CN105778917A - 一种核壳型纳米发光材料及其制备方法 - Google Patents

一种核壳型纳米发光材料及其制备方法 Download PDF

Info

Publication number
CN105778917A
CN105778917A CN201610149182.8A CN201610149182A CN105778917A CN 105778917 A CN105778917 A CN 105778917A CN 201610149182 A CN201610149182 A CN 201610149182A CN 105778917 A CN105778917 A CN 105778917A
Authority
CN
China
Prior art keywords
core
ucnps
luminescent material
shell type
type nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610149182.8A
Other languages
English (en)
Other versions
CN105778917B (zh
Inventor
杨海朋
陈雪妮
张凯
刘旭昇
戈早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201610149182.8A priority Critical patent/CN105778917B/zh
Publication of CN105778917A publication Critical patent/CN105778917A/zh
Priority to PCT/CN2017/076897 priority patent/WO2017157311A1/zh
Application granted granted Critical
Publication of CN105778917B publication Critical patent/CN105778917B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7772Halogenides
    • C09K11/7773Halogenides with alkali or alkaline earth metal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0089Particulate, powder, adsorbate, bead, sphere
    • A61K49/0091Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
    • A61K49/0093Nanoparticle, nanocapsule, nanobubble, nanosphere, nanobead, i.e. having a size or diameter smaller than 1 micrometer, e.g. polymeric nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1878Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles the nanoparticle having a magnetically inert core and a (super)(para)magnetic coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Luminescent Compositions (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明公开一种核壳型纳米发光材料及其制备方法,其中,所述核壳型纳米发光材料的内核为UCNPs,外壳为碱性锰化合物。作为内核的UCNPs可实现荧光标记/成像功能,作为外壳的碱性锰化合物可实现肿瘤细胞的MRI成像。即便由于识别率未达到100%,有少量上述材料进入正常细胞,由于正常细胞内酸性比较低,碱性锰化合物不溶解,因而不能释放锰离子,内核UCNPs也不能被释放出来,因而不参与核磁共振成像和荧光成像,所以正常细胞不被检出,可以大大提高肿瘤细胞的识别率。本发明的核壳型纳米发光材料可用于肿瘤细胞和肿瘤组织的高灵敏度荧光检测和MRI成像分析,为医学检测和治疗提供更准确的信息。

