CN105841703A - 一种威胁环境下目标定位的无人机最优航路计算方法 - Google Patents

一种威胁环境下目标定位的无人机最优航路计算方法 Download PDF

Info

Publication number
CN105841703A
CN105841703A CN201610146917.1A CN201610146917A CN105841703A CN 105841703 A CN105841703 A CN 105841703A CN 201610146917 A CN201610146917 A CN 201610146917A CN 105841703 A CN105841703 A CN 105841703A
Authority
CN
China
Prior art keywords
unmanned plane
target
threat
aerial vehicle
unmanned aerial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610146917.1A
Other languages
English (en)
Inventor
李万春
黄成峰
唐遒
周俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201610146917.1A priority Critical patent/CN105841703A/zh
Publication of CN105841703A publication Critical patent/CN105841703A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

该发明公开了一种威胁环境下目标定位的无人机最优航路计算方法,属于电子对抗技术领域,涉及目标定位与跟踪技术,无人机航路规划。建立单个无人机唯方位角定位模型;无人机自适应运功,分别对静止目标和低速运动目标进行定位跟踪,无人机自适应运动的准则是目标定位精度最大化;建立敌方威胁数学模型,评估威胁程度;结合仿真场景,综合考虑到敌方威胁和目标定位精度,规划出一条最优的无人机航迹。通过预测目标的飞行轨迹,统计各方威胁带来的威胁程度,同一规划无人机的航迹,从而能极大的提高的无人机的生存效率和对目标的定位精度。

