CN105801781B - 一种离子印迹磁性碳基吸附材料的制备方法 - Google Patents

一种离子印迹磁性碳基吸附材料的制备方法 Download PDF

Info

Publication number
CN105801781B
CN105801781B CN201610226707.3A CN201610226707A CN105801781B CN 105801781 B CN105801781 B CN 105801781B CN 201610226707 A CN201610226707 A CN 201610226707A CN 105801781 B CN105801781 B CN 105801781B
Authority
CN
China
Prior art keywords
nitrogen
water
carbon
necked flask
ion blotting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610226707.3A
Other languages
English (en)
Other versions
CN105801781A (zh
Inventor
刘伟峰
文海荣
刘旭光
杨永珍
史伟萍
许并社
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201610226707.3A priority Critical patent/CN105801781B/zh
Publication of CN105801781A publication Critical patent/CN105801781A/zh
Application granted granted Critical
Publication of CN105801781B publication Critical patent/CN105801781B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0281Sulfates of compounds other than those provided for in B01J20/045
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明涉及一种离子印迹磁性碳基吸附材料的制备方法,是针对重金属废水处理难的情况,采用碳包铁磁性粒子为原料,经表面硅烷化修饰、接枝聚合,制备离子印迹磁性碳基吸附材料,此制备方法工艺先进,数据精确翔实,产物为黑色粉体,粉体颗粒直径≤200nm,颗粒内部为Fe3O4纳米粒子,直径≤10nm,颗粒内部有不规则空穴,产物纯度好,达99.5%,具有良好的生物相容性、亲水性,可在重金属废水处理中得到应用,是先进的离子印迹磁性碳基吸附材料的制备方法。