Description

一种核壳型纳米发光材料及其制备方法
技术领域
本发明涉及医学标记和成像领域,尤其涉及一种核壳型纳米发光材料及其制备方法。
背景技术
稀土上转换纳米材料(UCNPs)是一类可以在红外光激发下发出可见光的纳米材料。该类材料具有广泛的应用空间,如红外探测器件、生物分子荧光标记、三维显示、防伪和太阳能上转换器件等。其中在医学标记和成像领域,稀土上转换纳米材料能够消除来自生物内源性荧光物质的背景干扰,对所要成像的对象具有很高灵敏度,引起了人们广泛的关注。
磁共振成像(MRI)是断层成像的一种,它利用磁共振现象从人体中获得电磁信号,并重建出人体信息。磁共振成像可以得到任何方向的断层图像,三维体图像。进一步采用MRI造影剂,可显著缩短组织在外磁场作用下的共振时间、增大对比信号的差异、提高成像对比度和清晰度。临床上常用的MRI造影剂是小分子的钆配合物造影剂。
鉴于UCNPs发光材料和MRI造影剂在医学分析/成像领域的广泛应用,研究人员已经开发出了具有上转换发光和MRI造影两种功能的新材料。如掺杂的NaGdF4纳米材料具有良好的荧光和顺磁特性能,除了荧光标记和成像功能,在磁共振检测当中也可以作为造影剂,能够增强分辨率,适合生物体的应用。
在具体使用中,上述纳米材料经标记后进入特定肿瘤细胞,进而经检测仪器成像。其成像精确程度依赖于纳米材料对肿瘤的识别能力,标记不成功或识别不成功的纳米颗粒可以随机进入正常细胞,从而在后续成像中把正常细胞识别为肿瘤细胞,对检测和治疗造成干扰。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种核壳型纳米发光材料及其制备方法,旨在解决现有纳米材料对肿瘤细胞的成像识别率低问题。
本发明的技术方案如下:
一种核壳型纳米发光材料,其中,所述核壳型纳米发光材料的内核为UCNPs,外壳为碱性锰化合物。
所述的核壳型纳米发光材料,其中,所述UCNPs为氟化物、氧化物、含硫化合物、氟氧化物、卤化物中的一种。
所述的核壳型纳米发光材料,其中,所述UCNPs为颗粒状或棒状。
所述的核壳型纳米发光材料,其中,所述碱性锰化合物为MnO2、Mn(OH)2或MnCO3
所述的核壳型纳米发光材料,其中,所述碱性锰化合物的表面标记有一种或多种的抗体。
一种如上任一所述的核壳型纳米发光材料的制备方法,其中,包括步骤:
A、采用水热法制备UCNPs;
B、以UCNPs为内核,内核表面覆盖一层碱性锰化合物,得到碱性锰化合物为外壳的UCNPs,即制得核壳型纳米发光材料。
所述的核壳型纳米发光材料的制备方法,其中,1-5gNaOH,2-10mL蒸馏水,2-15mL乙醇,5-30mL油酸,0.1-2.0g表面活性剂混合,磁力搅拌形成透明溶液,在透明溶液中再加入0.0775gYbCl3·6H2O、0.2367gYCl3·6H2O和0.00541gErCl3的2mL稀土混合的水溶液,搅拌均匀;搅拌均匀后,逐滴加入5mL1mol/L的NaF溶液,搅拌10min,转移至50mL的反应釜,在160-240℃反应2-24h,在烘箱内自然冷却到室温;取出,用环己烷溶解和收集,再加入乙醇使样品析出,以8000rpm/min离心分离10min,得到的沉淀用乙醇和蒸馏水洗涤2-3次,最后以90℃在真空烘箱干燥4h,即得UCNPs。
所述的核壳型纳米发光材料的制备方法,其特征在于,所述表面活性剂包括离子型、非离子型、极性和非极性表面活性剂。
所述的核壳型纳米发光材料的制备方法,其中,得UCNP后,还包括:称取上述的UCNPs50mg溶于50mL的蒸馏水,配成1mg/mL的溶液,加入0.1mol/L的HCl,调节溶液pH至4.0,磁力搅拌2h,得到质子化的油酸UCNPs,即得水溶性好的水溶性UCNPs。
所述的核壳型纳米发光材料的制备方法,其中,所述步骤B具体包括:将上述水溶性UCNPs移取250μL加到2mL的离心管中,再加入250μL0.1mol/LpH=6的2-(N-吗啉代)乙磺酸缓冲溶液,加入250μL10mmol/LKMnO4进行混合;溶液30min后变成布朗胶体,经过离心分离,用去离子水清洗,除去上清液,即得到MnO2为外壳的UCNPs。