Description

一种威胁环境下目标定位的无人机最优航路计算方法
技术领域
本发明属于电子对抗技术领域,涉及目标定位与跟踪技术,无人机航路规划。
背景技术
电子对抗是指在电子战中,截获敌方无线电电子设备的电磁信息,通过分析、处理获得军事、技术情报,并阻止敌方无线电电子设备获取有用和正确的信息,削弱或破坏敌方武器系统的效能和威力的一切技术和战术手段的总称。测量雷达辐射的电磁波的参数并确定其位置的电子定位系统也随之成为了电子对抗和支援系统中非常重要的一部分。因为它为精确打击乃至彻底摧毁敌雷达系统提供了重要的有效的手段。
在日益复杂的现代战场上,无人机(Unmanned Aerial Vehicle,UAV)以其成本低、续航时间长、隐蔽性强、附带损失低,而且可以自动地、精确地打击目标等优点,在一些关键和高度危险的任务中发挥着不可替代的作用。近年来,作战和反恐行动对无人机的需求和依赖日益凸显,推动了无人机及相关技术的发展。无人机所扮演的角色越来越重要,其飞行环境也变的更为复杂,造成了无人机飞行任务的难度、危险度及强度的增加。在此背景下,无人机航路规划技术应运而生。无人机的航路规划(Route Planning)是在特定的约束条件下,寻找无人机由起始点至目标点符合某种性能指标的最优或可行飞行航路。航路规划是无人机任务规划系统的关键技术之一,是提高无人机作战效能,实施侦察、精确打击的有效手段,也是实现无人机自主控制、智能飞行的重要保障。现代战争中的防空技术日益完善,单纯的依靠手工操作规划和评价航路已难以满足现代复杂任务的实际应用需求。无人机的迅猛发展和广泛应用给航路规划技术提出了更高的要求,使得无人机航路规划技术成为国内外学者研究的热点之一。
发明内容
单架无人机对目标进行定位,无人机的定位系统为唯方位角定位系统,即通过测量目标基于无人机的方位角进行定位跟踪。如果目标是静止目标,那么理论上存在一条最优的飞行轨迹,从而无人机可以通过测量目标方位角得到目标最精确的定位。当目标是运动目标时,只要无人机与目标存在相对运动,且相对运动对于无人机来说不是径向运动,就可以得到目标的角度变化信息从而定位和跟踪。
由于目标是敌方目标,其具有一定的威胁性,威胁主要考虑到敌方的雷达,敌方的火力威胁,包括不同口径的高炮以及车载、机载导弹系统。无人机应该综合考虑定位的精度和目标的威胁程度。
本发明为解决上述技术问题所提供的技术方案为:一种威胁环境下目标定位的无人机最优航路计算方法,该方法包括如下步骤:
步骤1:无人机采用唯方位角的方式对目标进行定位;
步骤2:无人机自适应运动,同时对目标进行定位跟踪,无人机自适应运动的准则是使目标定位精度最大化;
步骤3:根据资料获取敌方威胁的位置,及威胁系数;单独建立各威胁的数学模型,再将各威胁模型相加,获取总的威胁模型,公式如下:
G [ x s ( t ) ] = Σ i = 1 M P ( x s ( t ) - x d i ) 2 + ( y s ( t ) - y d i ) 2 ;
其中Pi表示第i个威胁的威胁系数,表示第i个威胁的位置,(xs(t),ys(t))表示t时刻无人机的位置,M表示有威胁的总个数;
步骤4:结合步骤2的定位精度最大化准则,与步骤3的总威胁模型,获取无人机最优航路。
进一步的,所述步骤2首先获取目标的当前状态及目标的状态转移方程,根据扩展卡尔曼滤波跟踪定位方法获取无人机下一时刻位置的优化方程:当目标静止时,其中GDOP(k)为无人机下一时刻位置的优化方程,Pk/k为扩展卡尔曼滤波的状态估计误差自相关矩阵,trace(Pk/k)为Pk/k的对角线元素之和;当目标运动时,因为此时Pk/k为四维矩阵,所以只需要取其包含位置误差的两维即可,此时其中Pk/k(1,1)是矩阵Pk/k的第1行第1列的元素。
进一步的,所述步骤4获取无人机最优航路的公式为:
G D O P ( k ) + Σ i = 1 M P i ( x s ( t ) - x d i ) 2 + ( y s ( t ) - y d i ) 2
该公式取得最小值时,获取的无人机下一刻的位置为最优规划位置。
本发明一种威胁环境下目标定位的无人机最优航路计算方法,通过预测目标的飞行轨迹,统计各方威胁带来的威胁程度,同一规划无人机的航迹,从而能极大的提高的无人机的生存效率和对目标的定位精度。
附图说明
仿真条件:目标的初始坐标为(0,0),目标以15m/s的速度运行,运动方向为π/4。观测器的初始位置为(50k,0),观测器的速度为30m/s,每隔10s测量一次。目标初始的估计坐标为(10k,10k)。目标的初始估计速度为0m/s。下面为用EKF滤波定位跟踪的仿真图。观测器在距离目标50km以内存在软威胁。
图1为无人机在考虑威胁和不考虑威胁时的航迹对比图;
图2为图1的定位的RMS图,定位误差为其中,(xT,yT)表示目标的位置为所估计的目标位置。
具体实施方式
1,建立单个无人机唯方位角定位模型。
2,无人机自适应运功,分别对静止目标和低速运动目标进行定位跟踪,无人机自适应运动的准则是目标定位精度最大化。
3,建立敌方威胁数学模型,评估威胁程度。
4,结合仿真场景实例,综合考虑到敌方威胁和目标定位精度,规划出一条最优的无人机航迹。
上述各流程步骤详细实现方法说明如下:
1.建立单个无人机唯方位角定位模型。
一个运动的无人机通过在不同位置多次对目标信号进行测向,通过多次测向结果进行的交会定位。
假设无人机和目标都在二维平面,目标静止,无人机的速度模值恒定为V,但是速度的方向可以任意改变。假设无人机每次测量的间隔为t,总体观测时间为T。假设在第k(1≤k≤T/t)次测量时,无人机的速度方向与x轴的夹角为β(k),则此时无人机的速度可以表示为:
x · S ( k ) = V c o s β ( k )
y · S ( k ) = V s i n β ( k )
假设无人机在每次测量间隔中进行匀速直线运动,则每次机动转换过程不需要花费额外时间,则第k次测量时无人机的位置为:
x S k = x S 0 + Σ i = 1 k V c o s β ( k )
y S k = y S 0 + Σ i = 1 k V s i n β ( k )
其中(xS0,yS0)为无人机的初始位置,(xSk,ySk)无人机第k次测量时无人机的位置。
第k次测量目标的方位角θk为:
θ k = a r c t a n ( y T - y S k x T - x S k ) + n k , k = 1 , ... , M