Description

一种离子印迹磁性碳基吸附材料的制备方法
技术领域
本发明涉及一种离子印迹磁性碳基吸附材料的制备方法,属有机碳材料制备、表面功能化修饰和应用的技术领域。
背景技术
重金属废水含有镉、铜、汞、铬等重金属离子,是对水体污染最严重和对人类危害最大的废水之一,目前,处理废水中重金属离子的方法主要有沉淀法、微生物分解法、离子交换法、电解法、活性碳吸附法,但大都存在选择性差、净化效率低、环境影响大的缺点。
离子印迹吸附材料,是将模板离子与聚合物单体形成多重作用点,通过聚合反应过程被记忆在聚合物中,在使用过程中可去除模板离子,聚合物中就形成了与模板离子空间构型和结合位点相匹配的位点空穴,空穴对于模板离子具有选择性。
碳包覆Fe3O4磁性粒子是一种表面离子印迹基质材料,其表面可进行离子印迹聚合,可实现在外磁场辅助下选择性地将目标污染物与溶液迅速分离,操作简单且快速有效;同时,通过碳层的包覆,可以降低磁性粒子之间的偶极作用,从而有效减少粒子之间的团聚,提高材料的稳定性,容易在粒子表面进行修饰改性,碳层包覆使得复合粒子具有良好的生物相容性、化学稳定性和亲水性,适用于废水处理,但还处于科学研究中。
发明内容
发明目的
本发明的目的是针对背景技术的情况,以碳包铁磁性粒子为印迹载体,在其表面进行修饰改性、接枝聚合,经交联印迹、洗脱处理、真空冷冻干燥,在碳包铁磁性粒子表面合成离子印迹聚合物,使碳包铁磁性粒子在吸附分离中得到应用。
技术方案
本发明使用的化学物质材料为:碳包铁磁性粒子、硫酸铜、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、N-异丙基丙烯酰胺、N,N-亚甲基双丙烯酰胺、过硫酸铵、无水乙醇、冰乙酸、硝酸、去离子水、氮气,其组合准备用量如下:以克、毫升、厘米3为计量单位
制备方法如下:
(1)精选化学物质材料
对制备使用的化学物质材料要进行精选,并进行质量纯度、浓度、含量控制:
碳包铁磁性粒子:固态固体 含碳量52% 含铁量35% 含氧量13%
硫酸铜:固态固体 纯度98%
γ-甲基丙烯酰氧基丙基三甲氧基硅烷:液态液体 纯度98%
N-异丙基丙烯酰胺:固态固体 纯度99%
N,N-亚甲基双丙烯酰胺:液态液体 纯度99%
过硫酸铵:固态固体 纯度99.5%
冰乙酸:液态液体 纯度99.5%
无水乙醇:液态液体 纯度99.7%
去离子水:液态液体 纯度99.99%
硝酸:液态液体 浓度4.3%
氮气:气态气体 纯度99.99%
(2)碳包铁磁性粒子表面硅烷化修饰改性
碳包铁磁性粒子表面硅烷化修饰改性是在三口烧瓶中进行的,是在水浴、加热、搅拌、氮气保护、水循环冷凝状态下完成的;
①将三口烧瓶置于水浴缸上,将水浴缸置于电加热器上,在三口烧瓶底部置放磁子搅拌器,在水浴缸内置放水浴水,水浴水要淹没三口烧瓶体积的4/5;
②称取碳包铁磁性粒子0.3g±0.0001g,量取无水乙醇40mL、去离子水20mL、γ-甲基丙烯酰氧基丙基三甲氧基硅烷2mL±0.0001mL、冰乙酸2mL±0.0001mL,加入三口烧瓶中;
③开启氮气瓶,向三口烧瓶内输入氮气,氮气输入速度20cm3/min;
④开启电加热器,进行加热,加热温度60℃±1℃;
磁子搅拌器进行搅拌;
加热、搅拌、氮气保护时间240min;
⑤碳包铁磁性粒子在加热、搅拌、氮气保护下,将发生化学反应,反应式如下:
式中:
Fe3O4@C-C9H20O4Si:硅烷化碳包铁磁性粒子
CH3OH:无水甲醇