有益效果:本发明的核壳型纳米发光材料可实现荧光标记/成像功能,碱性锰化合物可实现肿瘤细胞的MRI成像。本发明核壳型纳米发光材料可用于肿瘤细胞和肿瘤组织的高灵敏度荧光检测和MRI成像分析,为医药检测和治疗提供更准确的信息。
附图说明
图1为本发明实施例1中采用SEM得到的大颗粒的核壳型纳米发光材料形貌图。
图2为本发明实施例1中采用SEM得到的小颗粒的核壳型纳米发光材料形貌图。
图3为本发明实施例1中采用SEM得到的棒状的核壳型纳米发光材料形貌图。
具体实施方式
本发明提供一种核壳型纳米发光材料及其制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种核壳型纳米发光材料,其中,所述核壳型纳米发光材料的内核为UCNPs,外壳为碱性锰化合物。本发明上述材料进入正常细胞后,由于正常细胞内酸性比较低,碱性锰化合物不溶解,因而不能释放锰离子,内核UCNPs也不能被释放出来,因而不参与核磁共振成像和荧光成像,可以大大提高肿瘤细胞的识别率。而在肿瘤细胞内,由于酸性较高,碱性锰化合物被分解,一方面释放出锰离子,作为核磁成像剂,另一方面,锰化合物分解后被包裹的发光内核裸露出来,可实现上转换荧光成像/标记功能。因此,作为内核的UCNPs可实现荧光标记/成像功能,作为外壳的碱性锰化合物可实现肿瘤细胞的MRI成像,从而实现双功能成像。本发明的核壳型纳米发光材料可用于肿瘤细胞和肿瘤组织的高灵敏度荧光检测和MRI成像分析,为医学检测和治疗提供更准确的信息。
作为内核材料的UCNPs可以是任意具有上转换发光功能的含有稀土离子的化合物。例如,本发明所述UCNPs可以为但不限于氟化物、氧化物、含硫化合物、氟氧化物、卤化物等中的一种。上述UCNPs均可用作本发明中的内核材料。其中,NaYF4:Er,Yb(即镱铒双掺杂材料,Er作为激活剂,Yb作为敏化剂)是上转换发光效率极高的一种材料。优选地,本发明所述UCNPs可以为颗粒状或棒状。
作为外壳材料的碱性锰化合物可以为MnO2、Mn(OH)2或MnCO3等碱性锰化合物。本发明的核壳型纳米发光材料进入肿瘤细胞后,由于肿瘤细胞中的pH值偏酸性,碱性锰化合物分解释放出MRI造影剂Mn2+离子,从而实现对肿瘤细胞和肿瘤组织的MRI成像。如果核壳型纳米发光材料进入的是正常细胞,则由于正常细胞的pH值为中性,碱性锰化合物不分解,MRI仅有较弱的背景成像,从而实现对肿瘤细胞的准确检测。
进一步地,本发明所述碱性锰化合物的表面标记有一种或多种抗体。即本发明所述碱性锰化合物的表面可以标记有一种可识别特异肿瘤细胞的抗体,以保证核壳型纳米发光材料能够进入特定的肿瘤细胞;所述碱性锰化合物的表面还可以标记有多种可识别特异肿瘤细胞的抗体,以保证核壳型纳米发光材料能够进入多种肿瘤细胞,实现对多种肿瘤细胞的同时检测。
基于上述核壳型纳米发光材料,本发明还提供一种如上任一所述的核壳型纳米发光材料的制备方法,其中,包括步骤:
A、采用水热法制备UCNPs;
B、以UCNPs为内核,内核表面覆盖一层碱性锰化合物,得到碱性锰化合物为外壳的UCNPs,即制得核壳型纳米发光材料。
即本发明预先制备UCNPs,然后在制得的UCNPs表面覆盖一层碱性锰化合物,得到碱性锰化合物为外壳的UCNPs,即本发明的核壳型纳米发光材料。本发明的核壳型纳米发光材料可同时实现荧光检测和磁共振成像分析功能。
具体地,所述步骤A为,1-5gNaOH,2-10mL蒸馏水,2-15mL乙醇,5-30mL油酸,0.1-2.0g表面活性剂混合,磁力搅拌形成透明溶液,在透明溶液中再加入0.0775gYbCl3·6H2O、0.2367gYCl3·6H2O和0.00541gErCl3的2mL稀土混合的水溶液,搅拌均匀;搅拌均匀后,逐滴加入5mL1mol/L的NaF溶液,搅拌10min,转移至50mL的反应釜,在160-240℃反应2-24h,在烘箱内自然冷却到室温;取出,用环己烷溶解和收集,再加入乙醇使样品析出,以8000rpm/min离心分离10min,得到的沉淀用乙醇和蒸馏水洗涤2-3次,最后以90℃在真空烘箱干燥4h,即得UCNPs。