其中:(xT,yT)表示目标的位置,nk表示测量误差;
2.无人机自适应运动,对低速运动目标进行定位跟踪,无人机自适应运动的准则是目标定位精度最大化。
目标运动的时候,目标的状态向量为:x(k)=(xTk,yTk,vx,vy)T,其中(xTk,yTk)表示目标的坐标,(vx,vy)表示目标的速度。此时的系统状态模型为:
x(k+1)=Ax(k) (1)
θ ( k ) = a r c t a n ( y T k - y S k x T k - x S k ) + n k , k = 1 , ... , M - - - ( 2 )
其中为系统的状态转移矩阵,nk为测量误差。
其中:公式(1)为目标状态方程,公式(2)为观测方程,采用扩展卡尔曼滤波进行跟踪定位;因为目标状态方程为线性方程,观测方程为非线性方程,所以根据扩展卡尔曼理论,先对观测方程线性化。
测量方程的一般表达式:
z(k)=h[x(k),k]+v(k)
h[·]为非线观测函数,v(k)表示协协方差矩阵为R时的测量噪声,由于只有一个测量参数,所以此时的协方差矩阵即为测量噪声的方差
将观测方程的非线性函数h[·]在状态预测值处展开成泰勒级数,略去最高项,可得
z ( k ) = h [ x ^ ( k ) , k ] + ∂ h ∂ x ^ ( k ) [ x ( k ) - x ^ ( k ) ] + v ( k )
若令
H ( k ) = ∂ h ∂ x ^ ( k )
y ( k ) = h [ x ^ ( k ) , k ] - ∂ h ∂ x ^ ( k ) x ^ ( k )
则可以得到观测方程为:
z(k)=H(k)x(k)+y(k)+v(k)
在求得前一步状态估计值的条件下,以上状态方程中增加了一个非随机作用项y(k);由上式易得带扩展卡尔曼滤波方程为:
在进行扩展卡尔曼滤波的时候,需给定一个估计的初始值和初始的状态估计误差自相关矩阵P(0)
步骤1:状态一步预测,即
x ^ ( k / k - 1 ) = F [ x ( k - 1 ) , k - 1 ]
此时表达式对应于x(k+1)=Ax(k),F[·]即为状态转移矩阵A
步骤2:一步预测误差自相关矩阵:
P(k/k-1)=FP(k-1)FH
其中P(k-1)表示前一时刻的状态估计误差自相关矩阵,在滤波开始时必须给定一个初始的状态估计误差自相关矩阵P(0)。
步骤3:卡尔曼增益
K(k)=P(k/k-1)HH(k)[H(k)P(k/k-1)HH(k)+R(k)]-1
步骤4:状态估计
x ^ ( k ) = x ^ ( k / k - 1 ) + K ( k ) { z ( k ) - h [ x ^ ( k / k - 1 ) , k ] }
步骤5:状态估计误差自相关矩阵
P(k)=[I-K(k)H(k)]P(k/k-1)
I为相应的单位矩阵
步骤6:重复步骤1到5,进行递推滤波计算
在扩展卡尔曼滤波的方法中,涉及非线性函数h[·]在处的泰勒级数展开,因此,它只能在估计误差及一步预测误差较小时才适用。
单站观测器测向定位通过在时间上的积累测量量来实现对目标的定位与跟踪。显然,定位精度与测量精度,定位时间(测量积累时间)和观测器的运动轨迹有关。定义观测器的自适应运动为:在各个时刻k使得min GDOP(k)成立的观测器运动,其中当目标静止时,当目标运动时,因为此时Pk/k为四维矩阵,所以只需要取其包含位置误差的两维即可,此时其中Pk/k(i,i)表示Pk/k第i行第i列的元素。在观测器边运动边进行卡尔曼滤波跟踪定位过程中,由于观测器在k时刻的的运动方向u(k)是不确定的值,在进行卡尔曼滤波的时候,我们所得到的GDOP(k)就是一个关于的u(k)函数,所以我们的算法流程如下:
算法流程:
1,初始化,利用估计器计算初始状态和初始协方差P(0)。
2,已知k时刻观测器的位置Sk=(xSk,ySk)T,通过优化GDOP(k)找到最优的u(k)。
3,观测器运动到Sk+1=(xSk+1,ySk+1)T,测到k+1时刻的目标方位角θ(k+1),估计出 令k=k+1,重复2到4的步骤。
3.建立敌方威胁数学模型,准确评估威胁程度。
实际上,无人机是会被敌方探测到的,无人机的飞行最小安全距离为8KM,无人机在距离目标50KM以内,需要考虑侦查所带来的效益与可能的风险之间的关系。在这种情况下,下面的模型用来模拟风险的代价函数,这个函数是在时间间隔[0,T]的一个积分函数,
J T h r e a t = ∫ 0 T G [ x s ( t ) ] d t
G[xs(t)]是一个已知的空间威胁密度函数,假设目标有M个防御系统所保护,这M个防御系统的坐标已知为再者,假设每个防御系统的威胁系数为防御系统对无人机的威胁与他们的距离成反比,总的威胁时无人机与每个防御系统的总和。所以威胁函数可以建模为:
G [ x s ( t ) ] = Σ i = 1 M P i ( x s ( t ) - x d i ) 2 + ( y s ( t ) - y d i ) 2
在有威胁的情况下,有两种优化方式对威胁进行处理,分别称之为软威胁和硬威胁
(1).把软威胁建模成一个罚函数项加到之前的代价函数中。则优化问题变为
min u G D O P ( k ) + κ ∫ 0 T G [ x s ( t ) ] d t
其中κ是一个归一化的常数用来平衡上式的左后两个部分。
(2).把硬威胁作为约束条件得到新的优化问题
m i n u G D O P ( k )
s.t.gp(xs(t),ys(t))≤0 p=1,…,M
其中gp表示一个硬威胁的函数,具体为:
在我们要分析的问题中,若仅存在一个威胁,它就是在目标的位置。无人机在L外可以任意飞,无人机在距离目标L以内,需要考虑侦查所带来的效益与可能的风险之间的关系,无人机的飞行最小安全距离为1。也就是说无人机飞入目标1范围内就会被摧毁,无人机不能飞入距离目标1的范围内。所以我们可以把优化问题建模为
m i n u G D O P ( k ) + κ ∫ 0 T G [ x s ( t ) ] d t
s . t . l ≤ ( x s ( t ) - x t ) 2 + ( y s ( t ) - y t ) 2
其中
G [ x s ( t ) ] = p t ( x s ( t ) - x d i ) 2 + ( y s ( t ) - y d i ) 2
4.结合仿真场景实例,综合考虑到敌方威胁和目标定位精度,规划出一条最优的无人机航迹。

