CN105810888B - 一种电化学贮钠的复合电极及其制备方法 - Google Patents

一种电化学贮钠的复合电极及其制备方法 Download PDF

Info

Publication number
CN105810888B
CN105810888B CN201610190505.8A CN201610190505A CN105810888B CN 105810888 B CN105810888 B CN 105810888B CN 201610190505 A CN201610190505 A CN 201610190505A CN 105810888 B CN105810888 B CN 105810888B
Authority
CN
China
Prior art keywords
graphene
sncos
electrochemistry
combination electrode
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610190505.8A
Other languages
English (en)
Other versions
CN105810888A (zh
Inventor
陈卫祥
叶剑波
陈倩男
马琳
王臻
高云芳
苏利伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201610190505.8A priority Critical patent/CN105810888B/zh
Publication of CN105810888A publication Critical patent/CN105810888A/zh
Application granted granted Critical
Publication of CN105810888B publication Critical patent/CN105810888B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种电化学贮钠的复合电极及其制备方法,该复合电极用SnCoS4复合纳米晶‑石墨烯复合材料作为电化学贮钠活性物质。其制备步骤是:在氧化石墨烯存在的条件下,通过SnCl4、CoCl2和L‑半胱氨酸的混合溶液在水热条件下的水热反应,制备得到SnCoS4复合纳米晶‑石墨烯的复合材料,将得到的SnCoS4复合纳米晶‑石墨烯的复合材料作为电化学贮钠活性物质,与乙炔黑、羧甲基纤维素的乙醇和水的混合溶液充分搅拌混合调成均匀的糊状物,涂到铜箔上,烘干并滚压得到电化学贮钠的复合电极。该复合电极具有电化学贮钠可逆比容量高,循环性能稳定和显著增强的高倍率充放电特性。