优选地,本发明所述表面活性剂包括离子型、非离子型、极性和非极性表面活性剂。表面活性剂对荧光上转换发光颗粒的形貌有影响。更优选的,极性表面活性剂可以为但不限于聚乙烯吡咯酮;非极性表面活性剂可以为但不限于羧甲基纤维素;离子型表面活性剂可以为但不限于曲拉通;非离子型表面活性剂可以为但不限于16-烷基磺酸钠。
具体地,得UCNP后,还包括:称取上述的UCNPs50mg溶于50mL的蒸馏水,配成1mg/mL的溶液,加入0.1mol/L的HCl,调节溶液pH至4.0,磁力搅拌2h,得到质子化的油酸UCNPs,即得水溶性好的水溶性UCNPs。
具体地,所述步骤B具体包括:将将上述水溶性UCNPs移取250μL加到2mL的离心管中,再加入250μL0.1mol/LpH=6的2-(N-吗啉代)乙磺酸缓冲溶液,加入250μL10mmol/LKMnO4进行混合;溶液30min后变成布朗胶体,经过离心分离,用去离子水清洗,除去上清液,即得到MnO2为外壳的UCNPs。
下面通过具体实施例对本发明制备方法进行详细说明。
实施例1
2gNaOH,7mL蒸馏水,12mL乙醇,20mL油酸混合,1.0g聚乙烯吡咯酮混合,磁力搅拌形成透明溶液,在透明溶液中再加入0.0775gYbCl3·6H2O、0.2367gYCl3·6H2O和0.00541gErCl3的2mL稀土混合的水溶液(摩尔分数:78%Y,20%Yb,2%Er),搅拌均匀。搅拌均匀后,逐滴加入5mL1mol/L的NaF溶液,搅拌10min,转移至50mL的反应釜,在180℃反应8h,在烘箱内自然冷却到室温。取出,用环己烷溶解和收集,再加入乙醇使样品析出,以8000rpm/min离心分离10min,得到的沉淀用乙醇和蒸馏水洗涤3次,最后以90℃在真空烘箱干燥4h,即得UCNPs。采用SEM得到的大颗粒核壳型纳米发光材料、小颗粒核壳型纳米发光材料和棒状核壳型纳米发光材料形貌图分别如图1、图2、图3所示。
水溶性UCNPs的合成:称取上述的UCNPs50mg溶于50mL的蒸馏水,配成1mg/mL的溶液,加入0.1mol/L的HCl,调节溶液pH至4.0,磁力搅拌2h,得到质子化的油酸UCNPs,即得水溶性好的水溶性UCNPs。
在UCNPs修饰MnO2外壳:将上述水溶性UCNPs移取250μL(1mg/mL)加到2mL的离心管中,再加入250μL0.1mol/LpH=6的2-(N-吗啉代)乙磺酸缓冲溶液,加入250μL10mmol/LKMnO4进行混合。溶液30min后变成布朗胶体,经过离心分离,用去离子水清洗,除去上清液,即得到MnO2为外壳的UCNPs。
在二氧化锰表面标记抗体。
实施例2
稀土氯化物水溶液的配制。将2mL稀土氯化物(0.5mol/LLnCl3,Ln为78%Y+20%Yb+2%Er(摩尔分数))水溶液加入到20mL乙二醇中,搅拌均匀,10分钟后得到溶液A。具体称量数据如下:0.0775gYbCl3·6H2O、0.2367gYCl3·6H2O和0.00541gErCl3(2)NaF溶液的配置:称量0.18900gNaF,加入4.5mL水,配置为1.0mol/L的水溶液。将配合的水溶液加入到20mL乙二醇中,搅拌均匀,10分钟后得到溶液B。(3)将A与B溶液混合。将溶液B快速倒入溶液A中,用玻璃板快速搅拌混合溶液约10min。(4)均匀搅拌后,将配好的溶液转移到100mL反应釜中,封好并放到200℃的烤箱当中反应10h。(5)取出样品,洗涤,分离,烘干。反应结束后,待样品自然冷却后,把样品转移到分离容器中,用8000rpm/min离心分离10min,重复3次,并且用乙醇洗涤4次,即可得到较纯的样品。然后把样品转移到烧杯中,把样品放到烤箱中,用90℃真空干燥5h,得到固体粉末样品,即得UCNPs。
