CN105784486A - 一种单板弹性模量检测方法 - Google Patents

一种单板弹性模量检测方法 Download PDF

Info

Publication number
CN105784486A
CN105784486A CN201610292509.7A CN201610292509A CN105784486A CN 105784486 A CN105784486 A CN 105784486A CN 201610292509 A CN201610292509 A CN 201610292509A CN 105784486 A CN105784486 A CN 105784486A
Authority
CN
China
Prior art keywords
test specimen
veneer
elasticity
modulus
veneer test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610292509.7A
Other languages
English (en)
Other versions
CN105784486B (zh
Inventor
郑梅生
王兆伍
王芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN201610292509.7A priority Critical patent/CN105784486B/zh
Publication of CN105784486A publication Critical patent/CN105784486A/zh
Application granted granted Critical
Publication of CN105784486B publication Critical patent/CN105784486B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0023Bending
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0026Combination of several types of applied forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0252Monoaxial, i.e. the forces being applied along a single axis of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0254Biaxial, the forces being applied along two normal axes of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • G01N2203/0282Two dimensional, e.g. tapes, webs, sheets, strips, disks or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明专利设计了一种单板弹性模量检测方法,其方法如下所示:S1:初始数据采集、S2:拉伸弹性模量(El)的测量、S3:弯曲弹性模量(Ew)的测量、S4:弯曲弹性模量(Ew)平均值的计算和S5:拉伸弹性模量(El)平均值的计算;通过采用上述方法本发明可以对木/竹质单板的拉伸弹性模量和弯曲弹性模量进行测量,从而使其能够对生产集装箱底板的原材料进行检测,起到了提高产品质量的作用。

