述不间断电源系统的逆变器的输出电流,其中,所述PWM驱动信号生成器生成PWM驱动信号,以用于通过PWM驱动信号来控制所述逆变器的半导体开关器件,所述PWM驱动信号均具有由所述PWM电压信号的水平确定的占空比;
外部控制回路,所述外部控制回路控制所述逆变器的输出电压,所述外部控制回路包括前馈控制器、重复控制器和谐波伺服机构控制器、输入加法器和输出加法器,所述输出加法器具有耦接至所述前馈控制器、所述重复控制器和所述谐波伺服机构控制器中的每一个的相应输出的输入,所述输出加法器的输出耦接至所述内部控制回路的输入,所述输入加法器将所述逆变器的输出电压与参考电压相加以生成误差信号,所述误差信号被提供至所述重复控制器的输入和所述谐波伺服机构控制器的输入;并且
所述前馈控制器具有接收所述参考电压的输入。
2.根据权利要求1所述的重复伺服机构不间断电源系统控制器,其中,所述重复控制器被配置成消除所有谐波,并且所述谐波伺服机构控制器的频率补偿器被配置为单纯基频的补偿器。
3.根据权利要求2所述的重复伺服机构不间断电源系统控制器,其中,所述重复控制器被配置成通过用以下等式限定传递函数来消除所有谐波:
RPC(Z)=Z^(-(N-k))/(1-(Q(Z)·Z)^(-N))*Kopt*S(Z)*Z^(-k),
其中,Q(Z)是小于1的恒定增益,N是在固定采样速率下每一周期的样本数,S(Z)是补偿器,Kopt是针对所述重复控制器的控制回路的最佳瞬时且稳定状态性能的优化增益,Z是Z转换的符号,Z=ejwt,其中,w=2*π*T,T=1/fs是采样周期,并且fs是采样速率,以及k是采样周期T中的所有样本中的第k个。
4.一种使用具有内部控制回路和外部控制回路的重复伺服机构控制器控制不间断电源系统的方法,所述方法包括:
通过使用所述内部控制回路的离散滑动模式电流控制器在所述离散滑动模式电流控制器的输出处生成PWM电压信号,用所述内部控制回路控制所述不间断电源系统的逆变器的输出电流,其中所述离散滑动模式电流控制器耦接至PWM驱动信号生成器,以及通过所述PWM驱动信号生成器来生成具有由所述PWM电压信号的水平确定的占空比的PWM驱动信号,并且通过所述PWM驱动信号来控制所述逆变器的半导体开关器件;
通过使用输出加法器将所述外部控制回路的前馈控制器、重复控制器和谐波伺服机构控制器中的每一个的输出相加以生成输出信号,并且将所述输出信号提供至所述内部控制回路的输入,用所述外部控制回路控制所述逆变器的输出电压;
将参考电压提供至所述前馈控制器的输入;以及
通过使用输入加法器将所述逆变器的输出电压与所述参考电压相加来生成误差信号,并且将所述误差信号提供至所述重复控制器的输入和所述谐波伺服机构控制器的输入。
5.根据权利要求4所述的方法,包括使用所述重复控制器来消除所有谐波,以及使用所述谐波伺服机构控制器的频率补偿器来仅补偿基频。
6.根据权利要求5所述的方法,其中,使用所述重复控制器来消除所有谐波包括用由以下等式限定所述重复控制器的传递函数:
RPC(Z)=Z^(-(N-k))/(1-(Q(Z)·Z)^(-N))*Kopt*S(Z)*Z^(-k),
其中,Q(Z)是小于1的恒定增益,N是在固定采样速率下每一周期的样本数,S(Z)是补偿器,Kopt是针对所述重复控制器的控制回路的最佳瞬时且稳定状态性能的优化增益,Z是Z转换的符号,Z=ejwt,其中,w=2*π*T,T=1/fs是采样周期,并且fs是采样速率,以及k是采样周期T中的所有样本中的第k个。
CN201480065788.2A 2013-12-04 2014-11-17 用于不间断电源系统的重复伺服机构控制器 Active CN105850016B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361911600P 2013-12-04 2013-12-04
US61/911,600 2013-12-04
US14/541,667 2014-11-14
US14/541,667 US9270160B2 (en) 2013-12-04 2014-11-14 Repetitive servomechanism controller for uninterruptible power supply system
PCT/US2014/065915 WO2015084571A1 (en) 2013-12-04 2014-11-17 Repetitive servomechanism controller for uninterruptible power supply system

Publications (2)

Publication Number Publication Date
CN105850016A CN105850016A (zh) 2016-08-10
CN105850016B true CN105850016B (zh) 2018-10-02

Family

ID=53266146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480065788.2A Active CN105850016B (zh) 2013-12-04 2014-11-17 用于不间断电源系统的重复伺服机构控制器

Country Status (4)

Country Link
US (1) US9270160B2 (zh)
EP (1) EP3078096B1 (zh)
CN (1) CN105850016B (zh)
WO (1) WO2015084571A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9531288B2 (en) * 2012-11-21 2016-12-27 Liebert Corporation Systems and methods for balancing UPS output voltages during transitions between operating modes
CN105159063A (zh) * 2015-08-31 2015-12-16 南京航空航天大学 一种分数相位超前补偿重复控制器及控制方法
CN105159062A (zh) * 2015-08-31 2015-12-16 南京航空航天大学 一种基于插入式快速重复控制器的复合控制方法及系统
EP3171235B1 (en) * 2015-11-19 2020-04-29 Omron Corporation Control device, control method, information processing program, and recording medium
JP6531682B2 (ja) * 2016-03-11 2019-06-19 オムロン株式会社 モータ制御装置、モータ制御方法、プログラム、および記録媒体
RU187219U1 (ru) * 2018-06-05 2019-02-25 Акционерное общество "Электромаш" Устройство стабилизации напряжения с инвертором для подвижного состава
CN114362578B (zh) * 2021-12-30 2022-07-29 深圳市首航新能源股份有限公司 一种并网逆变器并网控制方法、控制器以及并网逆变器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101976042A (zh) * 2010-09-09 2011-02-16 浙江工业大学 适用于周期伺服系统的离散滑模重复控制方法
CN103339004A (zh) * 2011-03-25 2013-10-02 爱信艾达株式会社 控制装置
CN103401243A (zh) * 2013-07-26 2013-11-20 徐州中矿大传动与自动化有限公司 一种指定次谐波补偿apf及其谐波检测和控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6466465B1 (en) 2000-02-14 2002-10-15 Liebert Corporation Digital control of voltage harmonic distortion and overload current protection for inverters
AU2002246920A1 (en) * 2000-10-27 2002-08-06 Emerson Electric Co. Uninterruptible power supply
EP2634909B1 (en) * 2012-03-02 2017-02-15 ABB Research Ltd. Method for controlling a grid-connected boost-buck full-bridge current-source inverter cascade for photovoltaic applications and device
US9878738B2 (en) * 2012-03-28 2018-01-30 Robert Bosch Gmbh Non-linear compensation controller for active steering system in a vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101976042A (zh) * 2010-09-09 2011-02-16 浙江工业大学 适用于周期伺服系统的离散滑模重复控制方法
CN103339004A (zh) * 2011-03-25 2013-10-02 爱信艾达株式会社 控制装置
CN103401243A (zh) * 2013-07-26 2013-11-20 徐州中矿大传动与自动化有限公司 一种指定次谐波补偿apf及其谐波检测和控制方法

Also Published As

Publication number Publication date
EP3078096A1 (en) 2016-10-12
EP3078096B1 (en) 2018-01-10
US9270160B2 (en) 2016-02-23
CN105850016A (zh) 2016-08-10
WO2015084571A1 (en) 2015-06-11
US20150155793A1 (en) 2015-06-04

Similar Documents

Publication Publication Date Title
CN105850016B (zh) 用于不间断电源系统的重复伺服机构控制器
Li et al. Model predictive control of a voltage-source inverter with seamless transition between islanded and grid-connected operations
Zhong et al. Cascaded current–voltage control to improve the power quality for a grid-connected inverter with a local load
Zhou et al. Plug-in dual-mode-structure repetitive controller for CVCF PWM inverters
Dong et al. On zero steady-state error voltage control of single-phase PWM inverters with different load types
Bianconi et al. Perturb and observe MPPT algorithm with a current controller based on the sliding mode
Arif et al. Grid parameter estimation using model predictive direct power control
Ramírez et al. Finite-state model predictive control with integral action applied to a single-phase Z-source inverter
Yi et al. Analysis about overshoot peaks appearing in the current loop with resonant controller
Suntio et al. Dynamic characterization of power electronic interfaces
Zhao et al. A third-order sliding-mode controller for DC/DC converters with constant power loads
Li et al. A full state-variable direct predictive control for islanded microgrids with parallel converters
Hornik et al. H∞ repetitive current-voltage control of inverters in microgrids
Jorge et al. Nonlinear control of a two-stage single-phase DC–AC converter
JP4872090B2 (ja) 電圧調整装置
Lale et al. A non-inverting buck-boost converter with an adaptive dual current mode control
MS An improved robust coupled sliding mode control strategy for solar photovoltaic‐based single‐phase inverters.
Babaei et al. A linear quadratic tracking based voltage controller for VSI; MVDC shipboard power system application
De Gussemé et al. A boost PFC converter with programmable harmonic resistance
Hornik et al. Voltage control of grid-connected inverters based on h∞ and repetitive control
Syed et al. MPC of single phase inverter for PV system
Nazeri et al. Design and Performance Analysis of a Modified Proportional Multi-Resonant (PMR) Controller for Three-Phase Voltage-Source Inverters
Gaddala et al. Predictive Voltage Control of Two-Leg Current Source Inverter for UPS Applications
Li et al. A harmonic constrained minimum energy controller for a single-phase grid-tied inverter using model predictive control
Chang et al. Design of adaptive fuzzy sliding-mode PI control for full-bridge inverters

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: ohio

Patentee after: Vitamin Corporation

Address before: ohio

Patentee before: Libot Inc.