Claims (3)

1.一种威胁环境下目标定位的无人机最优航路计算方法,该方法包括如下步骤:
步骤1:无人机采用唯方位角的方式对目标进行定位;
步骤2:无人机自适应运动,同时对目标进行定位跟踪,无人机自适应运动的准则是使目标定位精度最大化;
步骤3:根据资料获取敌方威胁的位置,及威胁系数;单独建立各威胁的数学模型,再将各威胁模型相加,获取总的威胁模型,公式如下:
G [ x s ( t ) ] = Σ i = 1 M P ( x s ( t ) - x d i ) 2 + ( y s ( t ) - y d i ) 2 ;
其中Pi表示第i个威胁的威胁系数,表示第i个威胁的位置,(xs(t),ys(t))表示t时刻无人机的位置,M表示有威胁的总个数;
步骤4:结合步骤2的定位精度最大化准则,与步骤3的总威胁模型,获取无人机最优航路。
2.如权利要求1所述的一种威胁环境下目标定位的无人机最优航路计算方法,其特征在于所述步骤2首先获取目标的当前状态及目标的状态转移方程,根据扩展卡尔曼滤波跟踪定位方法获取无人机下一时刻位置的优化方程:当目标静止时,其中GDOP(k)为无人机下一时刻位置的优化方程,Pk/k为扩展卡尔曼滤波的状态估计误差自相关矩阵,trace(Pk/k)为Pk/k的对角线元素之和;当目标运动时,因为此时Pk/k为四维矩阵,所以只需要取其包含位置误差的两维即可,此时其中Pk/k(1,1)是矩阵Pk/k的第1行第1列的元素。
3.如权利要求1所述的一种威胁环境下目标定位的无人机最优航路计算方法,其特征在于所述步骤4获取无人机最优航路的公式为:
G D O P ( k ) + Σ i = 1 M P ( x s ( t ) - x d i ) 2 + ( y s ( t ) - y d i ) 2
该公式取得最小值时,获取的无人机下一刻的位置为最优规划位置。
CN201610146917.1A 2016-03-15 2016-03-15 一种威胁环境下目标定位的无人机最优航路计算方法 Pending CN105841703A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610146917.1A CN105841703A (zh) 2016-03-15 2016-03-15 一种威胁环境下目标定位的无人机最优航路计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610146917.1A CN105841703A (zh) 2016-03-15 2016-03-15 一种威胁环境下目标定位的无人机最优航路计算方法

Publications (1)

Publication Number Publication Date
CN105841703A true CN105841703A (zh) 2016-08-10

Family

ID=56588187

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610146917.1A Pending CN105841703A (zh) 2016-03-15 2016-03-15 一种威胁环境下目标定位的无人机最优航路计算方法

