CN105777132A - 一种抗弯曲陶瓷基复合材料及其粉末冶金制备方法 - Google Patents

一种抗弯曲陶瓷基复合材料及其粉末冶金制备方法 Download PDF

Info

Publication number
CN105777132A
CN105777132A CN201610111064.8A CN201610111064A CN105777132A CN 105777132 A CN105777132 A CN 105777132A CN 201610111064 A CN201610111064 A CN 201610111064A CN 105777132 A CN105777132 A CN 105777132A
Authority
CN
China
Prior art keywords
parts
filtering residue
counter
bending
matric composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610111064.8A
Other languages
English (en)
Inventor
刘莉
王爽
邱晶
刘晓东
黄明明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Netshape Composite Materials Co Ltd
Original Assignee
Suzhou Netshape Composite Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Netshape Composite Materials Co Ltd filed Critical Suzhou Netshape Composite Materials Co Ltd
Priority to CN201610111064.8A priority Critical patent/CN105777132A/zh
Publication of CN105777132A publication Critical patent/CN105777132A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种抗弯曲陶瓷基复合材料及其粉末冶金制备方法,由以下组分按重量份数配比组成:碳化硅13~36份、氮化硅15~30份、二氧化硅12~34份、石墨4~13份、氧化锆8~17份、硫酸铵8~16份、无水乙醇13~26份、去离子水30~45份。本发明制备获得的抗弯曲陶瓷基复合材料利用各组分间的协同作用,并通过粉末冶金方法制备而成,其具有良好的抗弯曲性能,服役期限长等优点。