在UCNPs上修饰Mn(OH)2外壳:将上述UCNPs移取250μL(1mg/mL)加到2mL的离心管中,再加入250μL0.1mol/LpH=8.0的磷酸盐缓冲溶液,加入250μL10mmol/LKMnO4进行混合。30min后经过离心分离,用去离子水清洗,除去上清液,即得到Mn(OH)2为外壳的UCNPs。
在Mn(OH)2表面标记抗体。
实施例3
NaOH1.2g,9mLH2O,10mL乙醇,20mL油酸,2.0g羧甲基纤维素形成混合物;0.6mmol(1.2mL、0.5M)稀土混合物在磁力搅拌下加入。1M4mL的NaF逐滴加入溶液,混合10min,转移到50mL反应釜160℃下8h,自然冷却到室温,样品在底部。环己烷收集。乙醇沉淀。经离心得到,再用乙醇清洗油酸和油酸钠。干燥,即得UCNPs。
水溶性UCNPs:0.1gUCNPs加入100mL环己烷、7mL叔丁醇、10mL去离子水、5wt%碳酸钾,室温搅拌20min,逐滴加入20mL(0.01801gKMnO4+0.4492gNaIO4)在40℃下搅拌超过48h,得到样品通过离心分离并用丙酮、乙醇、去离子水清洗。样品在pH=4-5的盐酸中搅拌30min,离心分离用去离子水清洗,干燥。
在UCNPs上修饰Mn(OH)2外壳:将上述UCNPs移取250μL(1mg/mL)加到2mL的离心管中,再加入250μL0.1mol/LpH=8.0的磷酸盐缓冲溶液,加入250μL10mmol/LKMnO4进行混合。30min后经过离心分离,用去离子水清洗,除去上清液,即得到Mn(OH)2为外壳的UCNPs。
在Mn(OH)2表面标记抗体。
实施例4
在室温下,加1mL0.2mol/LGd(CH3CO2)3,0.98mL0.2mol/LYb(CH3CO2)3,0.02mL0.2mol/LTm(CH3CO2)3,4mL油酸和6mL1-十八稀到50mL三口烧瓶,用热电偶温度传感器加热搅拌溶液到150℃,保持该温度40min。而后,关上加热装置,搅拌溶液自然冷却到室温。在室温下,移取1mL1mol/LNaOH-甲醇溶液和3.3mL0.4mol/LNH4F-甲醇溶液到15mL的离心管,密封,通过涡流10s混合溶液。然后快速加入到三口烧瓶,加热溶液到50℃,并保持30min进行反应,再加热溶液温度到100℃。连接真空装置,抽真空10min,再充入氩气,以10℃/min进行升温到280℃,溶液温度在280℃保持1.5h。移除加热装置,搅拌缓慢冷却溶液至室温。把烧瓶的物质转移到15mL的离心管中,用乙醇冲洗烧瓶并转移溶液到离心管中,在室温下以6000rpm/min离心3min,移除上清液。加4mL环己烷到离心管,搅拌混合再分散产品。再加8mL乙醇到离心管,混合溶液在室温下以6000rpm/min离心3min,再移除上清液。用4mL乙醇和4mL甲醇混合液代替上述8mL乙醇加到离心管,重复一遍。在离心管中在4mL的环己烷进行分散NaGdF4:Yb/Tm纳米材料,即得UCNPs。
在UCNPs上修饰MnCO3外壳:将上述UCNPs移取1mL(2mg/mL)加到5mL的离心管中,再加入500μL0.1mol/LMnCl2溶液,然后在搅拌条件下逐滴加入1mL0.1mol/LNa2CO3溶液。30min后经过离心分离,用去离子水清洗,除去上清液,即得到MnCO3为外壳的UCNPs。
在MnCO3表面标记抗体。
综上所述,本发明提供的一种核壳型纳米发光材料及其制备方法,其中,所述核壳型纳米发光材料的内核为UCNPs,外壳为碱性锰化合物。作为内核的UCNPs可实现荧光标记/成像功能,作为外壳的碱性锰化合物可实现肿瘤细胞的MRI成像。本发明的核壳型纳米发光材料可用于肿瘤细胞和肿瘤组织的高灵敏度荧光检测和MRI成像分析,为医药检测和治疗提供更准确的信息。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