Country Status (1)

Country Link
CN (1) CN105841703A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107608391A (zh) * 2017-09-19 2018-01-19 广东容祺智能科技有限公司 一种无人机实时自动规划航线系统及其方法
CN108759841A (zh) * 2018-05-25 2018-11-06 中国电子科技集团公司第二十九研究所 一种复杂环境下的快速航路规划方法
CN109541960A (zh) * 2017-09-21 2019-03-29 成都紫瑞青云航空宇航技术有限公司 一种用于飞行器数字化战场对抗的系统和方法
CN109991571A (zh) * 2019-04-17 2019-07-09 电子科技大学 远距离分布式无源测向定位的布阵方法
CN110597264A (zh) * 2019-09-25 2019-12-20 中国人民解放军陆军工程大学 无人机反制系统
CN110632941A (zh) * 2019-09-25 2019-12-31 北京理工大学 一种复杂环境下无人机目标跟踪的轨迹生成方法
CN110749322A (zh) * 2019-10-22 2020-02-04 北京航空航天大学 一种基于测速信息的目标跟踪方法
CN111650555A (zh) * 2020-06-10 2020-09-11 电子科技大学 一种基于弹性基线的无人机定位跟踪方法
CN112432649A (zh) * 2020-12-03 2021-03-02 重庆金美通信有限责任公司 一种引入威胁因子的启发式无人机蜂群航迹规划方法
CN114445467A (zh) * 2021-12-21 2022-05-06 贵州大学 基于视觉的四旋翼无人机特定目标识别与追踪系统
CN116520890A (zh) * 2023-07-05 2023-08-01 杭州柯林电气股份有限公司 一种可三维全息巡视的无人机控制平台

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040029558A1 (en) * 2002-08-06 2004-02-12 Hang Liu Method and system for determining a location of a wireless transmitting device and guiding the search for the same
CN102506863A (zh) * 2011-11-07 2012-06-20 北京航空航天大学 一种基于万有引力搜索的无人机航路规划方法
CN102788581A (zh) * 2012-07-17 2012-11-21 哈尔滨工程大学 一种基于改进的微分进化算法的船舶航路规划方法
CN103499809A (zh) * 2013-09-27 2014-01-08 中国人民解放军空军工程大学 一种纯方位双机协同目标跟踪定位路径规划方法
CN103557867A (zh) * 2013-10-09 2014-02-05 哈尔滨工程大学 一种基于稀疏a*搜索的三维多uav协同航迹规划方法
CN104317305A (zh) * 2014-10-23 2015-01-28 中国运载火箭技术研究院 一种面向复杂战场威胁的射前航迹确定方法
CN104573812A (zh) * 2014-07-07 2015-04-29 广西民族大学 一种基于粒子萤火虫群优化算法的无人机航路路径确定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040029558A1 (en) * 2002-08-06 2004-02-12 Hang Liu Method and system for determining a location of a wireless transmitting device and guiding the search for the same
CN102506863A (zh) * 2011-11-07 2012-06-20 北京航空航天大学 一种基于万有引力搜索的无人机航路规划方法
CN102788581A (zh) * 2012-07-17 2012-11-21 哈尔滨工程大学 一种基于改进的微分进化算法的船舶航路规划方法
CN103499809A (zh) * 2013-09-27 2014-01-08 中国人民解放军空军工程大学 一种纯方位双机协同目标跟踪定位路径规划方法
CN103557867A (zh) * 2013-10-09 2014-02-05 哈尔滨工程大学 一种基于稀疏a*搜索的三维多uav协同航迹规划方法
CN104573812A (zh) * 2014-07-07 2015-04-29 广西民族大学 一种基于粒子萤火虫群优化算法的无人机航路路径确定方法
CN104317305A (zh) * 2014-10-23 2015-01-28 中国运载火箭技术研究院 一种面向复杂战场威胁的射前航迹确定方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GU X ,ET AL: "Optimization of trajectories based on APF-PSO with radar threats", 《2011 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC)》 *
叶文等: "《无人飞行器任务规划》", 31 May 2011, 国防工业出版社 *
李万春,黄成峰: "基于角度和多普勒频率的外辐射源定位系统的接收器最优航迹分析", 《雷达学报》 *
石章松: "水下纯方位目标跟踪中的观测器机动航路对定位精度影响分析", 《电光与控制》 *
黄长强等: "《无人作战飞机自主攻击技术》", 30 April 2014, 国防工业出版社 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107608391A (zh) * 2017-09-19 2018-01-19 广东容祺智能科技有限公司 一种无人机实时自动规划航线系统及其方法
CN109541960A (zh) * 2017-09-21 2019-03-29 成都紫瑞青云航空宇航技术有限公司 一种用于飞行器数字化战场对抗的系统和方法
CN108759841A (zh) * 2018-05-25 2018-11-06 中国电子科技集团公司第二十九研究所 一种复杂环境下的快速航路规划方法
CN109991571B (zh) * 2019-04-17 2022-11-18 电子科技大学 远距离分布式无源测向定位的布阵方法
CN109991571A (zh) * 2019-04-17 2019-07-09 电子科技大学 远距离分布式无源测向定位的布阵方法
CN110597264A (zh) * 2019-09-25 2019-12-20 中国人民解放军陆军工程大学 无人机反制系统
CN110632941A (zh) * 2019-09-25 2019-12-31 北京理工大学 一种复杂环境下无人机目标跟踪的轨迹生成方法
CN110749322A (zh) * 2019-10-22 2020-02-04 北京航空航天大学 一种基于测速信息的目标跟踪方法
CN110749322B (zh) * 2019-10-22 2021-05-14 北京航空航天大学 一种基于测速信息的目标跟踪方法
CN111650555B (zh) * 2020-06-10 2022-03-25 电子科技大学 一种基于弹性基线的无人机定位跟踪方法
CN111650555A (zh) * 2020-06-10 2020-09-11 电子科技大学 一种基于弹性基线的无人机定位跟踪方法
CN112432649A (zh) * 2020-12-03 2021-03-02 重庆金美通信有限责任公司 一种引入威胁因子的启发式无人机蜂群航迹规划方法
CN114445467A (zh) * 2021-12-21 2022-05-06 贵州大学 基于视觉的四旋翼无人机特定目标识别与追踪系统
CN116520890A (zh) * 2023-07-05 2023-08-01 杭州柯林电气股份有限公司 一种可三维全息巡视的无人机控制平台
CN116520890B (zh) * 2023-07-05 2023-09-05 杭州柯林电气股份有限公司 一种可三维全息巡视的无人机控制平台