反应后停止加热,在氮气保护、水循环冷凝下冷却至25℃,成混合液;
⑥抽滤
将硅烷化修饰的混合液置于抽滤瓶上的布氏漏斗中,用三层中速定性滤纸进行抽滤,留存滤饼,弃去滤液;
⑦真空干燥
将滤饼置于石英容器中,然后置于真空干燥箱中干燥,干燥温度60℃,真空度6Pa,干燥时间480min;
干燥后为硅烷化碳包铁磁性粒子;
(3)接枝聚合制备离子印迹磁性碳基吸附材料
离子印迹磁性碳基吸附材料的制备是在三口烧瓶中进行的,是在水浴、加热、搅拌、氮气保护、水循环冷凝状态下完成;
①将三口烧瓶置于水浴缸上,并固定;水浴缸内加入水浴水,水浴水要淹没三口烧瓶体积的4/5;
开启水循环冷凝管,进行水循环冷凝;
②将硅烷化碳包铁磁性粒子0.1g±0.0001g、硫酸铜0.25g±0.0001g、N-异丙基丙烯酰胺0.453g±0.0001g、N,N-亚甲基双丙烯酰胺0.0617g±0.0001g、过硫酸铵0.0913g±0.0001g加入三口烧瓶中,然后加入去离子水90mL±0.0001mL,成混合液;
③开启电加热器,加热温度70℃±1℃;
开启氮气瓶,向三口烧瓶内输入氮气,氮气输入速度20cm3/min;
磁子搅拌器开始搅拌;
加热、搅拌、输氮气时间480min;
④在加热、搅拌、氮气保护、水循环冷凝过程中将发生化学反应,反应方程式如下:
式中:
Fe3O4@C-C22H41O7N3SiCu2+:含铜离子的离子印迹磁性碳球
SO4 2-:硫酸根离子
⑤反应后停止加热,混合液在氮气保护、水循环冷凝下随瓶冷却至25℃;
⑥抽滤
将混合液置于抽滤瓶的布氏漏斗中,用三层中速定性滤纸进行抽滤,留存滤饼,弃去滤液;
⑦无水乙醇洗涤、抽滤
将滤饼加入烧杯中,加入无水乙醇100mL,搅拌洗涤5min;
然后用三层中速定性滤纸进行抽滤;
洗涤、抽滤重复进行5次;
⑧硝酸洗涤、抽滤、除去铜离子
将滤饼置于烧杯中,加入硝酸100mL,搅拌洗涤5min;
然后用三层中速定性滤纸进行抽滤;
洗涤、抽滤重复进行5次;
洗涤后除去铜离子,形成空穴,得离子印迹磁性碳球;
⑨无水乙醇洗涤、抽滤
将离子印迹磁性碳球置于烧杯中,加入无水乙醇100mL,搅拌洗涤5min;
然后用三层中速定性滤纸进行抽滤;
洗涤、抽滤重复进行5次;
⑩真空冷冻干燥
将离子印迹磁性碳球置于石英容器中,然后置于真空冷冻干燥箱中干燥,冷冻干燥温度-80℃,真空度6Pa,干燥时间480min;
干燥后得终产物:离子印迹磁性碳基吸附材料;
(4)检测、分析、表征
对制备的离子印迹磁性碳基吸附材料的形貌、色泽、成分、化学物理性能、吸附性能进行检测、分析、表征;
用高分辨透射电子显微镜进行形貌分析;
用X射线衍射仪进行衍射强度分析;
用红外光谱仪进行表面官能团分析;
用紫外可见分光光度计进行吸光度分析;
结论:离子印迹磁性碳基吸附材料为黑色粉体,粉体颗粒直径≤200nm,颗粒内部为Fe3O4纳米粒子,直径≤10nm,颗粒内部有不规则空穴,产物纯度达99.5%,具有生物相容性、亲水性;
(5)产物储存
将制备的离子印迹磁性碳基吸附材料储存于棕色透明的玻璃容器内,要防潮、防晒、防酸碱盐侵蚀,储存温度20℃,相对湿度≤10%。
有益效果
本发明与背景技术相比具有明显的先进性,是针对重金属废水处理难的情况,采用碳包铁磁性粒子为原料,经表面硅烷化修饰、接枝聚合,制备离子印迹磁性碳基吸附材料,此制备方法工艺先进、数据精确翔实,产物为黑色粉体,粉体颗粒直径≤200nm,颗粒内部为Fe3O4纳米粒子,直径≤10nm,颗粒内部有不规则空穴,产物纯度好,达99.5%,具有良好的生物相容性、亲水性,可在重金属废水处理中得到应用,是先进的离子印迹磁性碳基吸附材料的制备方法。
附图说明
图1、离子印迹磁性碳基吸附材料接枝聚合制备状态图
图2、离子印迹磁性碳基吸附材料形貌图
图3、离子印迹磁性碳基吸附材料X射线衍射图谱
图4、离子印迹磁性碳基吸附材料红外光谱图
图5、离子印迹磁性碳基吸附材料吸附动力学曲线图
图6、离子印迹磁性碳球和非印迹碳球吸附动力学曲线比较图
图7、离子印迹磁性碳球水悬浮液在磁铁作用下分离状态图
图中所示,附图标记清单如下:
1、电加热器,2、水浴缸,3、三口烧瓶,4、显示屏,5、指示灯,6、电源开关,7、氮气瓶,8、氮气阀,9、氮气管,10、加液漏斗,11、水循环冷凝管,12、出气口,13、出水口,14、进水口,15、氮气,16、水浴水,17、离子印迹磁性碳球,18、混合液,19、磁子搅拌器,20、固定架,21、加热温度控制器。
具体实施方式
以下结合附图对本发明做进一步说明:
图1所示,为离子印迹磁性碳基吸附材料接枝聚合制备状态图,各部位置、连接关系要正确,按量配比,按序操作。
制备使用的化学物质的量值是按预先设置的范围确定的,以克、毫升、厘米3为计量单位。
电加热器1为立式,在电加热器1的上部设有水浴缸2,在水浴缸2上部设有三口烧瓶3,并由固定架20固定;水浴缸2内盛放水浴水16,水浴水16要淹没三口烧瓶3体积的4/5;三口烧瓶3上部设有氮气管9、加液漏斗10、水循环冷凝管11及进水口14、出水口13、出气口12;三口烧瓶3内为离子印迹磁性碳球17、混合液18,三口烧瓶3内底部置放磁子搅拌器19;在电加热器1的左部设有氮气瓶7,氮气瓶7上部设有氮气阀8、氮气管9,并向三口烧瓶3内输入氮气15;在电加热器1上设有显示屏4、指示灯5、电源开关6、加热温度控制器21。
图2所示,为离子印迹磁性碳基吸附材料形貌图,图中所示,离子印迹磁性碳基吸附材料为黑色粉体,粉体颗粒内部为Fe3O4纳米粒子,直径≤10nm,颗粒内部有不规则空穴。
图3所示,为离子印迹磁性碳基吸附材料X射线衍射图谱,图中所示:22°处为碳石墨结构的(002)衍射峰,30°处为四氧化三铁结构的(220)衍射峰,36°处为四氧化三铁结构的(311)衍射峰,43°处为四氧化三铁结构的(400)衍射峰,53°处为四氧化三铁结构的(422)衍射峰,57°处为四氧化三铁结构的(511)衍射峰,63°处为四氧化三铁结构的(440)衍射峰。
图4所示,为离子印迹磁性碳基吸附材料红外光谱图,图中所示,569cm-1处是-Fe-O伸缩振动峰、1227cm-1处是-C-O和-Si-O伸缩振动峰、1531cm-1处是-N-H伸缩振动峰、1641cm-1处是-C=O伸缩振动峰、2972cm-1处是-C-H伸缩振动峰、3267cm-1处是O-H的伸缩振动峰。
图5所示,为离子印迹磁性碳基吸附材料吸附动力学曲线图,图中所示,离子印迹磁性碳基吸附材料对铜离子的吸附达到平衡的时间需要30min,最大吸附量为40.89mg/g。
图6所示,为离子印迹磁性碳球和非印迹碳球吸附动力学曲线比较图,图中所示,离子印迹磁性碳球对铜离子的吸附达到平衡的时间需要30min,最大吸附量为40.89mg/g;非印迹碳球对铜离子的最大吸附量为22.66mg/g,离子印迹磁性碳球对铜离子的最大吸附量是非印迹碳球对铜离子的最大吸附量的1.8倍。
图7所示,为离子印迹磁性碳球水悬浮液在磁铁作用下分离状态图,图中所示,在外加磁场作用下,离子印迹磁性碳球能够与吸附体系中溶液快速分离。

Claims (2)

1.一种离子印迹磁性碳基吸附材料的制备方法,其特征在于:使用的化学物质材料为:碳包铁磁性粒子、硫酸铜、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、N-异丙基丙烯酰胺、N,N-亚甲基双丙烯酰胺、过硫酸铵、无水乙醇、冰乙酸、硝酸、去离子水、氮气,其组合准备用量如下:以克、毫升、厘米3为计量单位
制备方法如下:
(1)精选化学物质材料
对制备使用的化学物质材料要进行精选,并进行质量纯度、浓度、含量控制:
碳包铁磁性粒子:固态固体含碳量52%含铁量35%含氧量13%
硫酸铜:固态固体纯度98%
γ-甲基丙烯酰氧基丙基三甲氧基硅烷:液态液体纯度98%
N-异丙基丙烯酰胺:固态固体纯度99%
N,N-亚甲基双丙烯酰胺:液态液体纯度99%
过硫酸铵:固态固体纯度99.5%
冰乙酸:液态液体纯度99.5%
无水乙醇:液态液体纯度99.7%
去离子水:液态液体纯度99.99%
硝酸:液态液体浓度4.3%
氮气:气态气体纯度99.99%
(2)碳包铁磁性粒子表面硅烷化修饰改性
碳包铁磁性粒子表面硅烷化修饰改性是在三口烧瓶中进行的,是在水浴、加热、搅拌、氮气保护、水循环冷凝状态下完成的;
①将三口烧瓶置于水浴缸上,将水浴缸置于电加热器上,在三口烧瓶底部置放磁子搅拌器,在水浴缸内置放水浴水,水浴水要淹没三口烧瓶体积的4/5;
②称取碳包铁磁性粒子0.3g±0.0001g,量取无水乙醇40mL、去离子水20mL、γ-甲基丙烯酰氧基丙基三甲氧基硅烷2mL±0.0001mL、冰乙酸2mL±0.0001mL,加入三口烧瓶中;
③开启氮气瓶,向三口烧瓶内输入氮气,氮气输入速度20cm3/min;
④开启电加热器,进行加热,加热温度60℃±1℃;
磁子搅拌器进行搅拌;
加热、搅拌、氮气保护时间240min;
⑤碳包铁磁性粒子在加热、搅拌、氮气保护下,将发生化学反应,反应式如下:
式中:
Fe3O4@C-C9H17O5Si:硅烷化碳包铁磁性粒子
CH3OH:无水甲醇
反应后停止加热,在氮气保护、水循环冷凝下冷却至25℃,成混合液;
⑥抽滤
将硅烷化修饰的混合液置于抽滤瓶上的布氏漏斗中,用三层中速定性滤纸进行抽滤,留存滤饼,弃去滤液;
⑦真空干燥
将滤饼置于石英容器中,然后置于真空干燥箱中干燥,干燥温度60℃,真空度6Pa,干燥时间480min;
干燥后为硅烷化碳包铁磁性粒子;
(3)接枝聚合制备离子印迹磁性碳基吸附材料
离子印迹磁性碳基吸附材料的制备是在三口烧瓶中进行的,是在水浴、加热、搅拌、氮气保护、水循环冷凝状态下完成;
①将三口烧瓶置于水浴缸上,并固定;水浴缸内加入水浴水,水浴水要淹没三口烧瓶体积的4/5;
开启水循环冷凝管,进行水循环冷凝;
②将硅烷化碳包铁磁性粒子0.1g±0.0001g、硫酸铜0.25g±0.0001g、N-异丙基丙烯酰胺0.453g±0.0001g、N,N-亚甲基双丙烯酰胺0.0617g±0.0001g、过硫酸铵0.0913g±0.0001g加入三口烧瓶中,然后加入去离子水90mL±0.0001mL,成混合液;
③开启电加热器,加热温度70℃±1℃;
开启氮气瓶,向三口烧瓶内输入氮气,氮气输入速度20cm3/min;
磁子搅拌器开始搅拌;
加热、搅拌、输氮气时间480min;
④在加热、搅拌、氮气保护、水循环冷凝过程中将发生化学反应,反应方程式如下:
式中:
Fe3O4@C-C22H38O8N3SiCu2+:含铜离子的离子印迹磁性碳球
SO4 2-:硫酸根离子
⑤反应后停止加热,混合液在氮气保护、水循环冷凝下随瓶冷却至25℃;
⑥抽滤
将混合液置于抽滤瓶的布氏漏斗中,用三层中速定性滤纸进行抽滤,留存滤饼,弃去滤液;
⑦无水乙醇洗涤、抽滤
将滤饼加入烧杯中,加入无水乙醇100mL,搅拌洗涤5min;
然后用三层中速定性滤纸进行抽滤;
洗涤、抽滤重复进行5次;
⑧硝酸洗涤、抽滤、除去铜离子
将滤饼置于烧杯中,加入硝酸100mL,搅拌洗涤5min;
然后用三层中速定性滤纸进行抽滤;
洗涤、抽滤重复进行5次;
洗涤后除去铜离子,形成空穴,得离子印迹磁性碳球;
⑨无水乙醇洗涤、抽滤
将离子印迹磁性碳球置于烧杯中,加入无水乙醇100mL,搅拌洗涤5min;
然后用三层中速定性滤纸进行抽滤;
洗涤、抽滤重复进行5次;
⑩真空冷冻干燥
将离子印迹磁性碳球置于石英容器中,然后置于真空冷冻干燥箱中干燥,冷冻干燥温度-80℃,真空度6Pa,干燥时间480min;
干燥后得终产物:离子印迹磁性碳基吸附材料;
(4)检测、分析、表征
对制备的离子印迹磁性碳基吸附材料的形貌、色泽、成分、化学物理性能进行检测、分析、表征;
用高分辨透射电子显微镜进行形貌分析;
用X射线衍射仪进行衍射强度分析;
用红外光谱仪进行表面官能团分析;
用紫外可见分光光度计进行吸光度分析;
结论:离子印迹磁性碳基吸附材料为黑色粉体,粉体颗粒直径≤200nm,颗粒内部为Fe3O4纳米粒子,直径≤10nm,颗粒内部有不规则空穴,产物纯度达99.5%,具有生物相容性、亲水性;
(5)产物储存
将制备的离子印迹磁性碳基吸附材料储存于棕色透明的玻璃容器内,要防潮、防晒、防酸碱盐侵蚀,储存温度20℃,相对湿度≤10%。
2.根据权利要求1所述的一种离子印迹磁性碳基吸附材料的制备方法,其特征在于:
电加热器(1)为立式,在电加热器(1)的上部设有水浴缸(2),在水浴缸(2)上部设有三口烧瓶(3),并由固定架(20)固定;水浴缸(2)内盛放水浴水(16),水浴水(16)要淹没三口烧瓶(3)体积的4/5;三口烧瓶(3)上部设有氮气管(9)、加液漏斗(10)、水循环冷凝管(11)及进水口(14)、出水口(13)、出气口(12);三口烧瓶(3)内盛放离子印迹磁性碳球(17)、混合液(18),三口烧瓶(3)内底部置放磁子搅拌器(19);在电加热器(1)的左部设有氮气瓶(7),氮气瓶(7)上部设有氮气阀(8)、氮气管(9),并向三口烧瓶(3)内输入氮气(15);在电加热器(1)上设有显示屏(4)、指示灯(5)、电源开关(6)、加热温度控制器(21)。
CN201610226707.3A 2016-04-13 2016-04-13 一种离子印迹磁性碳基吸附材料的制备方法 Expired - Fee Related CN105801781B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610226707.3A CN105801781B (zh) 2016-04-13 2016-04-13 一种离子印迹磁性碳基吸附材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610226707.3A CN105801781B (zh) 2016-04-13 2016-04-13 一种离子印迹磁性碳基吸附材料的制备方法

Publications (2)

Publication Number Publication Date
CN105801781A CN105801781A (zh) 2016-07-27
CN105801781B true CN105801781B (zh) 2018-01-23

Family

ID=56460997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610226707.3A Expired - Fee Related CN105801781B (zh) 2016-04-13 2016-04-13 一种离子印迹磁性碳基吸附材料的制备方法

Country Status (1)

Country Link
CN (1) CN105801781B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110078873A (zh) * 2019-04-20 2019-08-02 太原理工大学 一种磁性碳基锂离子印迹材料的制备方法
CN111875070B (zh) * 2020-07-31 2021-07-20 南京大学 一种用于深度处理粘胶纤维废水的水处理剂的制备方法
CN114100573B (zh) * 2021-10-15 2023-12-08 国网天津市电力公司电力科学研究院 一种MOFs衍生多孔碳包覆的铁氧化物复合材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905151A (zh) * 2010-08-12 2010-12-08 南昌航空大学 磁性金属离子表面印迹聚合物的制备方法和应用
CN102784615A (zh) * 2012-08-17 2012-11-21 中国科学院电工研究所 一种磁性铜离子印迹硅胶材料的制备方法
CN103623784A (zh) * 2013-11-22 2014-03-12 湖南科技大学 铜离子印迹壳聚糖复合材料的制备方法
CN104530334A (zh) * 2015-01-09 2015-04-22 江苏大学 一种SiO2/GO表面金属离子印迹聚合物的制备方法及应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6960645B2 (en) * 2004-03-26 2005-11-01 Council Of Scientific And Industrial Research Synthesis of ion imprinted polymer particles
KR100861452B1 (ko) * 2007-03-05 2008-10-02 성균관대학교산학협력단 중금속 이온의 선택적 분리를 위한 표면 각인된 코어-쉘형태의 폴리아크릴레이트 미소구체의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905151A (zh) * 2010-08-12 2010-12-08 南昌航空大学 磁性金属离子表面印迹聚合物的制备方法和应用
CN102784615A (zh) * 2012-08-17 2012-11-21 中国科学院电工研究所 一种磁性铜离子印迹硅胶材料的制备方法
CN103623784A (zh) * 2013-11-22 2014-03-12 湖南科技大学 铜离子印迹壳聚糖复合材料的制备方法
CN104530334A (zh) * 2015-01-09 2015-04-22 江苏大学 一种SiO2/GO表面金属离子印迹聚合物的制备方法及应用

Also Published As

Publication number Publication date
CN105801781A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
Bai et al. A novel functional porous organic polymer for the removal of uranium from wastewater
Li et al. A novel benzimidazole-functionalized 2-D COF material: Synthesis and application as a selective solid-phase extractant for separation of uranium
CN105801781B (zh) 一种离子印迹磁性碳基吸附材料的制备方法
Wang et al. Synthesis and application of ion-imprinted interpenetrating polymer network gel for selective solid phase extraction of Cd2+
Wang et al. Preparation of a functionalized magnetic metal–organic framework sorbent for the extraction of lead prior to electrothermal atomic absorption spectrometer analysis
CN102784624B (zh) 一种炭包覆磁性吸附材料的制备方法及其用途
Zhang et al. Grape pomace as a biosorbent for fluoride removal from groundwater
CN106179271B (zh) 聚偕胺肟功能化的超支化纳米金刚石及其制备方法与应用
CN101601992B (zh) 一种用ctab改性吸附材料的制备及其使用方法
Li et al. Synthesis and application of a surface-grafted In (III) ion-imprinted polymer for selective separation and pre-concentration of indium (III) ion from aqueous solution
Geng et al. Amidoxime-grafted hydrothermal carbon microspheres for highly selective separation of uranium
Sun et al. A chelating resin containing S, N and O atoms: synthesis and adsorption properties for Hg (II)
CN112607816A (zh) 膨润土基复合材料深度脱除废水重金属离子技术
Abdien et al. Extraction and pre-concentration of uranium using activated carbon impregnated trioctyl phosphine oxide
CN101711975B (zh) 铁离子印迹硅胶的制备方法
Qin et al. Decorating covalent organic frameworks with high-density chelate groups for uranium extraction
CN112007621A (zh) 四环素类抗生素多模板分子印迹磁性复合材料的制备及应用方法
Chen et al. Effective adsorption of heavy metal ions in water by sulfhydryl modified nano titanium dioxide
CN102671644B (zh) 硅胶负载聚合胺、8-羟基喹啉双功能基复合吸附材料及制备方法
CN108392853B (zh) 一种固相萃取柱及其制备方法与应用
Moghimi et al. Perconcentration of Ni (II) from sample water by modified nano fiber
Allan et al. Gamma radiation induced preparation of organic-inorganic composite material for sorption of cesium and zinc
CN109692666A (zh) 具有三齿螯合吸附位点铅印迹硅材料及其制备方法和应用
CN111569836B (zh) 一种金属有机骨架复合粒料及其制备方法和应用
CN110240608B (zh) 一种吸附六甲基二硅氧烷的材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Liu Weifeng

Inventor after: Wen Hairong

Inventor after: Liu Xuguang

Inventor after: Yang Yongzhen

Inventor after: Shi Weiping

Inventor after: Xu Bingshe

Inventor before: Liu Weifeng

Inventor before: Liu Xuguang

Inventor before: Yang Yongzhen

Inventor before: Shi Weiping

Inventor before: Xu Bingshe

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180123