1.一种核壳型纳米发光材料,其特征在于,所述核壳型纳米发光材料的内核为UCNPs,外壳为碱性锰化合物。
2.根据权利要求1所述的核壳型纳米发光材料,其特征在于,所述UCNPs为氟化物、氧化物、含硫化合物、氟氧化物、卤化物中的一种。
3.根据权利要求1所述的核壳型纳米发光材料,其特征在于,所述UCNPs为颗粒状或棒状。
4.根据权利要求1所述的核壳型纳米发光材料,其特征在于,所述碱性锰化合物为MnO2、Mn(OH)2或MnCO3
5.根据权利要求1所述的核壳型纳米发光材料,其特征在于,所述碱性锰化合物的表面标记有一种或多种的抗体。
6.一种如权利要求1~5任一所述的核壳型纳米发光材料的制备方法,其特征在于,包括步骤:
A、采用水热法制备UCNPs;
B、以UCNPs为内核,内核表面覆盖一层碱性锰化合物,得到碱性锰化合物为外壳的UCNPs,即制得核壳型纳米发光材料。
7.根据权利要求6所述的核壳型纳米发光材料的制备方法,其特征在于,1-5gNaOH,2-10mL蒸馏水,2-15mL乙醇,5-30mL油酸,0.1-2.0g表面活性剂混合,磁力搅拌形成透明溶液,在透明溶液中再加入0.0775gYbCl3·6H2O、0.2367gYCl3·6H2O和0.00541gErCl3的2mL稀土混合的水溶液,搅拌均匀;搅拌均匀后,逐滴加入5mL1mol/L的NaF溶液,搅拌10min,转移至50mL的反应釜,在160-240℃反应2-24h,在烘箱内自然冷却到室温;取出,用环己烷溶解和收集,再加入乙醇使样品析出,以8000rpm/min离心分离10min,得到的沉淀用乙醇和蒸馏水洗涤2-3次,最后以90℃在真空烘箱干燥4h,即得UCNPs。
8.根据权利要求7所述的核壳型纳米发光材料的制备方法,其特征在于,所述表面活性剂包括离子型、非离子型、极性和非极性表面活性剂。
9.根据权利要求7所述的核壳型纳米发光材料的制备方法,其特征在于,得UCNP后,还包括:称取上述的UCNPs50mg溶于50mL的蒸馏水,配成1mg/mL的溶液,加入0.1mol/L的HCl,调节溶液pH至4.0,磁力搅拌2h,得到质子化的油酸UCNPs,即得水溶性好的水溶性UCNPs。
10.根据权利要求9所述的核壳型纳米发光材料的制备方法,其特征在于,所述步骤B具体包括:将上述水溶性UCNPs移取250μL加到2mL的离心管中,再加入250μL0.1mol/LpH=6的2-(N-吗啉代)乙磺酸缓冲溶液,加入250μL10mmol/LKMnO4进行混合;溶液30min后变成布朗胶体,经过离心分离,用去离子水清洗,除去上清液,即得到MnO2为外壳的UCNPs。
CN201610149182.8A 2016-03-16 2016-03-16 一种核壳型纳米发光材料及其制备方法 Active CN105778917B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610149182.8A CN105778917B (zh) 2016-03-16 2016-03-16 一种核壳型纳米发光材料及其制备方法
PCT/CN2017/076897 WO2017157311A1 (zh) 2016-03-16 2017-03-16 一种核壳型纳米发光材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610149182.8A CN105778917B (zh) 2016-03-16 2016-03-16 一种核壳型纳米发光材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105778917A true CN105778917A (zh) 2016-07-20
CN105778917B CN105778917B (zh) 2017-12-01