Description

一种单板弹性模量检测方法
技术领域
本发明涉及一种测试木质单板弯曲弹性模量的方法,即通过试件纵横弯曲的方法测试木质单板拉伸和弯曲弹性模量。
背景技术
集装箱底板是集装箱的重要组成部分和承载配件,集装箱制造业要求底板具有较高的力学性能,良好的抗冲击性能和耐老化性能。集装箱底板通常由19层厚度为1.8mm木/竹质单板经涂胶、纵横组坯等工艺热压胶合而成,其纵向弹性模量要求大于10000MPa。目前集装箱底板生产厂对弹性模量的检验方法是取少量成品板并裁成小试件进行破坏试验,试验费用较高,且无法保证全部产品满足质量要求。集装箱底板的弹性模量与木/竹质单板的力学性能、涂胶、组坯和热压工艺等密切相关,只有对木/竹质单板的弹性模量进行质量控制才能保证集装箱底板的质量。由于木/竹质单板的厚度较薄,拉伸弹性模量很容易通过拉伸试验测得,但弯曲弹性模量较难测试。2013年9月的南京林业大学博士论文《竹木复合材料动态力学性能、物理性能试验研究分析》在木/竹质单板试件上贴应变片的方法对不同厚度的杨木单板进行了拉伸弹性模量的测试,但不能测试单板的弯曲弹性模量。
发明内容
本发明通过设计一种单板弹性模量检测方法来对生产集装箱底板的原材料(竹/木单板)进行检测,起到了提高产品质量的作用。
为解决上述的技术问题,本发明提供了一种单板弹性模量检测方法,其包括
S1:初始数据采集:选取单板试件,并测量单板试件的厚度(t)、宽度为(b)和长度为(l);
S2:拉伸弹性模量(El)的测量:通过对步骤S1中选取单板试件进行轴向拉伸,测量其在一定轴向拉力(F)作用下的伸长量(Δl),通过公式一计算单板试件的拉伸弹性模量(El),公式一如下所示:
S3:弯曲弹性模量(Ew)的测量:在步骤S2中的单板试件的中点处再施加一个横向载荷(P),使其在轴向拉力(F)和横向载荷(P)共同作用下发生纵横弯曲,利用仪器测量出单板试件中点处的扰度(f),通过公式二计算出其的弯曲弹性模量(Ew),公式二如下所示:其中公式二中的
S4:弯曲弹性模量(Ew)平均值的计算:在轴向拉力(F)不变的情况下,在单板试件的中点处施加不同的横向载荷(P),利用仪器测量出单板试件的中点处在不同的横向载荷(P)作用下的扰度(f),利用步骤S3中的公式求出不同横向载荷(P)下的弯曲弹性模量(Ew),把计算出的弯曲弹性模量(Ew)逐一相加,其合再除以测量的次数求得弯曲弹性模量(Ew)的平均值;
S5:拉伸弹性模量(El)平均值的计算:测量单板试件在不同轴向拉力(F)下的伸长量(Δl),然后通过步骤S2中的公式一逐一计算出该单板试件在不同拉力(F)下的拉伸弹性模量(El),最后把计算出的拉伸弹性模量(El)逐一相加,其合再除以测量的次数求得拉伸弹性模量(El)的平均值。
进一步:所述的单板试件是由木质材料或竹质材料制成。
又进一步:所述的步骤S2:拉伸弹性模量(El)的测量的测量方法是A1:把步骤S1中选取的单板试件的一端进行固定,使其另一端可沿水平方向进行移动;A2:给单板试件可移动的一端施加一个轴向拉力(F),测得该单板试件的伸长量(Δl);A3:结合步骤S1中的测量结果通过公式一计算单板试件的拉伸弹性模量(El)。
又进一步:所述的步骤S3:弯曲弹性模量(Ew)的测量的测量方法是B1:通过步骤A2中施加的轴向拉力(F)对单板试件可移动的一端进行固定,从而使单板试件的两端都处于固定状态,在单板试件的中点处施加一个横向载荷(P);B2:利用仪器测量出单板试件中点处的扰度(f);B3:结合步骤S1和S2中的数据通过公式二求出单板试件的弯曲弹性模量(Ew)。
再进一步:所述的单板试件中点处的扰度(f)所用的测量仪器为千分表或激光位移传感器。
本发明通过设计一种单板弹性模量检测方法使其能够对木/竹质单板的拉伸弹性模量和弯曲弹性模量进行测量,从而使其能够对生产集装箱底板的原材料进行检测,起到了提高产品质量的作用。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为步骤S2中测量拉伸弹性模量时单板试件的结构示意图。
图2为步骤S3中测量弯曲弹性模量时单板试件的结构示意图。
具体实施方式
本发明设计了一种单板弹性模量检测方法,其包括
S1:初始数据采集:选取单板试件1,并测量单板试件1的厚度(t)、宽度为(b)和长度为(l);
S2:拉伸弹性模量(El)的测量(如图1所示):通过对步骤S1中选取单板试件1进行轴向拉伸,测量其在一定轴向拉力(F)作用下的伸长量(Δl),通过公式一计算单板试件1的拉伸弹性模量(El),公式一如下所示:
S3:弯曲弹性模量(Ew)的测量(如图2所示):在步骤S2中的单板试件1的中点处再施加一个横向载荷(P),使其在轴向拉力(F)和横向载荷(P)共同作用下发生纵横弯曲,利用仪器测量出单板试件1中点处的扰度(f),通过公式二计算出其的弯曲弹性模量(Ew),公式二如下所示:其中公式二中的
S4:弯曲弹性模量(Ew)平均值的计算:在轴向拉力(F)不变的情况下,在单板试件1的中点处施加不同的横向载荷(P),利用仪器测量出单板试件1的中点处在不同的横向载荷(P)作用下的扰度(f),利用步骤S3中的公式求出不同横向载荷(P)下的弯曲弹性模量(Ew),把计算出的弯曲弹性模量(Ew)逐一相加,其合再除以测量的次数求得弯曲弹性模量(Ew)的平均值;
S5:拉伸弹性模量(El)平均值的计算:测量单板试件1在不同轴向拉力(F)下的伸长量(Δl),然后通过步骤S2中的公式一逐一计算出该单板试件1在不同拉力(F)下的拉伸弹性模量(El),最后把计算出的拉伸弹性模量(El)逐一相加,其合再除以测量的次数求得拉伸弹性模量(El)的平均值。
上述的单板试件1是由木质材料或竹质材料制成。
上述的步骤S2(如图1所示):拉伸弹性模量(El)的测量的测量方法是A1:把步骤S1中选取的单板试件1的一端101进行固定,使其另一端102可沿水平方向进行移动;A2:给单板试件可移动的一端102施加一个轴向拉力(F),测得该单板试件的伸长量(Δl);A3:结合步骤S1中的测量结果通过公式一计算单板试件的拉伸弹性模量(El)。
上述的步骤S3(如图2所示):弯曲弹性模量(Ew)的测量的测量方法是B1:通过步骤A2中施加的轴向拉力(F)对单板试件1可移动的一端102进行固定,从而使单板试件的两端都处于固定状态,在单板试件的中点处施加一个横向载荷(P);B2:利用仪器测量出单板试件中点处的扰度(f);B3:结合步骤S1和S2中的数据通过公式二求出单板试件1的弯曲弹性模量(Ew)。
上述的单板试件1中点处的扰度(f)所用的测量仪器为千分表或激光位移传感器。
本发明通过设计一种单板弹性模量检测方法使其能够对木/竹质单板的拉伸弹性模量和弯曲弹性模量进行测量,从而使其能够对生产集装箱底板的原材料进行检测,起到了提高产品质量的作用。

Claims (5)

1.一种单板弹性模量检测方法,其特征在于:包括
S1:初始数据采集:选取单板试件,并测量单板试件的厚度(t)、宽度为(b)和长度为(l);
S2:拉伸弹性模量(El)的测量:通过对步骤S1中选取单板试件进行轴向拉伸,测量其在一定轴向拉力(F)作用下的伸长量(Δl),通过公式一计算单板试件的拉伸弹性模量(El),公式一如下所示:
S3:弯曲弹性模量(Ew)的测量:在步骤S2中的单板试件的中点处再施加一个横向载荷(P),使其在轴向拉力(F)和横向载荷(P)共同作用下发生纵横弯曲,利用仪器测量出单板试件中点处的扰度(f),通过公式二计算出其的弯曲弹性模量(Ew),公式二如下所示:其中公式二中的
S4:弯曲弹性模量(Ew)平均值的计算:在轴向拉力(F)不变的情况下,在单板试件的中点处施加不同的横向载荷(P),利用仪器测量出单板试件的中点处在不同的横向载荷(P)作用下的扰度(f),利用步骤S3中的公式求出不同横向载荷(P)下的弯曲弹性模量(Ew),把计算出的弯曲弹性模量(Ew)逐一相加,其合再除以测量的次数求得弯曲弹性模量(Ew)的平均值;
S5:拉伸弹性模量(El)平均值的计算:测量单板试件在不同轴向拉力(F)下的伸长量(Δl),然后通过步骤S2中的公式一逐一计算出该单板试件在不同拉力(F)下的拉伸弹性模量(El),最后把计算出的拉伸弹性模量(El)逐一相加,其合再除以测量的次数求得拉伸弹性模量(El)的平均值。
2.根据权利要求1所述的一种单板弹性模量检测方法,其特征在于:所述的单板试件是由木质材料或竹质材料制成。
3.根据权利要求1所述的一种单板弹性模量检测方法,其特征在于:所述的步骤S2:拉伸弹性模量(El)的测量的测量方法是A1:把步骤S1中选取的单板试件的一端进行固定,使其另一端可沿水平方向进行移动;A2:给单板试件可移动的一端施加一个轴向拉力(F),测得该单板试件的伸长量(Δl);A3:结合步骤S1中的测量结果通过公式一计算单板试件的拉伸弹性模量(El)。
4.根据权利要求3所述的一种单板弹性模量检测方法,其特征在于:所述的步骤S3:弯曲弹性模量(Ew)的测量的测量方法是B1:通过步骤A2中施加的轴向拉力(F)对单板试件可移动的一端进行固定,从而使单板试件的两端都处于固定状态,在单板试件的中点处施加一个横向载荷(P);B2:利用仪器测量出单板试件中点处的扰度(f);B3:结合步骤S1和S2中的数据通过公式二求出单板试件的弯曲弹性模量(Ew)。
5.根据权利要求1或4中任一项所述的一种单板弹性模量检测方法,其特征在于:所述的单板试件中点处的扰度(f)所用的测量仪器为千分表或激光位移传感器。
CN201610292509.7A 2016-05-05 2016-05-05 一种单板弹性模量检测方法 Active CN105784486B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610292509.7A CN105784486B (zh) 2016-05-05 2016-05-05 一种单板弹性模量检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610292509.7A CN105784486B (zh) 2016-05-05 2016-05-05 一种单板弹性模量检测方法

Publications (2)

Publication Number Publication Date
CN105784486A true CN105784486A (zh) 2016-07-20
CN105784486B CN105784486B (zh) 2018-09-14

Family

ID=56400671

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610292509.7A Active CN105784486B (zh) 2016-05-05 2016-05-05 一种单板弹性模量检测方法

Country Status (1)

Country Link
CN (1) CN105784486B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107702980A (zh) * 2017-11-08 2018-02-16 昆明理工大学 弹性模量、抗弯刚度多功能组合实验装置
CN108956328A (zh) * 2018-09-06 2018-12-07 国际竹藤中心 一种竹材柔韧性表征方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4482328B2 (ja) * 2001-06-28 2010-06-16 三星ダイヤモンド工業株式会社 ブレイク装置及びマザー貼合基板の分断システム
CN102901673A (zh) * 2012-10-11 2013-01-30 山东理工大学 拉压模量不一致薄板的拉压弹性模量的测量方法
CN103018112A (zh) * 2012-11-23 2013-04-03 西南交通大学 采用弯曲试验测试材料拉伸弹性模量的方法
CN104359765A (zh) * 2014-12-03 2015-02-18 广州广电运通金融电子股份有限公司 测量钞票的弹性模量的方法以及最大弯曲挠度的装置
CN104777289A (zh) * 2015-04-08 2015-07-15 北京林业大学 高效准确地确定结构用集成材木梁抗弯刚度的方法
CN204718887U (zh) * 2015-06-08 2015-10-21 赵宏伟 便携式拉-弯-扭复合载荷材料力学性能试验机
CN204772846U (zh) * 2015-05-27 2015-11-18 魏建华 一种新型增强复合材料集装箱底板
CN105510115A (zh) * 2014-09-23 2016-04-20 嘉善新华昌木业有限公司 一种集装箱底板弹性模量检测设备
CN105547861A (zh) * 2016-02-06 2016-05-04 南京林业大学 提高四点弯曲梁测试木材弹性模量和泊松比精度的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4482328B2 (ja) * 2001-06-28 2010-06-16 三星ダイヤモンド工業株式会社 ブレイク装置及びマザー貼合基板の分断システム
CN102901673A (zh) * 2012-10-11 2013-01-30 山东理工大学 拉压模量不一致薄板的拉压弹性模量的测量方法
CN103018112A (zh) * 2012-11-23 2013-04-03 西南交通大学 采用弯曲试验测试材料拉伸弹性模量的方法
CN105510115A (zh) * 2014-09-23 2016-04-20 嘉善新华昌木业有限公司 一种集装箱底板弹性模量检测设备
CN104359765A (zh) * 2014-12-03 2015-02-18 广州广电运通金融电子股份有限公司 测量钞票的弹性模量的方法以及最大弯曲挠度的装置
CN104777289A (zh) * 2015-04-08 2015-07-15 北京林业大学 高效准确地确定结构用集成材木梁抗弯刚度的方法
CN204772846U (zh) * 2015-05-27 2015-11-18 魏建华 一种新型增强复合材料集装箱底板
CN204718887U (zh) * 2015-06-08 2015-10-21 赵宏伟 便携式拉-弯-扭复合载荷材料力学性能试验机
CN105547861A (zh) * 2016-02-06 2016-05-04 南京林业大学 提高四点弯曲梁测试木材弹性模量和泊松比精度的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107702980A (zh) * 2017-11-08 2018-02-16 昆明理工大学 弹性模量、抗弯刚度多功能组合实验装置
CN108956328A (zh) * 2018-09-06 2018-12-07 国际竹藤中心 一种竹材柔韧性表征方法

Also Published As

Publication number Publication date
CN105784486B (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
Lee et al. Effects of layered structure on the physical and mechanical properties of laminated moso bamboo (Phyllosachys edulis) flooring
Betti et al. Comparison of newly proposed test methods to evaluate the bonding quality of Cross-Laminated Timber (CLT) panels by means of experimental data and finite element (FE) analysis
Mazzanti et al. Drying shrinkage and mechanical properties of poplar wood (Populus alba L.) across the grain
Džinčić et al. The influence of fit on the distribution of glue in oval tenon/mortise joint
Pereira et al. Assessing wood quality by spatial variation of elastic properties within the stem: Case study of Pinus pinaster in the transverse plane
Král et al. Preparation and characterization of cork layered composite plywood boards
CN105784486A (zh) 一种单板弹性模量检测方法
Ma et al. Long creep-recovery behavior of bamboo-based products
CN104390932A (zh) 基于红外差谱技术的木材含水率检测方法
Yoshihara Mode II initiation fracture toughness analysis for wood obtained by 3-ENF test
Takeuchi et al. The Elastic Modulus and Poisson's Ratio of Laminated Bamboo Guadua angustifolia
Le et al. Measuring interfacial stiffness of adhesively bonded wood
TWM273444U (en) Mold clamping force strain gauge and conversion device for detected signal thereby
Dumond et al. Experimental investigation of the mechanical properties and natural frequencies of simply supported Sitka spruce plates
Yoshihara Bending properties of medium-density fiberboard and plywood obtained by compression bending test
Güntekin et al. Prediction of compression properties in three orthotropic directions for some important Turkish wood species using ultrasound
Ma et al. Comparison of bending creep behavior of bamboo-based composites manufactured by two types of stacking sequences
Jeong Relationship between anatomical and mechanical properties of loblolly pine (Pinus taeda)
Berti et al. Orange wood for parquet and engineered flooring use
Yoshihara Comparison of results obtained by static 3-and 4-point bending and flexural vibration tests on solid wood, MDF, and 5-plywood
Martins et al. A new methodology to evaluate the cure of resin-impregnated paper for HPL
CN105599064A (zh) 基于目标力学性能的钢丝网增强单板层积材制备方法
Yoshihara et al. Effect of Specimen Configuration and Lamination Construction on the Measurement of the In-plane Shear Modulus of Plywood Obtained by the Asymmetric Four-point Bending Test.
CN105510115A (zh) 一种集装箱底板弹性模量检测设备
Nestorović et al. Experimental determination of elastic constants of venreer composits.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20160720

Assignee: Anhui Arrow Electronics Co., Ltd.

Assignor: Nanjing Forestry University

Contract record no.: 2019320000232

Denomination of invention: Veneer elasticity modulus detection method

Granted publication date: 20180914

License type: Common License

Record date: 20190716

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20160720

Assignee: Nanjing Monte tech Environmental Protection Technology Co.,Ltd.

Assignor: NANJING FORESTRY University

Contract record no.: X2020320000111

Denomination of invention: A testing method for elastic modulus of veneer

Granted publication date: 20180914

License type: Common License

Record date: 20201105

Application publication date: 20160720

Assignee: Chuzhou Monte tech Environmental Protection Technology Co.,Ltd.

Assignor: NANJING FORESTRY University

Contract record no.: X2020320000112

Denomination of invention: A testing method for elastic modulus of veneer

Granted publication date: 20180914

License type: Common License

Record date: 20201104

EE01 Entry into force of recordation of patent licensing contract