Similar Documents

Publication Publication Date Title
CN105841703A (zh) 一种威胁环境下目标定位的无人机最优航路计算方法
CN107121666A (zh) 一种基于无人飞行器的临近空间运动目标定位方法
CN110530424B (zh) 一种基于目标威胁度的空中目标传感器管理方法
CN104050368B (zh) 系统误差下基于误差补偿的群航迹精细关联算法
CN109613530B (zh) 一种低小慢空中目标多源信息融合的管控方法
CN113342059B (zh) 基于位置和速度误差的多无人机跟踪移动辐射源方法
Esmailifar et al. Cooperative localization of marine targets by UAVs
Huang et al. A novel route planning method of fixed-wing unmanned aerial vehicle based on improved QPSO
CN103499809B (zh) 一种纯方位双机协同目标跟踪定位路径规划方法
Moore Radar cross-section reduction via route planning and intelligent control
Drake et al. Autonomous control of multiple UAVs for the passive location of radars
CN116337086B (zh) 无人机网捕最优捕获位置计算方法、系统、介质及终端
CN117932894A (zh) 一种多模导引头信息融合目标状态估计方法
CN105760813A (zh) 一种基于植物枝根演化行为的无人机目标检测方法
RU2504725C2 (ru) Способ пуска ракет для подвижных пусковых установок
CN114216463A (zh) 一种路径优化目标定位方法及装置、存储介质、无人设备
CN111090079B (zh) 基于无源传感器协同的雷达组网辐射间隔优化控制方法
Ye et al. Tracking algorithm for cruise missile based on IMM-singer model
Gokkul Nath et al. Tracking inbound enemy missile for interception from target aircraft using extended Kalman filter
CN102707278B (zh) 奇异值分解的多目标跟踪方法
Pitre et al. A new performance metric for search and track missions 2: Design and application to UAV search
Fang et al. Tracking error performance of tracking filters based on IMM for threatening target to navel vessel
Lingxiao et al. Effective path planning method for low detectable aircraft
Fu et al. Simulation Analysis on Optimal Guidance Law of Maneuvering Target Based on Multiple Model Adaptive Estimator
Liang et al. An improved UAV path optimization algorithm for target accurately and quickly localization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160810