Family

ID=56393771

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610149182.8A Active CN105778917B (zh) 2016-03-16 2016-03-16 一种核壳型纳米发光材料及其制备方法

Country Status (2)

Country Link
CN (1) CN105778917B (zh)
WO (1) WO2017157311A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106987245A (zh) * 2017-03-23 2017-07-28 安徽师范大学 二氧化锰纳米片修饰的上转换发光纳米材料及制备方法、过氧化氢或胆碱的检测方法及应用
WO2017157311A1 (zh) * 2016-03-16 2017-09-21 深圳大学 一种核壳型纳米发光材料及其制备方法
CN107789635A (zh) * 2016-09-05 2018-03-13 中国科学院化学研究所 T2造影剂及其制备方法和用途
CN112903658A (zh) * 2021-01-29 2021-06-04 江苏大学 一种基于金银磁-季铵盐光学传感的致病菌快速检测方法
CN114790391A (zh) * 2022-04-14 2022-07-26 湖南科技大学 一种基于配体氧化的油酸封端上转换纳米颗粒的亲水性修饰方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938116B (zh) * 2019-06-18 2022-08-23 南京农业大学 一种多价苯噻菌酯模拟表位多肽及其应用
CN113398135B (zh) * 2021-06-07 2023-05-05 中国药科大学 一种用于hili原位检测与释药的纳米系统
CN113930235B (zh) * 2021-11-11 2023-12-29 上海科技大学 一种多响应纳米温度检测探针、制备方法及应用
CN114062337B (zh) * 2021-11-23 2023-03-17 福州大学 基于核壳结构上转换纳米粒子检测叔丁基对苯二酚的方法
CN115449085B (zh) * 2022-09-12 2023-08-08 西北工业大学 核壳型超支化聚硼硅氧烷红色延迟荧光材料及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101121543A (zh) * 2007-08-02 2008-02-13 复旦大学 一种水溶性稀土纳米材料的制备方法
CN102107011A (zh) * 2011-01-28 2011-06-29 中国科学院宁波材料技术与工程研究所 顺磁-上转换发光复合纳米粒子及其制备方法和应用
US20130115172A1 (en) * 2011-11-08 2013-05-09 Korea Institute Of Science And Technology Magnetic nanophosphor having core/shell structure and the synthetic method thereof
CN103110964A (zh) * 2013-02-27 2013-05-22 华东理工大学 一种具有荧光和磁共振成像的双模式造影剂及其制备方法
CN103480006A (zh) * 2013-09-23 2014-01-01 中国科学院上海硅酸盐研究所 集发光/ct/mr多模式成像与肿瘤热疗于一体的多功能纳米诊疗剂的制备方法及其应用
CN104987866A (zh) * 2015-08-03 2015-10-21 合肥工业大学 一种NaREF4@Fe2O3核壳纳米颗粒及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782573A (zh) * 2009-11-22 2012-11-14 圣诺制药公司 在治疗和诊断中应用的稀土掺杂上转换纳米颗粒
CN102495038B (zh) * 2011-12-09 2013-06-12 南京大学 一种用于检测金属离子的光学离子传感膜及其制备方法与应用
CN103285409A (zh) * 2013-06-25 2013-09-11 中国科学院上海硅酸盐研究所 具有化/放疗协同作用的磁共振/上转换荧光双模式成像造影剂及其制备方法
CN105778917B (zh) * 2016-03-16 2017-12-01 深圳大学 一种核壳型纳米发光材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101121543A (zh) * 2007-08-02 2008-02-13 复旦大学 一种水溶性稀土纳米材料的制备方法
CN102107011A (zh) * 2011-01-28 2011-06-29 中国科学院宁波材料技术与工程研究所 顺磁-上转换发光复合纳米粒子及其制备方法和应用
US20130115172A1 (en) * 2011-11-08 2013-05-09 Korea Institute Of Science And Technology Magnetic nanophosphor having core/shell structure and the synthetic method thereof
CN103110964A (zh) * 2013-02-27 2013-05-22 华东理工大学 一种具有荧光和磁共振成像的双模式造影剂及其制备方法
CN103480006A (zh) * 2013-09-23 2014-01-01 中国科学院上海硅酸盐研究所 集发光/ct/mr多模式成像与肿瘤热疗于一体的多功能纳米诊疗剂的制备方法及其应用
CN104987866A (zh) * 2015-08-03 2015-10-21 合肥工业大学 一种NaREF4@Fe2O3核壳纳米颗粒及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AO XIA等: "Core-shell NaYF4:Yb3+,Tm3+@FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node", 《BIOMATERIALS》 *
M. MARANDI 等: "Self-assembled one-pot synthesis of red luminescent CdS:Mn/Mn(OH)2 nanoparticles", 《JOURNAL OF LUMINESCENCE》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017157311A1 (zh) * 2016-03-16 2017-09-21 深圳大学 一种核壳型纳米发光材料及其制备方法
CN107789635A (zh) * 2016-09-05 2018-03-13 中国科学院化学研究所 T2造影剂及其制备方法和用途
CN106987245A (zh) * 2017-03-23 2017-07-28 安徽师范大学 二氧化锰纳米片修饰的上转换发光纳米材料及制备方法、过氧化氢或胆碱的检测方法及应用
CN106987245B (zh) * 2017-03-23 2020-03-24 安徽师范大学 二氧化锰纳米片修饰的上转换发光纳米材料及制备方法、过氧化氢或胆碱的检测方法及应用
CN112903658A (zh) * 2021-01-29 2021-06-04 江苏大学 一种基于金银磁-季铵盐光学传感的致病菌快速检测方法
CN112903658B (zh) * 2021-01-29 2022-11-18 江苏大学 一种基于金银磁-季铵盐光学传感的致病菌快速检测方法
CN114790391A (zh) * 2022-04-14 2022-07-26 湖南科技大学 一种基于配体氧化的油酸封端上转换纳米颗粒的亲水性修饰方法