Description

一种电化学贮钠的复合电极及其制备方法
技术领域
本发明涉及一种电化学贮钠复合电极及其制备方法,尤其涉及用SnCoS4复合纳米晶-石墨烯复合材料作为电化学贮钠活性物质的复合电极及其制备方法,属于钠离子电极材料及其在电化学贮钠复合电极应用的技术领域。
背景技术
锂离子电池以其具有高的比容量和长的循环寿命等优点在移动通讯、电动助力车、电动汽车和储能等领域得到了广泛的应用,但是,锂离子电池的大量应用导致锂资源的相对短缺和锂资源原材料的价格不断上涨,如碳酸锂的价格在过去一年已经上涨了2倍左右。与锂资源相比,钠具有更加丰富的资源和价格低廉的优势,因此,最近关于钠离子电池及其电化学贮钠材料和电极的研发引起了人们极大兴趣。SnS2纳米材料具有较高的电化学贮钠容量,在钠离子电池中具有良好的应用前景。但是,由于其较低的电导率和充放电过程中体积较大的变化,导致用SnS2纳米材料制备的电化学贮钠电极在充放电过程中其电化学贮钠容量会快速衰减。硫化钴纳米材料也具有电化学贮钠性能,但是单一的硫化钴纳米材料贮钠容量较低,充放电循环稳定性也较差。
石墨烯具有高的电导率和荷电迁移率、极大的比表面积、良好的柔性和化学稳定性。通过将金属氧化物或硫化物纳米材料与石墨烯复合所制备的复合材料不经具有搞的电化学贮钠容量,并具有增强的充放电循环性能和高倍率充放电特性。如SnS2-石墨烯复合材料,硫化钴-石墨烯复合材料等均显示了比单纯SnS2或硫化钴具有更高的电化学贮钠容量和更稳定的充放电循环性能。但是这些复合材料制备的复合电极的电化学贮钠性能还有进一步改善的空间。
本发明提供了一种电化学贮钠复合电极及其制备方法,该复合电极用SnCoS4复合纳米晶-石墨烯的复合材料为电化学贮钠活性物质。与用SnS2-石墨烯和CoS2-石墨烯复合材料为电化学贮钠活性物质制备的复合电极相比,本发明用SnCoS4复合纳米晶-石墨烯的复合材料为电化学活性物质制备的电化学贮钠复合电极具有更高的电化学贮钠比容量和显著增强的高倍率充放电特性。但是,到目前为止,这种用SnCoS4复合纳米晶-石墨烯的复合材料为电化学贮钠活性物质的复合电极及其制备方法还未见公开报道。
发明内容
本发明的目的在于提供一种电化学贮钠复合电极及其制备方法,该复合电极的电化学贮钠活性物质为SnCoS4复合纳米晶-石墨烯的复合材料,该复合材料是由SnCoS4复合纳米晶负载在石墨烯上形成,其中SnCoS4复合纳米晶与石墨烯的物质的量之比为1:2,复合电极的组分及其质量百分比含量为:SnCoS4复合纳米晶-石墨烯的复合材料为80%,乙炔黑10%,羧甲基纤维素10%。该电化学贮钠复合电极的制备方法的步骤如下:
(1)将计量的SnCl4·5H2O、CoCl2·6H2O和L-半胱氨酸加入到去离子水中,并充分搅拌,得到均匀的混合溶液,溶液中SnCl4与CoCl2的物质的量之比为1:1,L-半胱氨酸的物质的量为SnCl4与CoCl2的物质的量之和的5倍,然后将氧化石墨烯超声分散在去离子水中,得到均匀的悬浮液,在不断搅拌下将氧化石墨烯悬浮液滴加到上述混合溶液中,并继续搅拌2h,氧化石墨烯的物质的量(以碳的物质的量计算)等于SnCl4与CoCl2的物质的量之和的2倍,最后将得到的反应混合物转移到带有聚四氟乙烯内胆的水热反应釜中,密封,在180℃的恒温箱中反应24h,待自然冷却至室温后,将水热得到的沉淀产物离心分离,并用去离子水和无水乙醇充分洗涤,最后在80℃下真空干燥12h后得到SnCoS4复合纳米晶-石墨烯复合材料;
(2)将上述制备得到的SnCoS4复合纳米晶-石墨烯复合材料作为复合电极的电化学贮钠活性物质,与乙炔黑及质量分数10%羧甲基纤维素的乙醇和水的混合溶液(乙醇和水的的体积比为1:1)在搅拌下充分混合调成均匀的糊状物,各组分质量百分比为:SnCoS4复合纳米晶-石墨烯复合材料80%,乙炔黑10%,羧甲基纤维素10%,将该糊状物均匀地涂到作为集流体的铜箔上,干燥,滚压后得到电化学贮钠复合电极。