Description

一种抗弯曲陶瓷基复合材料及其粉末冶金制备方法
技术领域
本发明涉及复合材料领域,尤其涉及一种抗弯曲陶瓷基复合材料及其粉末冶金制备方法。
背景技术
陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。
陶瓷的力学性能包括弯曲强度、弹性模量、断裂韧性、硬度等,众所周知,陶瓷最本质的力学性能便是其固有的脆性,这是由于陶瓷材料中的共价键结合强度较高,位错运动很难发生。弯曲强度是陶瓷材料基本的力学性能参数之一,微观上是由原子间结合力决定的,在陶瓷基复合材料中,弯曲强度随各组分的含量不同而变化。力学性能表征对于了解结构材料的基础性能尤为重要。
现有技术中,材料在外部荷载环境中响应和破坏较为严重,陶瓷材料抗弯曲性能较差,因而降低了其服役性能。
发明内容
本发明解决的技术问题:为了获得一种抗弯曲能力强,服役期限长的陶瓷材料,本发明提供了一种抗弯曲陶瓷基复合材料及其粉末冶金制备方法。
技术方案:一种抗弯曲陶瓷基复合材料,由以下组分按重量份数配比组成:碳化硅13~36份、氮化硅15~30份、二氧化硅12~34份、石墨4~13份、氧化锆8~17份、硫酸铵8~16份、无水乙醇13~26份、去离子水30~45份。
优选的,所述抗弯曲陶瓷基复合材料由以下组分按重量份数配比组成:碳化硅28份、氮化硅22份、二氧化硅26份、石墨9份、氧化锆13份、硫酸铵12份、无水乙醇22份、去离子水37份。
一种抗弯曲陶瓷基复合材料的粉末冶金制备方法,包含以下步骤:
(1)将硫酸铵溶于去离子水中,制备获得硫酸铵溶液;
(2)将碳化硅、氮化硅、二氧化硅、石墨和氧化锆同时加入球磨机中,研磨1~3小时,粉末粒径为200~450目,获得粉末混合物;
(3)将步骤(2)获得的粉末混合物加入步骤(1)的硫酸铵溶液中,在12~25℃条件下,搅拌反应20~45分钟,过滤去除滤液,获得滤渣;
(4)用去离子水清洗步骤(3)获得的滤渣,滤渣与去离子水的质量比为1:1~1.6,清洗两次;
(5)向经步骤(4)清洗后的滤渣中加入无水乙醇,搅拌反应12~25分钟,吸水两次;过滤去除无水乙醇后,将滤渣置于48~65℃条件下烘干;
(6)将烘干后的滤渣置于混料装置内,利用压力为2.2~4.5MPa的高压气体将上述粉末吹起,5~12分钟后停止通入高压气体,各粉末共同沉积并均匀混合;
(7)将上述均匀混合后的粉末置于电炉中,在氖气的保护氛围中采用3阶段升温的方式进行烧结,3阶段的温度分别为1320℃、1460℃、1630℃,每阶段烧结时间为2~4.5小时,烧结完成后等静压成型,即可获得抗弯曲陶瓷基复合材料。
优选的,步骤(2)中将碳化硅、氮化硅、二氧化硅、石墨和氧化锆同时加入球磨机中,研磨1.6小时,粉末粒径为380目,获得粉末混合物。
优选的,步骤(3)中将步骤(2)获得的粉末混合物加入步骤(1)的硫酸铵溶液中,在18℃条件下,搅拌反应38分钟,过滤去除滤液,获得滤渣。
优选的,步骤(4)中用去离子水清洗步骤(3)获得的滤渣,滤渣与去离子水的质量比为1:1.4,清洗两次。
优选的,步骤(5)中向经步骤(4)清洗后的滤渣中加入无水乙醇,搅拌反应20分钟,吸水两次;过滤去除无水乙醇后,将滤渣置于58℃条件下烘干。
优选的,步骤(6)中将烘干后的滤渣置于混料装置内,利用压力为3.8MPa的高压气体将上述粉末吹起,9分钟后停止通入高压气体,各粉末共同沉积并均匀混合。
优选的,步骤(7)中将上述均匀混合后的粉末置于电炉中,在氖气的保护氛围中采用3阶段升温的方式进行烧结,3阶段的温度分别为1320℃、1460℃、1630℃,每阶段烧结时间为3.2小时,烧结完成后等静压成型,即可获得抗弯曲陶瓷基复合材料。
有益效果
本发明制备获得的抗弯曲陶瓷基复合材料利用各组分间的协同作用,并通过粉末冶金方法制备而成,其具有良好的抗弯曲性能,服役期限长等优点。
具体实施方式
实施例1
一种抗弯曲陶瓷基复合材料,由以下组分按重量份数配比组成:碳化硅13份、氮化硅15份、二氧化硅12份、石墨4份、氧化锆8份、硫酸铵8份、无水乙醇13份、去离子水30份。
一种抗弯曲陶瓷基复合材料的粉末冶金制备方法,包含以下步骤:
(1)将硫酸铵溶于去离子水中,制备获得硫酸铵溶液;
(2)将碳化硅、氮化硅、二氧化硅、石墨和氧化锆同时加入球磨机中,研磨1小时,粉末粒径为200目,获得粉末混合物;
(3)将步骤(2)获得的粉末混合物加入步骤(1)的硫酸铵溶液中,在12℃条件下,搅拌反应20分钟,过滤去除滤液,获得滤渣;
(4)用去离子水清洗步骤(3)获得的滤渣,滤渣与去离子水的质量比为1:1,清洗两次;
(5)向经步骤(4)清洗后的滤渣中加入无水乙醇,搅拌反应12分钟,吸水两次;过滤去除无水乙醇后,将滤渣置于48℃条件下烘干;
(6)将烘干后的滤渣置于混料装置内,利用压力为2.2MPa的高压气体将上述粉末吹起,5分钟后停止通入高压气体,各粉末共同沉积并均匀混合;
(7)将上述均匀混合后的粉末置于电炉中,在氖气的保护氛围中采用3阶段升温的方式进行烧结,3阶段的温度分别为1320℃、1460℃、1630℃,每阶段烧结时间为2小时,烧结完成后等静压成型,即可获得抗弯曲陶瓷基复合材料。
实施例2
一种抗弯曲陶瓷基复合材料,由以下组分按重量份数配比组成:碳化硅28份、氮化硅22份、二氧化硅26份、石墨9份、氧化锆13份、硫酸铵12份、无水乙醇22份、去离子水37份。
一种抗弯曲陶瓷基复合材料的粉末冶金制备方法,包含以下步骤:
(1)将硫酸铵溶于去离子水中,制备获得硫酸铵溶液;
(2)将碳化硅、氮化硅、二氧化硅、石墨和氧化锆同时加入球磨机中,研磨1.6小时,粉末粒径为380目,获得粉末混合物;
(3)将步骤(2)获得的粉末混合物加入步骤(1)的硫酸铵溶液中,在18℃条件下,搅拌反应38分钟,过滤去除滤液,获得滤渣;
(4)用去离子水清洗步骤(3)获得的滤渣,滤渣与去离子水的质量比为1:1.4,清洗两次;
(5)向经步骤(4)清洗后的滤渣中加入无水乙醇,搅拌反应20分钟,吸水两次;过滤去除无水乙醇后,将滤渣置于58℃条件下烘干;
(6)将烘干后的滤渣置于混料装置内,利用压力为3.8MPa的高压气体将上述粉末吹起,9分钟后停止通入高压气体,各粉末共同沉积并均匀混合;
(7)将上述均匀混合后的粉末置于电炉中,在氖气的保护氛围中采用3阶段升温的方式进行烧结,3阶段的温度分别为1320℃、1460℃、1630℃,每阶段烧结时间为3.2小时,烧结完成后等静压成型,即可获得抗弯曲陶瓷基复合材料。
实施例3
一种抗弯曲陶瓷基复合材料,由以下组分按重量份数配比组成:碳化硅36份、氮化硅30份、二氧化硅34份、石墨13份、氧化锆17份、硫酸铵16份、无水乙醇26份、去离子水45份。
一种抗弯曲陶瓷基复合材料的粉末冶金制备方法,包含以下步骤:
(1)将硫酸铵溶于去离子水中,制备获得硫酸铵溶液;
(2)将碳化硅、氮化硅、二氧化硅、石墨和氧化锆同时加入球磨机中,研磨3小时,粉末粒径为450目,获得粉末混合物;
(3)将步骤(2)获得的粉末混合物加入步骤(1)的硫酸铵溶液中,在25℃条件下,搅拌反应45分钟,过滤去除滤液,获得滤渣;
(4)用去离子水清洗步骤(3)获得的滤渣,滤渣与去离子水的质量比为1:1.6,清洗两次;
(5)向经步骤(4)清洗后的滤渣中加入无水乙醇,搅拌反应25分钟,吸水两次;过滤去除无水乙醇后,将滤渣置于65℃条件下烘干;
(6)将烘干后的滤渣置于混料装置内,利用压力为4.5MPa的高压气体将上述粉末吹起,12分钟后停止通入高压气体,各粉末共同沉积并均匀混合;
(7)将上述均匀混合后的粉末置于电炉中,在氖气的保护氛围中采用3阶段升温的方式进行烧结,3阶段的温度分别为1320℃、1460℃、1630℃,每阶段烧结时间为4.5小时,烧结完成后等静压成型,即可获得抗弯曲陶瓷基复合材料。
对实施例1~3制备获得的抗弯曲陶瓷基复合材料进行性能检测,结果如下表所示:
表1实施例1~3制备获得的抗弯曲陶瓷基复合材料性能检测结果

Claims (9)

1.一种抗弯曲陶瓷基复合材料,其特征在于,由以下组分按重量份数配比组成:碳化硅13~36份、氮化硅15~30份、二氧化硅12~34份、石墨4~13份、氧化锆8~17份、硫酸铵8~16份、无水乙醇13~26份、去离子水30~45份。
2.根据权利要求1所述的一种抗弯曲陶瓷基复合材料,其特征在于,由以下组分按重量份数配比组成:碳化硅28份、氮化硅22份、二氧化硅26份、石墨9份、氧化锆13份、硫酸铵12份、无水乙醇22份、去离子水37份。
3.权利要求1所述的一种抗弯曲陶瓷基复合材料的粉末冶金制备方法,其特征在于,包含以下步骤:
(1)将硫酸铵溶于去离子水中,制备获得硫酸铵溶液;
(2)将碳化硅、氮化硅、二氧化硅、石墨和氧化锆同时加入球磨机中,研磨1~3小时,粉末粒径为200~450目,获得粉末混合物;
(3)将步骤(2)获得的粉末混合物加入步骤(1)的硫酸铵溶液中,在12~25℃条件下,搅拌反应20~45分钟,过滤去除滤液,获得滤渣;
(4)用去离子水清洗步骤(3)获得的滤渣,滤渣与去离子水的质量比为1:1~1.6,清洗两次;
(5)向经步骤(4)清洗后的滤渣中加入无水乙醇,搅拌反应12~25分钟,吸水两次;过滤去除无水乙醇后,将滤渣置于48~65℃条件下烘干;
(6)将烘干后的滤渣置于混料装置内,利用压力为2.2~4.5MPa的高压气体将上述粉末吹起,5~12分钟后停止通入高压气体,各粉末共同沉积并均匀混合;
(7)将上述均匀混合后的粉末置于电炉中,在氖气的保护氛围中采用3阶段升温的方式进行烧结,3阶段的温度分别为1320℃、1460℃、1630℃,每阶段烧结时间为2~4.5小时,烧结完成后等静压成型,即可获得抗弯曲陶瓷基复合材料。
4.根据权利要求3所述的一种抗弯曲陶瓷基复合材料的粉末冶金制备方法,其特征在于,步骤(2)中将碳化硅、氮化硅、二氧化硅、石墨和氧化锆同时加入球磨机中,研磨1.6小时,粉末粒径为380目,获得粉末混合物。
5.根据权利要求3所述的一种抗弯曲陶瓷基复合材料的粉末冶金制备方法,其特征在于,步骤(3)中将步骤(2)获得的粉末混合物加入步骤(1)的硫酸铵溶液中,在18℃条件下,搅拌反应38分钟,过滤去除滤液,获得滤渣。
6.根据权利要求3所述的一种抗弯曲陶瓷基复合材料的粉末冶金制备方法,其特征在于,步骤(4)中用去离子水清洗步骤(3)获得的滤渣,滤渣与去离子水的质量比为1:1.4,清洗两次。
7.根据权利要求3所述的一种抗弯曲陶瓷基复合材料的粉末冶金制备方法,其特征在于,步骤(5)中向经步骤(4)清洗后的滤渣中加入无水乙醇,搅拌反应20分钟,吸水两次;过滤去除无水乙醇后,将滤渣置于58℃条件下烘干。
8.根据权利要求3所述的一种抗弯曲陶瓷基复合材料的粉末冶金制备方法,其特征在于,步骤(6)中将烘干后的滤渣置于混料装置内,利用压力为3.8MPa的高压气体将上述粉末吹起,9分钟后停止通入高压气体,各粉末共同沉积并均匀混合。
9.根据权利要求3所述的一种抗弯曲陶瓷基复合材料的粉末冶金制备方法,其特征在于,步骤(7)中将上述均匀混合后的粉末置于电炉中,在氖气的保护氛围中采用3阶段升温的方式进行烧结,3阶段的温度分别为1320℃、1460℃、1630℃,每阶段烧结时间为3.2小时,烧结完成后等静压成型,即可获得抗弯曲陶瓷基复合材料。
CN201610111064.8A 2016-02-29 2016-02-29 一种抗弯曲陶瓷基复合材料及其粉末冶金制备方法 Pending CN105777132A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610111064.8A CN105777132A (zh) 2016-02-29 2016-02-29 一种抗弯曲陶瓷基复合材料及其粉末冶金制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610111064.8A CN105777132A (zh) 2016-02-29 2016-02-29 一种抗弯曲陶瓷基复合材料及其粉末冶金制备方法

Publications (1)

Publication Number Publication Date
CN105777132A true CN105777132A (zh) 2016-07-20

Family

ID=56403894

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610111064.8A Pending CN105777132A (zh) 2016-02-29 2016-02-29 一种抗弯曲陶瓷基复合材料及其粉末冶金制备方法

Country Status (1)

Country Link
CN (1) CN105777132A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108975909A (zh) * 2017-06-02 2018-12-11 东莞华晶粉末冶金有限公司 氧化锆陶瓷坯件的退火方法及氧化锆陶瓷的制备方法
CN112706194A (zh) * 2021-02-02 2021-04-27 淄博松阳锆业科技有限公司 一种氧化锆美工刀片及用其制作的美工刀

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8962504B2 (en) * 2011-07-29 2015-02-24 Arizona Board Of Regents On Behalf Of The University Of Arizona Graphene-reinforced ceramic composites and uses therefor
CN105130444A (zh) * 2015-08-27 2015-12-09 苏州莱特复合材料有限公司 一种湿式缸套及其粉末冶金制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8962504B2 (en) * 2011-07-29 2015-02-24 Arizona Board Of Regents On Behalf Of The University Of Arizona Graphene-reinforced ceramic composites and uses therefor
CN105130444A (zh) * 2015-08-27 2015-12-09 苏州莱特复合材料有限公司 一种湿式缸套及其粉末冶金制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108975909A (zh) * 2017-06-02 2018-12-11 东莞华晶粉末冶金有限公司 氧化锆陶瓷坯件的退火方法及氧化锆陶瓷的制备方法
CN108975909B (zh) * 2017-06-02 2021-04-06 东莞华晶粉末冶金有限公司 氧化锆陶瓷坯件的退火方法及氧化锆陶瓷的制备方法
CN112706194A (zh) * 2021-02-02 2021-04-27 淄博松阳锆业科技有限公司 一种氧化锆美工刀片及用其制作的美工刀

Similar Documents

Publication Publication Date Title
CN107399988B (zh) 一种利用铝硅系工业废渣制备氧化铝-碳化硅复合多孔陶瓷的方法
JPH08239270A (ja) 超塑性炭化ケイ素焼結体とその製造方法
WO2012060442A1 (ja) 高剛性セラミックス材料およびその製造方法
CN102765940A (zh) 一种常压固相烧结微孔碳化硅陶瓷及其制备方法
CN104045349B (zh) 一种纳米氧化铝增强氮氧化铝陶瓷及其制备方法
CN105777132A (zh) 一种抗弯曲陶瓷基复合材料及其粉末冶金制备方法
CN105384450B (zh) 硅铝溶胶增强碳化硅窑具的生产方法
Ogunwumi et al. Aluminum titanate compositions for diesel particulate filters
CN107746282A (zh) 一种原位碳化硅纤维增强液相烧结碳化硅陶瓷及制造方法
WO2019077318A1 (en) REFRACTORY MATERIAL
JPH0777986B2 (ja) 炭化珪素質焼結体の製法
CN112521177A (zh) 一种低熔点多孔陶瓷材料及其制备方法
CN102040373A (zh) 锆莫来石及其加工工艺
JP4925727B2 (ja) 防護部材
CN105753493A (zh) 一种抗氧化陶瓷基复合材料及其粉末冶金制备方法
CN101955357B (zh) 可加工复相陶瓷材料及其制备方法和二次硬化热处理方法
JP5717466B2 (ja) 窒化珪素質焼結体
CN114573351A (zh) 一种碳化硼基复合材料及其制备方法
CN112341202A (zh) 一种提高反应烧结碳化硅性能的造粒粉及其制备方法
Yang et al. SPARK PLASMASINTERING OF SILICON CARBIDE POWDERS WITH CARBON AND BORONAS ADDITIVES
CN105734378A (zh) 一种防裂陶瓷基复合材料及其粉末冶金制备方法
JP2012171845A (ja) 窒化珪素質焼結体
CN104311102A (zh) 一种氮化硅、碳化硅结合六硼化镧泡沫陶瓷的制备方法
Johari et al. The microstructure, physical and mechanical properties of silicon carbide with alumina and yttria as sintering additives
JPS60255672A (ja) 炭化珪素質焼結体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160720