Also Published As

Publication number Publication date
CN105778917B (zh) 2017-12-01
WO2017157311A1 (zh) 2017-09-21

Similar Documents

Publication Publication Date Title
CN105778917A (zh) 一种核壳型纳米发光材料及其制备方法
Yin et al. Enhanced red emission from GdF3: Yb3+, Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging
Escudero et al. Rare earth based nanostructured materials: synthesis, functionalization, properties and bioimaging and biosensing applications
Sudheendra et al. NaGdF4: Eu3+ nanoparticles for enhanced X-ray excited optical imaging
Sun et al. Radioisotope post-labeling upconversion nanophosphors for in vivo quantitative tracking
Wang et al. Upconversion luminescence of monodisperse CaF2: Yb3+/Er3+ nanocrystals
Sun et al. Upconversion nanophosphors NaLuF4: Yb, Tm for lymphatic imaging in vivo by real-time upconversion luminescence imaging under ambient light and high-resolution X-ray CT
Feng et al. Upconversion‐nanophosphor‐based functional nanocomposites
Zhang et al. Dual modal in vivo imaging using upconversion luminescence and enhanced computed tomography properties
Yao et al. Lanthanide ion-based luminescent nanomaterials for bioimaging
Ding et al. Magnetically engineered Cd-free quantum dots as dual-modality probes for fluorescence/magnetic resonance imaging of tumors
Zhang et al. Magnetic and optical properties of NaGdF 4: Nd 3+, Yb 3+, Tm 3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window
Liu et al. Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging
Ajithkumar et al. Multimodal bioimaging using a rare earth doped Gd 2 O 2 S: Yb/Er phosphor with upconversion luminescence and magnetic resonance properties
Zhang et al. Sub-10 nm water-dispersible β-NaGdF4: X% Eu3+ nanoparticles with enhanced biocompatibility for in vivo x-ray luminescence computed tomography
Wang et al. Multi-functional NaErF 4: Yb nanorods: enhanced red upconversion emission, in vitro cell, in vivo X-ray, and T 2-weighted magnetic resonance imaging
Cao et al. Intensity enhanced Cerenkov luminescence imaging using terbium-doped Gd2O2S microparticles
Ou et al. X-ray nanocrystal scintillator-based aptasensor for autofluorescence-free detection
Zhang et al. Single‐Phase NaDyF4: Tb3+ Nanocrystals as Multifunctional Contrast Agents in High‐Field Magnetic Resonance and Optical Imaging
JP2005536736A (ja) 画像及び/又は投影図を生成する装置
Chen et al. Magnetic-fluorescent nanohybrids of carbon nanotubes coated with Eu, Gd Co-doped LaF3 as a multimodal imaging probe
CN103865519B (zh) 一种上转换发光纳米探针的制备方法及其在测定物质抗氧化活性中的应用
Burdette et al. Organic fluorophore coated polycrystalline ceramic LSO: Ce scintillators for x-ray bioimaging
CN108165265A (zh) 一种水溶性铽掺杂氟化钙纳米粒子、制备方法及其应用
Caiyan et al. Gd3+ doped CuInS2/ZnS nanocrystals with high quantum yield for bimodal fluorescence/magnetic resonance imaging

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant