CN105817638B - 一种Cu@C@g‑C3N4纳米复合物及其制备方法 - Google Patents

一种Cu@C@g‑C3N4纳米复合物及其制备方法 Download PDF

Info

Publication number
CN105817638B
CN105817638B CN201610392773.8A CN201610392773A CN105817638B CN 105817638 B CN105817638 B CN 105817638B CN 201610392773 A CN201610392773 A CN 201610392773A CN 105817638 B CN105817638 B CN 105817638B
Authority
CN
China
Prior art keywords
nano
complex
negative electrode
copper
anode target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610392773.8A
Other languages
English (en)
Other versions
CN105817638A (zh
Inventor
刘先国
崔彩云
沈梦瑶
孙玉萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Technology AHUT
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CN201610392773.8A priority Critical patent/CN105817638B/zh
Publication of CN105817638A publication Critical patent/CN105817638A/zh
Application granted granted Critical
Publication of CN105817638B publication Critical patent/CN105817638B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种Cu@C@g‑C3N4纳米复合物及其制备方法,属于纳米材料制备技术领域。该纳米复合物材料微观结构为Cu@C核壳结构纳米胶囊嵌入g‑C3N4纳米片中,该纳米胶囊的粒径为5~100nm。本发明采用等离子电弧放电法,将铜粉和三聚氰胺粉按一定原子百分比压制成块体作为阳极靶材材料,采用石墨作为阴极材料,引用氩气和甲烷作为工作气体,阴极石墨电极与阳极靶材铜‑三聚氰胺粉末块体之间保持一定距离,阳极与阴极之间起电弧放电,即得Cu@C@g‑C3N4纳米复合物。该纳米复合物可见光催化活性高且制备过程简单、无后处理工序、成本低、易于实现工业化生产。

Description

一种Cu@C@g-C3N4纳米复合物及其制备方法
技术领域
本发明属于材料制备技术领域,具体涉及一种Cu@C@g-C3N4纳米复合物及其制备方法。
背景技术
当前经济社会快速发展,环境污染问题严重影响人类的生存和发展。光催化技术能吸收太阳能降解和矿化环境中的污染物,将太阳能转化为可储存的氢能,因此在解决能源和环境问题方面有着重要的应用前景。光催化技术的核心是高效光催化材料的设计与合成。g-C3N4是一类似石墨结构的新型半导体,具有合适的半导体宽度(约2.7eV)、结构稳定、耐酸碱、无毒且生物兼容性好、成本低及易于化学改性等优点,已经被用于光催化合成反应、光催化降价污染物、光解水产氢和产氧以及氧化还原反应中。g-C3N4光生电子-空穴对分离效率低,从而导致光催化性能较低。异质结构有利于电子和空穴对的分离,从而提高量子效率。纳米金属粒子稳定性差、易团聚等缺陷限制其广泛应用,然而与g-C3N4复合后,其较好的导电性能促进了电子转移,增强了g-C3N4光催化活性。如:专利20120387276.0公开了一种Au/g-C3N4复合型微纳米材料的制备方法。其采用的是将g-C3N4粉末加入氯金酸溶液中制成悬浊液,然后加热,添加柠檬酸钠,搅拌干燥,即得到Au/g-C3N4复合型微纳米材料。专利201310606627.7公开了金属/类石墨氮化碳复合物催化剂及其制备方法。其方法是将类石墨氮化碳制成溶液,在搅拌条件下加入硝酸银,开启光源,进行光还原,得到最终产物。专利201310220362.7公开了载Co介孔石墨相氮化碳可见光催化剂的制备方法和应用。该材料是先将单氰胺通过高温焙烧,得到介孔石墨相氮化碳,然后将钴的前驱体溶液浸入,并于马弗炉内进行二次高温焙烧,制得负载型催化剂 Co/g-C3N4。经检索,Cu@C@g-C3N4纳米复合物未见报导。
发明内容
为克服现有技术的不足,本发明的目的是提供一种Cu@C@g-C3N4纳米复合物及其制备方法。
本发明提供了一种Cu@C@g-C3N4纳米复合物,该纳米复合物微观结构为 Cu@C核壳结构纳米胶囊嵌入g-C3N4纳米片中,该纳米胶囊的粒径为5~100 nm。
本发明还提供了上述Cu@C@g-C3N4纳米复合物的制备方法,该材料是利用等离子体电弧放电技术,在工作气体下原位制备得到;其中:
采用石墨电极为阴极,铜-三聚氰胺粉末块体为阳极靶材,阴极与阳极靶材之间保持2~30mm的距离;电弧放电的电压为10~40V;工作气体为氩气和甲烷气体。
所述阳极靶材为铜-三聚氰胺粉末块体,将铜粉和三聚氰胺粉在压强1Mpa~ 1Gpa下压制成块体作为等离子电弧炉的阳极靶材材料,所述阳极靶材材料中铜所占的质量百分比为70~90%。
所述工作气体氩气的分压为0.01~0.5MPa,甲烷气体的分压为0.01~0.3 MPa。
相对现有技术,本发明的突出优点在于
1)本发明首次制备出了Cu@C@g-C3N4纳米复合物;
2)本发明制备过程条件简单,易于控制,一次性生成产物,为Cu@C@g-C3N4纳米复合物的实际应用提供了条件;
3)本发明所制备Cu@C@g-C3N4纳米复合物,由于Cu@C的存在能较好地增加导电性能,促进了电子转移,使Cu@C@g-C3N4纳米复合物具有良好的光催化活性,对于有机污染物降解提供了有效的解决方法。
附图说明
图1为本发明制备Cu@C@g-C3N4纳米复合物的装置示意图;
图中标号:1、上盖;2、阴极;3、阀;4、阳极靶材;5、观察窗;6、挡板;7、铜阳极;8、夹头;9、石墨坩埚;10、直流脉动电源;a、冷却水;b、氩气;c、甲烷气。
图2为本发明实施例1制备的Cu@C@g-C3N4纳米复合物的X-射线衍射 (XRD)图谱;
根据JCPDS PDF卡片,可以检索出纳米复合物主相为Cu晶相构成。2θ=27.5°和13°处的两个峰为g-C3N4(JCPDS卡,No.87-1562)的特征峰,由于C处于外壳,所以XRD无法检测出C相。
图3为本发明实施例1制备的Cu@C@g-C3N4纳米复合物的透射电子显微镜(TEM)图像;
从图中可以看出Cu@C纳米胶囊分布在g-C3N4纳米片中,其纳米胶囊的粒径为5~100nm。
图4为本发明实施例1所制备的Cu@C@g-C3N4纳米复合物的高分辨透射电子显微镜图像;
从图中可以看出所得Cu@C@g-C3N4纳米复合物为Cu@C核壳结构纳米胶囊嵌入g-C3N4纳米片中。
图5为本发明实施例1中制备的Cu@C@g-C3N4纳米复合物和g-C3N4对甲基橙的降解性能比较图(用量0.03g/25ml甲基橙溶液);
从图中可以看到所得Cu@C@g-C3N4纳米复合物的光催化性能相对g-C3N4有明显的提高。
具体实施方式
下面结合实施例对本发明作进一步的描述,但本发明不局限于下述实施例。
实施例1
将图1所示的装置上盖1打开,用石墨作阴极2固定在夹头8上,所消耗阳极靶材4的成分为纯铜粉与三聚氰胺粉(质量比90:10)压成的块体,放在通冷却水的铜阳极7上,在铜阳极7和阳极靶材4之间是石墨坩埚9。阴极2与阳极靶材4之间保持30mm的距离。盖上装置上盖1,通冷却水a,通过阀3把整个工作室抽真空后,通入氩气b和甲烷气c,氩气的分压为0.5MPa,甲烷气的分压为0.3MPa,接通直流脉动电源10,电压为40V,弧光放电过程中调节工作电流与电压保持相对稳定,制得Cu@C@g-C3N4纳米复合物。该纳米复合物微观结构为Cu@C核壳结构纳米胶囊嵌入g-C3N4纳米片,其中:Cu@C纳米胶囊的粒径为5~100nm,如图3、图4所示。测试该纳米复合物对甲基橙的光催化性能,如图5所示,发现其光催化性能相对g-C3N4有明显的提高。
实施例2
将图1所示的装置上盖1打开,用石墨作阴极2固定在夹头8上,所消耗阳极靶材4的成分为纯铜粉与三聚氰胺粉(质量比70:30)压成的块体,放在通冷却水的铜阳极7上,在铜阳极7和阳极靶材4之间是石墨坩埚9。阴极2与阳极靶材4之间保持30mm的距离。盖上装置上盖1,通冷却水a,通过阀3把整个工作室抽真空后,通入氩气b和甲烷气c,氩气的分压为0.5MPa,甲烷气的分压为0.3MPa,接通直流脉动电源10,电压为10V,弧光放电过程中调节工作电流与电压保持相对稳定,制得Cu@C@g-C3N4纳米复合物。该纳米复合物微观结构为Cu@C核壳结构纳米胶囊嵌入g-C3N4纳米片,其中:Cu@C纳米胶囊的粒径为5~100nm。
实施例3
将图1所示的装置上盖1打开,用石墨作阴极2固定在夹头8上,所消耗阳极靶材4的成分为纯铜粉与三聚氰胺粉(质量比90:10)压成的块体,放在通冷却水的铜阳极7上,在铜阳极7和阳极靶材4之间是石墨坩埚9。阴极2与阳极靶材4之间保持30mm的距离。盖上装置上盖1,通冷却水a,通过阀3把整个工作室抽真空后,通入氩气b和甲烷气c,氩气的分压为0.5MPa,甲烷气的分压为0.3MPa,接通直流脉动电源10,电压为20V,弧光放电过程中调节工作电流与电压保持相对稳定,制得Cu@C@g-C3N4纳米复合物。该纳米复合物微观结构为Cu@C核壳结构纳米胶囊嵌入g-C3N4纳米片,其中:Cu@C纳米胶囊的粒径为5~100nm。
实施例4
将图1所示的装置上盖1打开,用石墨作阴极2固定在夹头8上,所消耗阳极靶材4的成分为纯铜粉与三聚氰胺粉(质量比80:20)压成的块体,放在通冷却水的铜阳极7上,在铜阳极7和阳极靶材4之间是石墨坩埚9。阴极2与阳极靶材4之间保持30mm的距离。盖上装置上盖1,通冷却水a,通过阀3把整个工作室抽真空后,通入氩气b和甲烷气c,氩气的分压为0.2MPa,甲烷气的分压为0.2MPa,接通直流脉动电源10,电压为30V,弧光放电过程中调节工作电流与电压保持相对稳定,制得Cu@C@g-C3N4纳米复合物。该纳米复合物微观结构为Cu@C核壳结构纳米胶囊嵌入g-C3N4纳米片,其中:Cu@C纳米胶囊的粒径为5~100nm。
实施例5
将图1所示的装置上盖1打开,用石墨作阴极2固定在夹头8上,所消耗阳极靶材4的成分为纯铜粉与三聚氰胺粉(质量比80:20)压成的块体,放在通冷却水的铜阳极7上,在铜阳极7和阳极靶材4之间是石墨坩埚9。阴极2与阳极靶材4之间保持30mm的距离。盖上装置上盖1,通冷却水a,通过阀3把整个工作室抽真空后,通入氩气b和甲烷气c,氩气的分压为0.01MPa,甲烷气的分压为0.01MPa,接通直流脉动电源10,电压为40V,弧光放电过程中调节工作电流与电压保持相对稳定,制得Cu@C@g-C3N4纳米复合物。该纳米复合物微观结构为Cu@C核壳结构纳米胶囊嵌入g-C3N4纳米片,其中:Cu@C纳米胶囊的粒径为5~100nm。

Claims (1)

1.一种Cu@C@g-C3N4纳米复合物,其特征在于,该纳米复合物微观结构为Cu@C核壳结构纳米胶囊嵌入g-C3N4纳米片中,该纳米胶囊的粒径为5~100nm;
该纳米复合物是利用等离子体电弧放电技术,在工作气体下原位制备得到;其中:
采用石墨电极为阴极,铜-三聚氰胺粉末块体为阳极靶材,阴极与阳极靶材之间保持2~30mm的距离;电弧放电的电压为10~40V;所述工作气体为氩气和甲烷气体;所述阳极靶材中铜所占的质量百分比为70~90%;所述氩气的分压为0.01~0.5MPa,甲烷气体的分压为0.01~0.3MPa。
CN201610392773.8A 2016-05-31 2016-05-31 一种Cu@C@g‑C3N4纳米复合物及其制备方法 Expired - Fee Related CN105817638B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610392773.8A CN105817638B (zh) 2016-05-31 2016-05-31 一种Cu@C@g‑C3N4纳米复合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610392773.8A CN105817638B (zh) 2016-05-31 2016-05-31 一种Cu@C@g‑C3N4纳米复合物及其制备方法

Publications (2)

Publication Number Publication Date
CN105817638A CN105817638A (zh) 2016-08-03
CN105817638B true CN105817638B (zh) 2018-01-02

Family

ID=56532572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610392773.8A Expired - Fee Related CN105817638B (zh) 2016-05-31 2016-05-31 一种Cu@C@g‑C3N4纳米复合物及其制备方法

Country Status (1)

Country Link
CN (1) CN105817638B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108906048B (zh) * 2018-06-08 2021-04-23 华南农业大学 一种具有核壳结构的碳包铜纳米粒子及其制备方法和应用
CN109012733B (zh) * 2018-09-06 2020-07-24 东北大学 一种g-C3N4包覆金属的核壳结构纳米复合物的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567224A (zh) * 2009-04-29 2009-10-28 中国科学院金属研究所 一种碳包铁钴纳米吸波材料的制备方法
CN103586064A (zh) * 2013-11-26 2014-02-19 中国科学院福建物质结构研究所 金属/类石墨氮化碳复合物催化剂及其制备方法
CN103599781A (zh) * 2013-11-28 2014-02-26 太原理工大学 一种核壳型碳包覆纳米铜催化剂的制备方法
CN103736513A (zh) * 2014-01-03 2014-04-23 北京工业大学 一种TiO2(B)@g-C3N4复合纳米片光催化剂的制备方法
JP5582527B2 (ja) * 2010-03-23 2014-09-03 独立行政法人産業技術総合研究所 グラファイト状窒化炭素の製造方法
JP5711582B2 (ja) * 2011-03-28 2015-05-07 株式会社ダイセル 光触媒、及びそれを用いた有機化合物の酸化方法
CN104646045A (zh) * 2015-02-15 2015-05-27 南京工程学院 一种CuO/mpg-C3N4复合材料及其制备方法和应用
CN104707642A (zh) * 2015-02-15 2015-06-17 南京工程学院 一种g-C3N4/CuO复合材料及其制备方法和应用
CN104888832A (zh) * 2015-05-15 2015-09-09 武汉理工大学 一种金属/金属氧化物/g-C3N4复合光催化材料及其制备方法
CN105289690A (zh) * 2015-11-11 2016-02-03 刘明昊 一种CuS@g-C3N4复合可见光催化剂及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101356117B1 (ko) * 2012-08-03 2014-02-11 한국과학기술원 유무기 광촉매 복합체 및 분무열분해법을 이용한 유무기 광촉매 복합체의 제조방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567224A (zh) * 2009-04-29 2009-10-28 中国科学院金属研究所 一种碳包铁钴纳米吸波材料的制备方法
JP5582527B2 (ja) * 2010-03-23 2014-09-03 独立行政法人産業技術総合研究所 グラファイト状窒化炭素の製造方法
JP5711582B2 (ja) * 2011-03-28 2015-05-07 株式会社ダイセル 光触媒、及びそれを用いた有機化合物の酸化方法
CN103586064A (zh) * 2013-11-26 2014-02-19 中国科学院福建物质结构研究所 金属/类石墨氮化碳复合物催化剂及其制备方法
CN103599781A (zh) * 2013-11-28 2014-02-26 太原理工大学 一种核壳型碳包覆纳米铜催化剂的制备方法
CN103736513A (zh) * 2014-01-03 2014-04-23 北京工业大学 一种TiO2(B)@g-C3N4复合纳米片光催化剂的制备方法
CN104646045A (zh) * 2015-02-15 2015-05-27 南京工程学院 一种CuO/mpg-C3N4复合材料及其制备方法和应用
CN104707642A (zh) * 2015-02-15 2015-06-17 南京工程学院 一种g-C3N4/CuO复合材料及其制备方法和应用
CN104888832A (zh) * 2015-05-15 2015-09-09 武汉理工大学 一种金属/金属氧化物/g-C3N4复合光催化材料及其制备方法
CN105289690A (zh) * 2015-11-11 2016-02-03 刘明昊 一种CuS@g-C3N4复合可见光催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN105817638A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
Zhong et al. Photocatalytic H2 evolution on CdS nanoparticles by loading FeSe nanorods as co-catalyst under visible light irradiation
Cheng et al. Boosting the photocatalytic activity of CdLa2S4 for hydrogen production using Ti3C2 MXene as a co-catalyst
Wei et al. Enhanced photocatalytic CO2 reduction activity of Z-scheme CdS/BiVO4 nanocomposite with thinner BiVO4 nanosheets
Sun et al. High-crystalline/amorphous g-C3N4 S-scheme homojunction for boosted photocatalytic H2 production in water/simulated seawater: Interfacial charge transfer and mechanism insight
Shao et al. A novel magnetically separable CoFe2O4/Cd0. 9Zn0. 1S photocatalyst with remarkably enhanced H2 evolution activity under visible light irradiation
Liu et al. Hetero-phase MoC-Mo 2 C nanoparticles for enhanced photocatalytic H 2-production activity of TiO 2
Zhou et al. Ultra-thin SiC layer covered graphene nanosheets as advanced photocatalysts for hydrogen evolution
Kuai et al. Rational construction of a CdS/reduced graphene oxide/TiO 2 core–shell nanostructure as an all-solid-state Z-scheme system for CO 2 photoreduction into solar fuels
Shi et al. A gC 3 N 4/nanocarbon/ZnIn 2 S 4 nanocomposite: an artificial Z-scheme visible-light photocatalytic system using nanocarbon as the electron mediator
Yuan et al. Enhanced photocatalytic H 2 evolution over noble-metal-free NiS cocatalyst modified CdS nanorods/gC 3 N 4 heterojunctions
Zhou et al. Metal-free carbon nanotube–SiC nanowire heterostructures with enhanced photocatalytic H 2 evolution under visible light irradiation
Qiao et al. CdS nanoparticles modified Ni@ NiO spheres as photocatalyst for oxygen production in water oxidation system and hydrogen production in water reduction system
Wang et al. In-situ preparation of mossy tile-like ZnIn2S4/Cu2MoS4 S-scheme heterojunction for efficient photocatalytic H2 evolution under visible light
Cheng et al. Synergism of 1D CdS/2D modified Ti3C2Tx Mxene heterojunctions for boosted photocatalytic hydrogen production
Wang et al. In situ loading of ZnIn2S4 nanosheets onto S doped g-C3N4 nanosheets to construct type II heterojunctions for improving photocatalytic hydrogen production
CN104401948A (zh) 一种单层石墨型氮化碳纳米片溶液的制备方法
Li et al. Nanoflower-like Ti3CN@ TiO2/CdS heterojunction photocatalyst for efficient photocatalytic water splitting
Hu et al. In2S3 nanoparticles coupled to In-MOF nanorods: The structural and electronic modulation for synergetic photocatalytic degradation of Rhodamine B
Chen et al. Eco-designed electrocatalysts for water splitting: A path toward carbon neutrality
CN108855173B (zh) 一种光电催化分解水产氢的方法及其中使用的等离子体催化剂和制法
CN106391013A (zh) 电化学还原二氧化碳为一氧化碳的催化剂及其制备方法
Li et al. Design and preparation of a ternary MoC-QDs/C/Mo–S heterojunction for enhanced eosin Y-sensitized photocatalytic hydrogen evolution
Hu et al. Simple solid-state synthesis and improved performance of Ni (OH) 2-TiO2 nanocomposites for photocatalytic H2 production
CN105817638B (zh) 一种Cu@C@g‑C3N4纳米复合物及其制备方法
CN105803399B (zh) 一种Ti@C@g-C3N4纳米复合物及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180102

Termination date: 20190531

CF01 Termination of patent right due to non-payment of annual fee