CN105845553A - 基于碳化硅衬底的石墨烯场效应晶体管阵列的制备方法 - Google Patents

基于碳化硅衬底的石墨烯场效应晶体管阵列的制备方法 Download PDF

Info

Publication number
CN105845553A
CN105845553A CN201610198547.6A CN201610198547A CN105845553A CN 105845553 A CN105845553 A CN 105845553A CN 201610198547 A CN201610198547 A CN 201610198547A CN 105845553 A CN105845553 A CN 105845553A
Authority
CN
China
Prior art keywords
graphene
silicon carbide
styrene
methyl methacrylate
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610198547.6A
Other languages
English (en)
Other versions
CN105845553B (zh
Inventor
王权
董金耀
张伟
柳国民
田飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Zhuoyuan Semiconductor Co.,Ltd.
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201610198547.6A priority Critical patent/CN105845553B/zh
Publication of CN105845553A publication Critical patent/CN105845553A/zh
Application granted granted Critical
Publication of CN105845553B publication Critical patent/CN105845553B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8256Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using technologies not covered by one of groups H01L21/8206, H01L21/8213, H01L21/822, H01L21/8252 and H01L21/8254
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66015Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene
    • H01L29/66037Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66045Field-effect transistors

Abstract

本发明公开一种纳机电系统应用领域中基于碳化硅衬底的石墨烯场效应晶体管阵列的制备方法,通过在碳化硅表面外延生长的方法,得到大面积的单层石墨烯,转移相分离的双嵌段共聚物苯乙烯‑甲基丙烯酸甲酯到石墨烯表面作为掩膜,采用反应离子刻蚀技术进行加工,在聚合物苯乙烯下得到石墨烯纳米带,用热的丙酮溶液去除残余的苯乙烯,在刻蚀得到的石墨烯纳米带表面生长金属钇作为缓冲层,沉积HfO2作为栅氧,在石墨烯表面形成Ti/Au电极作为漏、源、栅电极;本发明解决了原子层沉积无法在石墨烯表面成核生长高介电常数栅介质薄膜的问题和界面散射问题,保证了石墨烯晶体管的高迁移率,实现了高性能石墨烯场效应晶体管的规模化制备。

Description

基于碳化硅衬底的石墨烯场效应晶体管阵列的制备方法
技术领域
本发明属于纳机电系统(NEMS)应用领域,具体涉及基于碳化硅衬底的石墨烯场效应晶体管阵列的制备方法。
背景技术
石墨烯是碳原子以sp2 轨道杂化组成六角形蜂巢状晶格的平面薄膜,拥有独特的机械和电学性能,石墨烯的独特电学特性来源于其特殊的电子能带结构,本征石墨烯具有非常高的载流子迁移率,其值高达2000 cm2V-1s-1,此外,石墨烯具有非常好的机械和热力学特性,这些特性使得石墨烯成为纳米电子学的一种极有价值的材料。
石墨烯最有价值的一个应用领域是场效应晶体管(FETs)。目前已经有报道,采用机械剥离石墨烯作为晶体管沟道材料的顶栅FETs已经被制备出来,它的场效应迁移率高达3700 cm2V-1s-1,本征截止频率达到50 GHz。然而,机械剥离制备石墨烯的方法效率太低,实用性不高。在此基础上,有人尝试了通过化学气相沉积(CVD)合成石墨烯的方法。在这些研究中,在金属催化剂(Ni或Cu)上合成石墨烯,然后再转移到另一个衬底上进行电学测量。这种方法采用CH4作为石墨烯合成的碳的来源,生长温度在800-1000 ℃,这种方法更具有实用性,可以实现石墨烯的大规模生产,但是,石墨烯的转移过程不适用于大面积的衬底,而且在石墨烯的转移过程中会引入缺陷和掺杂,从而影响石墨烯的电学特性。
在碳化硅表面生长石墨烯的方法是通过在超高真空中将碳化硅加热到1100 ℃以上,碳化硅表面发生Si的升华,从而引起剩余的表面碳原子重组形成石墨烯。通过这种方法可以合成碳化硅衬底大小的石墨烯,而且碳化硅本身就是半导体材料,可以作为场效应晶体管的衬底,这样就避免了石墨烯的转移过程。
大面积石墨烯的带隙为零,不存在关闭特性,不适合逻辑电路应用。要想把石墨烯用于场效应晶体管,先要打开其带隙。打开石墨烯带隙的方法有三种:一是将其制备成一维的石墨烯纳米带;二是对双层石墨烯施加垂直电压;三是对石墨烯施加应力。石墨烯以纳米带的形式存在时,电荷在石墨烯纳米带中横向移动时产生能量势垒从而形成带隙,其大小随带宽度的减小而增大。
通常,石墨烯纳米带的制备采用的是自上而下加工法,以大面积石墨烯(或碳基材料)为基体,通过各种加工技术对石墨烯进行裁剪,进而形成石墨烯纳米带,例如石墨烯在电子束或离子束下的定位裁剪,碳纳米管在酸性溶液中的纵向打开以及石墨在有机溶剂中的超声波剥离。但是,由于电子束和离子束光刻分辨率的限制,石墨烯纳米带的宽度无法加工到很窄,而且电子和离子对石墨烯的轰击会对石墨烯造成损伤并引起边界粗糙度增加。同时,碳纳米管的打开和石墨的剥离难以实现准确定位和裁剪,形成的石墨烯纳米带的形状和尺寸具有随机性。
发明内容
本发明的目的是为克服上述现有技术的不足,提供一种基于碳化硅衬底的石墨烯场效应晶体管阵列的制备方法,可以实现石墨烯的准确定位裁剪,同时由于掩膜的保护作用避免了对石墨烯的损伤,从而制备出高质量的石墨烯场效应晶体管阵列。
本发明采用的技术方案是包括以下步骤:
A、在感应加热高温炉中获得表面光滑的SiC衬底,在SiC衬底表面外延生长单层石墨烯;
B、通过阴离子聚合制备双嵌段共聚物苯乙烯-甲基丙烯酸甲酯,转移双嵌段共聚物到单层石墨烯表面作为掩膜,刻蚀双嵌段共聚物,甲基丙烯酸甲酯下方的单层石墨烯被完全刻蚀,剩余苯乙烯下方的单层石墨烯,去除残余的苯乙烯,得到石墨烯纳米带阵列;
C、先在石墨烯纳米带表面沉积金属钇薄膜作为缓冲层,再在金属钇薄膜表面生长氧化铪薄膜作为栅氧介质层,得到氧化铪薄膜/金属钇/石墨烯纳米带/碳化硅结构;
D、在氧化铪薄膜/金属钇/石墨烯纳米带/碳化硅的表面均匀旋涂光刻胶,将掩膜版上图形转移到光刻胶上,采用电子束曝光形成Ti/Au电极作为漏、源、栅电极,得到石墨烯场效应管阵列。
进一步地,步骤B中,所述双嵌段共聚物苯乙烯-甲基丙烯酸甲酯的制备方法是:在250mL四氢呋喃溶液中用4mL、0.5mol/L的正丁基锂引发苯乙烯聚合,在-78℃条件下滴加苯乙烯单体40mL,继续反应1h后加入二苯基乙烯,再滴加甲基丙烯酸甲酯单体30mL反应1h,最后把反应后的溶液倒入乙醇中沉出,再过滤,烘干,分别用乙腈、环己烷抽提以除去均聚物,得到苯乙烯-甲基丙烯酸甲酯。
进一步地,步骤A中,把SiC衬底放入感应加热高温炉中,通入体积百分比为5% 的H2/Ar混合气,保持感应加热高温炉中的压强为600Torr,在1500℃高温下刻蚀30min,获得表面光滑的SiC衬底,然后用气泵抽空感应加热高温炉中的气体,通入Ar气,保持感应加热高温炉中的压强为1×10-6 Torr,在1550℃下外延生长大面积的单层石墨烯。
本发明的有益效果是:本发明使用碳化硅表面外延生长的大面积石墨烯作为沟道材料,避免了转移过程中引入的缺陷。通过使用自组装的双嵌段共聚物作为掩膜,利用反应离子刻蚀技术制备出石墨烯纳米带阵列,在石墨烯纳米带上生长金属钇薄膜,以金属钇作为生长栅介质的缓冲层,解决了原子层沉积无法在石墨烯表面成核生长高介电常数栅介质薄膜的问题和界面散射问题。沉积氧化铪作为栅氧并镀上电极,形成石墨烯场效应晶体管阵列,优化了石墨烯的栅介质的界面,保证了石墨烯晶体管的高迁移率,实现了高性能石墨烯场效应晶体管的规模化制备。
附图说明
图1是在SiC衬底上生长单层石墨烯的结构示意图;
图2是图1中单层石墨烯上的双嵌段共聚物的结构示意图;
图3是图2所示结构经反应离子刻蚀后的结构示意图;
图4是由图3所示结构形成石墨烯纳米带阵列示意图;
图5是在图4所示的石墨烯纳米带上形成缓冲层和栅介质层示意图;
图6是制备的石墨烯场效应晶体管阵列示意图。
图中:1—SiC衬底;2—单层石墨烯;3—苯乙烯(PS);4—甲基丙烯酸甲酯(PMMA);5—石墨烯纳米带;6—金属钇薄膜;7—氧化铪(HfO2)薄膜;8—Ti/Au源电极;9—Ti/Au栅电极;10—Ti/Au漏电极。
具体实施方式
本发明先通过在碳化硅表面外延生长的方法,得到大面积的单层石墨烯,再转移相分离的双嵌段共聚物苯乙烯-甲基丙烯酸甲酯(PS-b-PMMA)到石墨烯表面作为掩膜,采用反应离子刻蚀技术进行加工,PMMA被刻蚀的速度比PS快,在聚合物PS下得到石墨烯纳米带,用热的丙酮溶液去除残余的PS,在刻蚀得到的石墨烯纳米带表面生长金属钇作为缓冲层,用ALD沉积HfO2作为栅氧,在石墨烯表面采用电子束曝光形成Ti/Au电极作为漏、源、栅电极,形成石墨烯场效应晶体管阵列。具体如下:
如图1所示,把SiC衬底放入感应加热高温炉中,通入体积百分比为5% 的H2/Ar混合气,保持感应加热高温炉中的压强为600Torr,在1500℃高温下刻蚀30min,获得表面光滑的SiC衬底1。然后用气泵抽空感应加热高温炉中的气体,通入Ar气,保持感应加热高温炉中的压强为1×10-6 Torr,在1550℃下通过外延生长大面积的单层石墨烯2。
通过阴离子聚合制备双嵌段共聚物苯乙烯-甲基丙烯酸甲酯(PS-b-PMMA)。具体制备过程为:在250mL四氢呋喃(THF)溶液中用约4mL、0.5mol/L的正丁基锂引发苯乙烯聚合,在-78 ℃条件下滴加苯乙烯单体40mL,滴完后再继续反应1 h后加入二苯基乙烯以增大空间位阻,降低苯乙烯(PS)阴离子的反应活性。再滴加甲基丙烯酸甲酯(PMMA)单体30mL,滴完后再继续反应1h,最后把反应后的溶液倒入大量乙醇中沉出,用乙醇终止,再过滤,烘干。再分别用乙腈、环己烷抽提以除去可能有的均聚物。即:用四氢呋喃做溶剂,用乙醇作为沉淀剂,经反复溶解、沉淀、干燥,以除去未反应的苯乙烯和二苯基乙烯,最后得到苯乙烯-甲基丙烯酸甲酯。
如图2所示,随后,转移相分离的双嵌段共聚物苯乙烯-甲基丙烯酸甲酯(PS-b-PMMA)到单层石墨烯2表面作为掩膜,其中苯乙烯3和甲基丙烯酸甲酯4的横向宽度均为10nm、纵向厚度均为32nm。采用O2等离子体为基础的反应离子刻蚀技术(RIE) 刻蚀双嵌段共聚物,刻蚀时的射频功率为50W,O2流量为20sccm,压强为30mTorr,甲基丙烯酸甲酯4被刻蚀的速度大约是苯乙烯3被刻蚀的速度的两倍。刻蚀时间是43s,在经过43s的刻蚀后,甲基丙烯酸甲酯4下方的单层石墨烯2被完全刻蚀,剩余苯乙烯3下方的单层石墨烯2,如图3所示。用热的丙酮溶液去除残余的苯乙烯3,得到横向间距为10nm的石墨烯纳米带阵列5,如图4所示。
如图5所示,采用热蒸发的方式在石墨烯纳米带阵列5的石墨烯纳米带表面沉积1~2nm厚度的金属钇薄膜6作为缓冲层,再在金属钇薄膜6表面采用原子层沉积(ALD)生长12nm厚度的氧化铪薄膜7作为栅氧介质层,得到如图5所示的氧化铪薄膜/金属钇/石墨烯纳米带/碳化硅结构。
在氧化铪薄膜/金属钇/石墨烯纳米带/碳化硅的表面均匀旋涂光刻胶,将掩膜版上图形通过曝光转移到光刻胶上,然后采用显影液显影并烘干,采用电子束蒸镀,均匀沉积Ti/Au(10nm/50nm)金属,最后用丙酮腐蚀光刻胶,剩余石墨烯的三个电极,即Ti/Au源电极8、Ti/Au栅电极9和 Ti/Au漏电极10这三个电极,获得石墨烯场效应管阵列,如图6所示。

Claims (6)

1.一种基于碳化硅衬底的石墨烯场效应晶体管阵列的制备方法,其特征是包括以下步骤:
A、在感应加热高温炉中获得表面光滑的SiC衬底,在SiC衬底表面外延生长单层石墨烯;
B、通过阴离子聚合制备双嵌段共聚物苯乙烯-甲基丙烯酸甲酯,转移双嵌段共聚物到单层石墨烯表面作为掩膜,刻蚀双嵌段共聚物,甲基丙烯酸甲酯下方的单层石墨烯被完全刻蚀,剩余苯乙烯下方的单层石墨烯,去除残余的苯乙烯,得到石墨烯纳米带阵列;
C、先在石墨烯纳米带表面沉积金属钇薄膜作为缓冲层,再在金属钇薄膜表面生长氧化铪薄膜作为栅氧介质层,得到氧化铪薄膜/金属钇/石墨烯纳米带/碳化硅结构;
D、在氧化铪薄膜/金属钇/石墨烯纳米带/碳化硅的表面均匀旋涂光刻胶,将掩膜版上图形转移到光刻胶上,采用电子束曝光形成Ti/Au电极作为漏、源、栅电极,得到石墨烯场效应管阵列。
2.根据权利要求1所述基于碳化硅衬底的石墨烯场效应晶体管阵列的制备方法,其特征是:步骤B中,双嵌段共聚物苯乙烯-甲基丙烯酸甲酯的制备方法是:在250mL四氢呋喃溶液中用4mL、0.5mol/L的正丁基锂引发苯乙烯聚合,在-78℃条件下滴加苯乙烯单体40mL,继续反应1h后加入二苯基乙烯,再滴加甲基丙烯酸甲酯单体30mL反应1h,最后把反应后的溶液倒入乙醇中沉出,再过滤,烘干,分别用乙腈、环己烷抽提以除去均聚物,得到苯乙烯-甲基丙烯酸甲酯。
3.根据权利要求1所述基于碳化硅衬底的石墨烯场效应晶体管阵列的制备方法,其特征是:步骤A中,把SiC衬底放入感应加热高温炉中,通入体积百分比为5% 的H2/Ar混合气,保持感应加热高温炉中的压强为600Torr,在1500℃高温下刻蚀30min,获得表面光滑的SiC衬底,然后用气泵抽空感应加热高温炉中的气体,通入Ar气,保持感应加热高温炉中的压强为1×10-6 Torr,在1550 ℃下外延生长大面积的单层石墨烯。
4.根据权利要求1所述基于碳化硅衬底的石墨烯场效应晶体管阵列的制备方法,其特征是:步骤B中,苯乙烯和甲基丙烯酸甲酯的横向宽度均为10nm、纵向厚度均为32nm。
5.根据权利要求1所述基于碳化硅衬底的石墨烯场效应晶体管阵列的制备方法,其特征是:步骤B中,采用O2等离子体为基础的反应离子刻蚀技术刻蚀双嵌段共聚物,刻蚀的射频功率为50W,O2流量为20sccm,压强为30mTorr,时间是43s,甲基丙烯酸甲酯被刻蚀的速度是苯乙烯被刻蚀的速度的两倍。
6.根据权利要求1所述基于碳化硅衬底的石墨烯场效应晶体管阵列的制备方法,其特征是:步骤C中,采用热蒸发的方式在石墨烯纳米带表面沉积1~2nm厚度的金属钇薄膜,氧化铪薄膜的厚度为12nm。
CN201610198547.6A 2016-04-01 2016-04-01 基于碳化硅衬底的石墨烯场效应晶体管阵列的制备方法 Active CN105845553B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610198547.6A CN105845553B (zh) 2016-04-01 2016-04-01 基于碳化硅衬底的石墨烯场效应晶体管阵列的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610198547.6A CN105845553B (zh) 2016-04-01 2016-04-01 基于碳化硅衬底的石墨烯场效应晶体管阵列的制备方法

Publications (2)

Publication Number Publication Date
CN105845553A true CN105845553A (zh) 2016-08-10
CN105845553B CN105845553B (zh) 2018-06-01

Family

ID=56596387

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610198547.6A Active CN105845553B (zh) 2016-04-01 2016-04-01 基于碳化硅衬底的石墨烯场效应晶体管阵列的制备方法

Country Status (1)

Country Link
CN (1) CN105845553B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018060015A1 (en) * 2016-09-27 2018-04-05 Basf Se Star-shaped styrene polymers with enhanced glass transition temperature
CN108878257A (zh) * 2018-05-04 2018-11-23 中国电子科技集团公司第五十五研究所 一种降低碳化硅外延表面缺陷密度的方法
CN111129113A (zh) * 2019-12-24 2020-05-08 中国科学院上海微系统与信息技术研究所 一种石墨烯纳米带器件阵列及其制备方法
CN111122661A (zh) * 2020-01-08 2020-05-08 湖北大学 一种基于MoO3纳米带修饰石墨烯的室温FET型氢气敏感元件的制备方法及应用
CN111933650A (zh) * 2020-07-22 2020-11-13 华中科技大学 一种硫化钼薄膜成像阵列器件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174085A (zh) * 2006-08-11 2008-05-07 罗门哈斯丹麦金融有限公司 纳米结构图案的制造方法
CN102612751A (zh) * 2009-11-13 2012-07-25 国际商业机器公司 自对准石墨烯晶体管
CN103247679A (zh) * 2012-02-09 2013-08-14 国际商业机器公司 石墨烯器件用的具有低等效氧化物厚度的双层栅极电介质
CN104854789A (zh) * 2012-07-18 2015-08-19 国际商业机器公司 高频振荡电路及其操作方法
CN105051870A (zh) * 2013-04-16 2015-11-11 东京毅力科创株式会社 形成图案的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174085A (zh) * 2006-08-11 2008-05-07 罗门哈斯丹麦金融有限公司 纳米结构图案的制造方法
CN102612751A (zh) * 2009-11-13 2012-07-25 国际商业机器公司 自对准石墨烯晶体管
CN103247679A (zh) * 2012-02-09 2013-08-14 国际商业机器公司 石墨烯器件用的具有低等效氧化物厚度的双层栅极电介质
CN104854789A (zh) * 2012-07-18 2015-08-19 国际商业机器公司 高频振荡电路及其操作方法
CN105051870A (zh) * 2013-04-16 2015-11-11 东京毅力科创株式会社 形成图案的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018060015A1 (en) * 2016-09-27 2018-04-05 Basf Se Star-shaped styrene polymers with enhanced glass transition temperature
CN108878257A (zh) * 2018-05-04 2018-11-23 中国电子科技集团公司第五十五研究所 一种降低碳化硅外延表面缺陷密度的方法
CN111129113A (zh) * 2019-12-24 2020-05-08 中国科学院上海微系统与信息技术研究所 一种石墨烯纳米带器件阵列及其制备方法
CN111129113B (zh) * 2019-12-24 2021-06-25 中国科学院上海微系统与信息技术研究所 一种石墨烯纳米带器件阵列及其制备方法
CN111122661A (zh) * 2020-01-08 2020-05-08 湖北大学 一种基于MoO3纳米带修饰石墨烯的室温FET型氢气敏感元件的制备方法及应用
CN111933650A (zh) * 2020-07-22 2020-11-13 华中科技大学 一种硫化钼薄膜成像阵列器件及其制备方法
CN111933650B (zh) * 2020-07-22 2022-10-14 华中科技大学 一种硫化钼薄膜成像阵列器件及其制备方法

Also Published As

Publication number Publication date
CN105845553B (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
CN105845553A (zh) 基于碳化硅衬底的石墨烯场效应晶体管阵列的制备方法
US8344358B2 (en) Graphene transistor with a self-aligned gate
CN102936009B (zh) 一种在碳化硅衬底上制作低层数石墨烯薄膜的方法
CN103187283B (zh) 石墨烯场效应晶体管及其制作方法
TW202016985A (zh) 形成二維材料層的方法、場效電晶體及其製造方法
CN103000535B (zh) 一种旁栅石墨烯场效应晶体管的制备方法
CN108342716B (zh) 等离子体增强化学气相沉积制备二维材料的系统及方法
CN102971854A (zh) 碳器件中的自对准接触
CN103903973B (zh) 利用旋涂液态金属种子层在石墨烯上生长高k介质的方法
CN107012443A (zh) 一种绝缘衬底图形化直接生长石墨烯的工艺方法
Ma et al. Precise control of graphene etching by remote hydrogen plasma
CN102915929B (zh) 一种石墨烯场效应器件制备方法
CN114171392B (zh) 一种制备大面积高性能n型二维碲化钼场效应晶体管阵列的方法
Jeong et al. Physisorbed-precursor-assisted atomic layer deposition of reliable ultrathin dielectric films on inert graphene surfaces for low-power electronics
CN106952949B (zh) 石墨烯场效应晶体管及其形成方法
CN105895530B (zh) 二维材料结构的制造方法和二维材料器件
CN103915348B (zh) 一种制备石墨烯纳米线器件的方法
TWI762150B (zh) 石墨烯奈米帶複合結構及其製備方法
CN103204493B (zh) 石墨烯晶片的制备方法
CN103915319A (zh) 一种转移cvd石墨烯制备石墨烯器件的方法
KR20150047048A (ko) 구리 증기를 이용한 그래핀 합성방법 및 이에 따라 합성된 그래핀을 포함하는 소자
CN114613676A (zh) 场效应晶体管及其制备方法
CN108511530B (zh) 氮化碳薄膜场效应晶体管
CN102674317B (zh) 基于C注入的Ni膜辅助SiC衬底石墨烯纳米带制备方法
CN113130325A (zh) 平面超晶格纳米线场效应晶体管及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220225

Address after: 226500 East Road Telecom No. 6, Chengnan Street, Rugao City, Nantong City, Jiangsu Province

Patentee after: Jiangsu Zhuoyuan Semiconductor Co.,Ltd.

Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301

Patentee before: JIANGSU University