与现有技术比较,本发明用SnCoS4复合纳米晶-石墨烯的复合材料为电化学贮钠活性物质制备的电化学贮钠复合电极及其制备方法具有以下显著的优点和效果:尽管研究表明,与单纯的SnS2或流化钴纳米材料相比较,用SnS2-石墨烯复合材料和流化钴-石墨烯复合材料为电化学贮钠活性物质制备的复合电极具有更高的电化学贮钠比容量,其电化学贮钠比容量可以达到600-700mAh/g(基于电化学贮钠活性物质的质量),并具有改善的充放电循环稳定性能和改善的高倍率充放电特性,但是其电化学贮钠性能还具有进一步提升的空间。本发明的结果表明,用SnCoS4复合纳米晶-石墨烯的复合材料为电化学贮钠化学物质制备的复合电极比用SnS2-石墨烯复合材料和SnS2-石墨烯复合材料制备的复合电极具有更高的电化学贮钠比容量和显著增强的高倍率充放电特性。其原因是由于:SnS2为典型的层状结构晶体,而CoS2晶体不是层状的,这两种不同结构的晶体在水热溶液中同时产生时,互相存在相互间的干扰,导致生成的SnCoS4与SnS2或CoS2晶体都不相同。这种不同晶体材料在水热溶液中的生长的相互影响导致所得到的负载在石墨烯表面的SnCoS4纳米粒子具有更小的尺寸,进一步还发现石墨烯上负载的SnCoS4复合纳米晶粒子是由更细的纳米晶粒子组成复合纳米晶。这种SnCoS4复合纳米晶与石墨烯复合形成的复合材料作为电化学贮钠活性化学物质制备的复合电极可以显示进一步增强的电化学贮钠性能,尤其是显示了比SnS2-石墨烯和CoS2-石墨烯复合材料复合电极具有更高的电化学贮钠比容量和显著增强的高倍率充放电特性。
附图说明
图1:本发明制备的(a)SnS2/石墨烯复合材料,(b)CoS2/石墨烯复合材料,(c)SnCoS4复合纳米晶-石墨烯复合材料的XRD图;
图2:本发明制备的(a)SnS2/石墨烯复合材料,(b)CoS2/石墨烯复合材料和(c)SnCoS4复合纳米晶-石墨烯复合材料的SEM形貌照片;
图3:本发明制备的(a,b)SnS2/石墨烯复合材料,(c,d)CoS2/石墨烯复合材料和(e,f)SnCoS4复合纳米晶-石墨烯复合材料的TEM/HRTEM照片。
具体实施方式
以下结合实施例进一步说明本发明。
(1)SnCoS4复合纳米晶-石墨烯复合材料的水热法制备:将1.5mmol的SnCl4·5H2O、1.5mmol的CoCl2·6H2O和15.0mmol L-半胱氨酸加入到100mL去离子水中,并充分搅拌形成均匀的混合溶液;将6.0mmol的氧化石墨烯超声分散到60mL去离子水中,得到均匀的悬浮液,在不断搅拌下,将氧化石墨烯的悬浮液滴加到前面的混合溶液中,室温下再搅拌2h;将最后得到的混合反应物转移到200mL带有聚四氟乙烯内胆的水热反应釜中,密封,在180℃的恒温箱中反应24h,待自然冷却至室温后,将沉淀离心分离,并用去离子水和无水乙醇充分洗涤,将得到水热黑色产物在80℃下真空干燥12h后,最后准备的得到SnCoS4复合纳米晶-复合纳米晶石墨烯复合材料;
(2)将上述制备得到的SnCoS4复合纳米晶-石墨烯复合材料作为复合电极的电化学贮钠活性物质,与乙炔黑质量分数为10%羧甲基纤维素的乙醇和水的混合溶液(乙醇和水的的体积比为1:1)在搅拌下充分混合调成均匀的糊状物,各组分质量百分比为:SnCoS4复合纳米晶-石墨烯复合材料80%,乙炔黑10%,羧甲基纤维素10%,将该糊状物均匀地涂到作为集流体的铜箔上,干燥,滚压后得到电化学贮钠复合电极。
对比例:作为对比,用类似的水热方法制备了SnCoS4纳米材料,并以其作为电化学贮钠活性物质制备相应的电化学贮钠电极。
(1)SnCoS4纳米材料及其水热制备:将1.5mmol的SnCl4·5H2O、1.5mmol的CoCl2·6H2O和15.0mmol L-半胱氨酸加入到160mL去离子水中,并充分搅拌形成均匀的混合溶液;将得到的该混合溶液转移到200mL带有聚四氟乙烯内胆的水热反应釜中,密封,在180℃的恒温箱中反应24h,待自然冷却至室温后,将沉淀离心分离,并用去离子水和无水乙醇充分洗涤,将得到水热黑色产物在80℃下真空干燥12h后,最后制备得到SnCoS4纳米材料;
(2)将上述制备得到的SnCoS4纳米材料作为复合电极的电化学贮钠活性物质,与乙炔黑及质量分数为10%羧甲基纤维素的乙醇和水的混合溶液(乙醇和水的的体积比为1:1)在搅拌下充分混合调成均匀的糊状物,各组分质量百分比为:SnCoS4纳米材料80%,乙炔黑10%,羧甲基纤维素10%,将该糊状物均匀地涂到作为集流体的铜箔上,干燥,滚压后得到电化学贮钠复合电极。
对比例:作为对比,用类似的水热方法制备了SnS2/石墨烯复合材料,并用其作为电化学贮钠活性物质制备电化学贮钠复合电极。
(1)SnS2/石墨烯复合材料及其水热制备:将3.0mmol的SnCl4·5H2O和15.0mmol L-半胱氨酸加入到100mL去离子水中,并充分搅拌形成均匀的溶液;将6.0mmol的氧化石墨烯超声分散到60mL去离子水中,得到均匀的悬浮液,在不断搅拌下,将氧化石墨烯的悬浮液滴加到前面的溶液中,室温下再搅拌2h;将最后得到的混合反应物转移到200mL带有聚四氟乙烯内胆的水热反应釜中,密封,在180℃的恒温箱中反应24h,待自然冷却至室温后,将沉淀离心分离,并用去离子水和无水乙醇充分洗涤,将得到水热黑色产物在80℃下真空干燥12h后,最后准备的得到SnS2/石墨烯复合材料;
(2)将上述制备得到的SnS2/石墨烯复合材料作为复合电极的电化学贮钠活性物质,与乙炔黑及质量分数为10%羧甲基纤维素的乙醇和水的混合溶液(乙醇和水的的体积比为1:1)在搅拌下充分混合调成均匀的糊状物,各组分质量百分比为:SnS2/石墨烯复合材料为80%,乙炔黑10%,羧甲基纤维素10%,将该糊状物均匀地涂到作为集流体的铜箔上,干燥,滚压后得到电化学贮钠复合电极。
对比例:作为对比,用类似的水热方法制备了CoS2/石墨烯复合材料,并用其作为电化学贮钠活性物质制备电化学贮钠电极。
(1)CoS2/石墨烯复合材料及其水热制备:将3.0mmol的CoCl2·6H2O和15.0mmol L-半胱氨酸加入到50mL去离子水中,并充分搅拌形成均匀的溶液;将6.0mmol的氧化石墨烯超声分散到60mL去离子水中,得到均匀的悬浮液,在不断搅拌下,将氧化石墨烯的悬浮液滴加到前面的溶液中,室温下再搅拌2h;将最后得到的混合反应物转移到200mL带有聚四氟乙烯内胆的水热反应釜中,密封,在180℃的恒温箱中反应24h,待自然冷却至室温后,将沉淀离心分离,并用去离子水和无水乙醇充分洗涤,将得到水热黑色产物在80℃下真空干燥12h后,最后准备CoS2/石墨烯复合材料;
(2)将上述制备得到的CoS2/石墨烯复合材料作为复合电极的电化学贮钠活性物质,与乙炔黑及质量分数为10%羧甲基纤维素的乙醇和水的混合溶液(乙醇和水的的体积比为1:1)在搅拌下充分混合调成均匀的糊状物,各组分质量百分比为:CoS2/石墨烯复合材料为80%,乙炔黑10%,羧甲基纤维素10%,将该糊状物均匀地涂到作为集流体的铜箔上,干燥,滚压后制备得到电化学贮钠复合电极。
用X-射线衍射(XRD),扫描电镜(SEM),透射电镜/高分辨透射电镜(TEM/HRTEM)、元素能谱仪(EDS)和XPS对上述制备得到SnCoS4复合纳米晶-石墨烯复合材料,SnCoS4纳米材料,SnS2-石墨烯复合材料和CoS2-石墨烯复合材料进行表征。
电化学贮钠性能测试:用上述制备得到电化学贮钠复合电极为工作电极,在充满氩气的手套箱中组装成钠离子电池的测试电池,金属钠片为对电极和参比电极,玻璃纤维膜为隔膜,1.0mol/L NaPF6的EC/DMC溶液(体积比1:1)为电解液。室温下的恒电流充放电实验测试和比较上述制备得到的复合电极的电化学贮钠性能,充放电电流在100mA/g或1000mA/g,充放电电压区间为3.0~0.005V。
元素组成分析表明,SnCoS4复合纳米晶-石墨烯复合材料中Sn:Co:S的物质的量之比为1:0.96:3.97,符合SnCoS4;SnS2/石墨烯中Sn:S的物质的量之比为1:1.96,符合SnS2;CoS2/石石墨烯中Co:S的物质的量之比为1:2.03,符合CoS2
图1的XRD表征结果显示,SnS2/石墨烯复合材料显示了较强的衍射峰,并符合SnS2标准粉末衍射卡片(JCPDS Card No.23-0677),说明复合材料中SnS2为典型的层状结构;CoS2/石墨烯复合材料也显示了较强的衍射峰,并符合CoS2的标准粉末衍射卡片(JCPDSno.41-1471)。SnCoS4/石墨烯复合纳米在2θ=9.32°,17.78°,28.92°,32.56°和51.22°显示了较低强度的衍射峰,其强度大大低于SnS2/石墨烯复合纳米材和CoS2/石墨烯复合纳米材的,说明了负载在石墨烯上的SnCoS4复合纳米晶粒子具有更小的尺寸,另外SnCoS4复合纳米晶-石墨烯复合材料也没有显示属于SnS2层状结构的(001)峰。
图2的SEM形貌表征显示,SnS2/石墨烯复合材料显示片状的SnS2均匀地分散在褶皱的石墨烯纳米片表面;CoS2/石墨烯复合材料显示尺寸约100nm的类似球状的CoS2纳米粒子被包裹或分散在石墨烯纳米片上;SnCoS4复合纳米晶-石墨烯复合材料显示尺寸更小的(约35nm)的SnCoS4复合纳米晶粒子被包裹或分散在石墨烯纳米片。
图3的TEM/HRTEM表征结果显示,在SnS2/石墨烯复合材料中,层状结构的SnS2纳米片均匀的分散在褶皱的石墨烯纳米片表面,其(001)、(100)、(101)面的层间距分别为0.59、0.32和0.27nm,与层状结构的SnS2晶体相符合;在CoS2/石墨烯复合材料中,CoS2纳米粒子分散在石墨烯纳米片上,其(200)、(210)、(311)面的层间距分别为0.27、0.25、0.17nm,与CoS2晶体相符合;在SnCoS4复合纳米晶-石墨烯复合材料中,SnCoS4复合纳米晶粒子具有更细的尺寸,并均匀地分散在石墨烯纳米片中;图3(f)还进一步表明SnCoS4复合纳米晶粒子显示了有更加细小的纳米晶组成的复合纳米晶,其尺寸约为3-6nm。
电化学测试结果显示:
室温下在100mA/g充放电电流密度下,SnCoS4复合纳米晶-石墨烯复合材料制备的复合电极,其电化学贮钠可逆比容量初始达到1020mAh/g,100次循环后,其可逆比容量为1015mAh/g,显示了优异的循环稳定性能;与之相比,SnS2/石墨烯复合材料电极的可逆储锂比容量初始达到650mAh/g,100次循环后为595mAh/g;CoS2/石墨烯复合材料电极的可逆容量初始达到612mAh/g,100次循环后为553mAh/g;;SnCoS4纳米材料的电化学贮钠的可逆比容量初始达到850mAh/g,100次循环后为312mAh/g。电化学测试结果说明:SnCoS4复合纳米晶-石墨烯复合材料制备的复合电极的电化学贮钠可逆比容量均明显高于SnS2/石墨烯、CoS2/石墨烯和SnCoS4制备的电极,并具有优异的充放电循环稳定性能。
在充放电电流密度1000mA/g时,上述电化学贮钠复合电极的充放电倍率特性的测试结果为:SnCoS4复合纳米晶-石墨烯复合材料制备的复合电极的电化学贮钠的倍率特性为852mAh/g;SnS2/石墨烯复合材料制备电极的电化学贮钠的倍率特性为563mAh/g;CoS2/石墨烯复合材料制备电极的电化学贮钠的倍率特性为436mAh/g;SnCoS4制备电极的电化学贮钠的倍率特性为325mAh/g。其测试结果说明:与SnS2/石墨烯、CoS2/石墨烯和SnCoS4制备的电极相比,SnCoS4复合纳米晶-石墨烯复合材料制备的复合电极显示了显著增强的电化学贮钠倍率特性。
因此,电化学测试结果表明:与用SnS2/石墨烯或CoS2/石墨烯复合材料制备的复合电极相比,用SnCoS4复合纳米晶-石墨烯复合材料制备的电化学贮钠复合电极不仅具有更高的电化学贮钠可逆比容量和显著增强的高倍率充放电特性,并具有优异的充放电循环性能。

Claims (2)

1.一种电化学贮钠复合电极,其特征在于,复合电极的电化学贮钠活性物质为SnCoS4复合纳米晶-石墨烯的复合材料,该复合材料是由SnCoS4复合纳米晶负载在石墨烯上形成,其中SnCoS4复合纳米晶与石墨烯的物质的量之比为1∶2,复合电极的组分及其质量百分比含量为:SnCoS4复合纳米晶-石墨烯的复合材料为80%,乙炔黑10%,羧甲基纤维素10%。
2.一种权利要求1所述的电化学贮钠复合电极的制备方法,其特征在于,所述制备方法的步骤如下:
(1)将计量的SnCl4·5H2O、CoCl2·6H2O和L-半胱氨酸加入到去离子水中,并充分搅拌,得到均匀的混合溶液,溶液中SnCl4与CoCl2的物质的量之比为1∶1,L-半胱氨酸的物质的量为SnCl4与CoCl2的物质的量之和的5倍,然后将氧化石墨烯超声分散在去离子水中,得到均匀的悬浮液,在不断搅拌下将氧化石墨烯悬浮液滴加到上述混合溶液中,并继续搅拌2h,氧化石墨烯的物质的量以碳的物质的量计算等于SnCl4与CoCl2的物质的量之和的2倍,最后将得到的反应混合物转移到带有聚四氟乙烯内胆的水热反应釜中,密封,在180℃的恒温箱中反应24h,待自然冷却至室温后,将水热得到的沉淀产物离心分离,并用去离子水和无水乙醇充分洗涤,最后在80℃下真空干燥12h后得到SnCoS4复合纳米晶-石墨烯复合材料;
(2)将上述制备得到的SnCoS4复合纳米晶-石墨烯复合材料作为复合电极的电化学贮钠活性物质,与乙炔黑及羧甲基纤维素的乙醇和水的混合溶液在搅拌下充分混合调成均匀的糊状物,将该糊状物均匀地涂到作为集流体的铜箔上,烘干,并辊 压后得到电化学贮钠复合电极,乙醇和水的体积比为1∶1。
CN201610190505.8A 2016-03-29 2016-03-29 一种电化学贮钠的复合电极及其制备方法 Active CN105810888B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610190505.8A CN105810888B (zh) 2016-03-29 2016-03-29 一种电化学贮钠的复合电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610190505.8A CN105810888B (zh) 2016-03-29 2016-03-29 一种电化学贮钠的复合电极及其制备方法

Publications (2)

Publication Number Publication Date
CN105810888A CN105810888A (zh) 2016-07-27
CN105810888B true CN105810888B (zh) 2018-05-29

Family

ID=56455081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610190505.8A Active CN105810888B (zh) 2016-03-29 2016-03-29 一种电化学贮钠的复合电极及其制备方法

Country Status (1)

Country Link
CN (1) CN105810888B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107256969B (zh) * 2017-06-13 2019-12-24 中国电子新能源(武汉)研究院有限责任公司 钠离子电池负极浆料的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101144176B (zh) * 2007-07-17 2010-11-17 北京航空航天大学 电化学阴极析氢还原金属及合金氢氧化物凝胶的方法
CN103384005B (zh) * 2013-07-23 2016-04-06 广东精进能源有限公司 适合工业化量产高容量锡合金硫化物负极材料的制备方法和应用
CN104064739A (zh) * 2014-07-02 2014-09-24 长沙国容新能源有限公司 锡钴合金/石墨烯复合材料及其制备方法

Also Published As

Publication number Publication date
CN105810888A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
CN106684369B (zh) 一种钠快离子导体镶嵌包覆的钠离子电池正极材料及其合成方法
Tang et al. Mn-doped ZnFe2O4 nanoparticles with enhanced performances as anode materials for lithium ion batteries
JP2018533174A (ja) 改質した超疎水性材料により被覆されたリチウムイオン電池用高ニッケル正極材料及びその調製方法
Idris et al. Effects of polypyrrole on the performance of nickel oxide anode materials for rechargeable lithium-ion batteries
CN105845904B (zh) 一种钠离子电池金属氧化物/聚吡咯空心纳米管负极复合材料及其制备方法
CN109244427A (zh) 碳包覆硫化锌负载石墨烯作为钾离子电池负极的制备方法
CN105609746B (zh) 一种同时电化学贮钠和贮锂的复合电极及其制备方法
Vujković et al. Hydrothermal synthesis of Li4Ti5O12/C nanostructured composites: morphology and electrochemical performance
CN104755429A (zh) 氧化铁纳米粒子的制备方法
Fuzhi et al. Neoteric hollow tubular MnS/Co3S4 hybrids as high-performance electrode materials for supercapacitors
CN109473666A (zh) 一种石墨烯支撑的SbVO4纳米颗粒复合材料及其制备方法
CN105140494A (zh) 一种Fe3O4/Fe/C纳米复合电池电极材料的仿生合成方法
CN108987729A (zh) 一种锂硫电池正极材料及其制备方法与锂硫电池
CN105514375B (zh) 一种碳包覆Na0.55Mn2O4·1.5H2O纳米复合材料及其制备方法
Liu et al. In situ fabrication of ZnO–MoO2/C hetero-phase nanocomposite derived from MOFs with enhanced performance for lithium storage
Jiang et al. A fast π-π stacking self-assembly of cobalt terephthalate dihydrate and the twelve-electron lithiation-delithiation of anhydrous cobalt terephthalate
Shrshr et al. Novel hydrothermal synthesis of Mn-TaS3@ rGO nanocomposite as a superior multifunctional mediator for advanced Li-S batteries
Li et al. High electrochemical performance of in-situ carbon-coated vanadyl ethylene glycolate as cathode for aqueous zinc-ion batteries
Li et al. Well-dispersed Sb2O3 nanoparticles encapsulated in multi-channel-carbon nanofibers as high-performance anode materials for Li/dual-ion batteries
CN105633385B (zh) 一种SnCoS4复合纳米晶-石墨烯复合材料及其制备方法
CN108439474B (zh) 一种锂电池用高性能Ni掺杂MnCO3负极材料的制备方法
Liu et al. Synergistic regulation of low-defects manganese hexacyanoferrates with stable electrode/electrolyte interface for enhancing electrochemical potassium storage performance
Wang et al. Rational design of ternary NiCo2Alx-LDH coupled with PANI coated Nitrogen-doped carbon capsule for High-Performance asymmetric supercapacitors
Ju et al. Excellent cycling stability of spherical spinel LiMn 2 O 4 by Y 2 O 3 coating for lithium-ion batteries
Mikhaylov et al. Green synthesis of zinc sulfide-reduced graphene oxide composite and its application in sodium-ion batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant