CN105771935A - 一种用于吸附水体2,4-二氯苯酚的多孔聚酰亚胺/碳纳米管复合材料 - Google Patents

一种用于吸附水体2,4-二氯苯酚的多孔聚酰亚胺/碳纳米管复合材料 Download PDF

Info

Publication number
CN105771935A
CN105771935A CN201610354896.2A CN201610354896A CN105771935A CN 105771935 A CN105771935 A CN 105771935A CN 201610354896 A CN201610354896 A CN 201610354896A CN 105771935 A CN105771935 A CN 105771935A
Authority
CN
China
Prior art keywords
conditions
cooh
under
acid
cnts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610354896.2A
Other languages
English (en)
Other versions
CN105771935B (zh
Inventor
廖桂英
袁辉
夏华
王东升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
Original Assignee
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences filed Critical China University of Geosciences
Priority to CN201610354896.2A priority Critical patent/CN105771935B/zh
Publication of CN105771935A publication Critical patent/CN105771935A/zh
Application granted granted Critical
Publication of CN105771935B publication Critical patent/CN105771935B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本发明提供了一种有机多孔聚酰亚胺/碳纳米管复合材料,该材料采用以下方法制备:称取均苯四甲酸二酐和三聚氰胺,充分真空干燥;将三聚氰胺溶解于二甲基亚砜中,待三聚氰胺完全溶解后在溶液中加入均苯四甲酸二酐,在真空氮气条件下溶解,并磁力搅拌反应,所制得的白色溶液清洗后充分真空干燥,即制得多孔聚酰亚胺;将碳纳米管加入到浓硫酸和浓硝酸的混合酸液中,进行处理后制得CNTs‑COOH;称取多孔聚酰亚胺和CNTs‑COOH,将两者分散于乙醇中,超声搅拌使两者充分混匀,然后除去乙醇,即制得有机多孔聚酰亚胺/碳纳米管复合材料。该材料具有制备简单、易操作、原料低廉等诸多优点,并在一定程度上提高了碳纳米管的吸附能力。

Description

一种用于吸附水体2,4-二氯苯酚的多孔聚酰亚胺/碳纳米管复合材料
技术领域
本发明涉及一种有机多孔聚酰亚胺/碳纳米管复合材料,是一种用于去除水体中2,4-二氯苯酚的新型材料,属于高分子材料技术领域。
背景技术
氯酚类物质在多种化工领域中都发挥着重要的作用,被大量应用在制造杀虫剂、染料、除草剂等过程中。氯酚具有杀菌功能,可用于羽毛、木材等的防腐过程。此外,在纸浆与纺织品的氯漂白工业、饮用水的氯化消毒过程都会生成氯酚类物质。目前,常用来处理2,4-二氯苯酚的方法是氧化法和吸附法,尤其以吸附法最为经济节约。常用的吸附剂主要有活性炭、沸石及碳纳米管等。
碳纳米管结构上可以理解为由石墨烯卷曲形成。碳纳米管用于有机污染物的吸附目前已经有大量研究,这些研究表明,碳纳米管对大量有机污染物都有一定的吸附能力,如多环芳烃、酚类、硝基类、胺类等芳香烃、四环素和磺胺类化合物等。另外,引进一些特定官能团及化合物修饰碳纳米管,如氨基、羧基、羟基、氧化铝、二氧化硅等,都能在一定程度上提高其对污染物的吸附能力。
多孔有机骨架作为一类具有潜力的多孔材料,逐渐成为一个新的研究热点。其中,聚酰亚胺因其优异的热稳定性、化学稳定性、力学性能、以及电性能而受到广泛的关注。具有大比表面积及表面带有丰富的氨基、羧基官能团的聚酰亚胺,在对碳纳米管进行修饰后,相应地增强了碳纳米管对氯酚的吸附能力,但是目前本领域中并无相关报道。
发明内容
本发明提供了一种有机多孔聚酰亚胺/碳纳米管复合材料,目的是用于吸附水中的有机污染物2,4-二氯苯酚;该材料具有制备简单、易操作、原料低廉等诸多优点,并在一定程度上提高了碳纳米管的吸附能力。
实现本发明上述目的的技术方案为:
一种有机多孔聚酰亚胺/碳纳米管复合材料,该材料采用以下方法制备:(1)、按照1:1~1:3的摩尔比称取均苯四甲酸二酐和三聚氰胺,在95~105℃下充分真空干燥;
(2)、将三聚氰胺溶解于二甲基亚砜中,配制成质量浓度为3~10%的溶液,待三聚氰胺完全溶解后在溶液中加入均苯四甲酸二酐,在真空氮气条件下溶解,并在160~180℃条件下磁力搅拌反应60~80h,所制得的白色溶液分别用二氯甲烷、四氢呋喃、丙酮清洗,清洗后的产物在70~90℃条件下充分真空干燥,即制得多孔聚酰亚胺;
(3)、将碳纳米管加入到浓硫酸和浓硝酸的混合酸液中,进行处理后制得CNTs-COOH;
(4)、按照多孔聚酰亚胺:CNTs-COOH的质量比为1:1~1:5来称取多孔聚酰亚胺和CNTs-COOH,将两者分散于乙醇中,超声搅拌使两者充分混匀,然后除去乙醇,即制得有机多孔聚酰亚胺/碳纳米管复合材料。
所述的步骤(3)混合酸液中浓硫酸与浓硝酸体积比为3:1,将碳纳米管加入至混合酸液后超声0.5h,再在80℃条件下,氮气氛围中加热3h,降至室温,用蒸馏水洗样至pH=6.5~7.5,在80℃条件下真空干燥24h,即得CNTs-COOH。
上述所制备的有机多孔聚酰亚胺/碳纳米管复合材料,能够用于吸附水体中的2,4-二氯苯酚。在温度为298K,pH=6,吸附剂投加量0.4g/L的条件下,对2,4-二氯苯酚浓度为500mg/L的水体进行吸附,吸附量可达400mg/g。
目前在本领域中,关于聚酰亚胺/碳纳米管复合材料的报道大多集中在纺丝纤维以及膜状材料的制备领域中,并且上述研究的主要目的都集中在其机械性能和物理性能上。与现有技术相比,本申请中将多孔聚酰亚胺与碳纳米管共混制备的高性能多孔吸附材料应用于水处理方面尚是首次应用,本发明将多孔聚酰亚胺用于碳纳米管的复合改性,大大增强了传统吸附材料碳纳米管的吸附能力。同时,本发明提供的上述复合材料的制备方法简单、廉价,能够进行大范围的推广。
附图说明
图1为碳纳米管的透射电镜图;
图2为多孔聚酰亚胺的透射电镜图;
图3为多孔聚酰亚胺/碳纳米管复合材料的透射电镜图。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
本发明以下实施例中制备得到的复合材料在pH=6、温度298K、浓度为500mg/L、25mL的2,4-二氯苯酚溶液中,投加量为10mg,6h后,用紫外可见分光光度计测吸附后溶液的吸光度,2,4-二氯苯酚的最大吸收波长为284nm。
通过配置10、20、40、80、100、200mg/L的2,4-二氯苯酚溶液,紫外可见分光光度计测其在284nm处的吸光度,建立吸光度与浓度之间的标准曲线,即Y=0.0126X+0.0173(R2=0.9993)。吸附量的计算公式:(其中Co、Ce分别为2,4-二氯苯酚初始和平衡浓度,单位为mg/L;V为2,4-二氯苯酚体积,单位为mL;m为吸附材料投加量,单位为mg)。
本发明同时还提供了对比实施例:称取10mg的碳纳米管,在上述相同条件下,用于对2,4-二氯苯酚的吸附去除,其吸附量为224mg/g。
实施例1:
按照均苯四甲酸二酐(PMDA)与三聚氰胺(MA)的摩尔比1:3,称取1.0511gPMDA与1.8188gMA,在95℃下充分真空干燥,将MA溶解于30mL DMSO中,待MA完全溶解后在溶液中加入PMDA,在真空氮气条件下溶解,并在160℃条件下磁力搅拌反应60h,所制得的白色溶液分别用二氯甲烷、四氢呋喃、丙酮清洗,清洗后的产物在80℃条件下充分真空干燥,即制得产物PI,其透射电镜图如图2所示。CNT先用浓硫酸与浓硝酸体积比为3:1的混酸酸化,80℃反应3h,冷却至室温,后洗样至pH至中性,在70℃条件下真空干燥24h得CNTS-COOH,其透射电镜图如图1所示。取质量比例为PI:CNTS-COOH为1:1共混于乙醇中,超声、搅拌,干燥去掉乙醇,烘干,制得有机多孔聚酰亚胺/碳纳米管复合材料,其透射电镜图如图3所示,由图3可见,多孔聚酰亚胺和碳纳米管在复合材料中相互缠绕,均匀分布。然后取10mg复合材料在pH=6、温度为298K,反应时间为6h条件下用于对25mL浓度为500mg/L的2,4-二氯苯酚的去除,其吸附量为389mg/g。
实施例2:
按照均苯四甲酸二酐(PMDA)与三聚氰胺(MA)的摩尔比1:3,称取1.0511gPMDA与1.8188gMA,在96℃下充分真空干燥,将MA溶解于30mL DMSO中,待MA完全溶解后在溶液中加入PMDA,在真空氮气条件下溶解,并在165℃条件下磁力搅拌反应66h,所制得的白色溶液分别用二氯甲烷、四氢呋喃、丙酮清洗,清洗后的产物在75℃条件下充分真空干燥,即制得产物PI。CNT先用浓硫酸与浓硝酸体积比为3:1的混酸酸化,80℃反应3h,冷却至室温,后洗样至pH至中性,在80℃条件下真空干燥24h得CNTS-COOH。取质量比例为PI:CNTS-COOH为1:2共混于乙醇中,超声、搅拌,干燥去掉乙醇,烘干,制得有机多孔聚酰亚胺/碳纳米管复合材料。然后取10mg复合材料在pH=6、温度为298K,反应时间为6h条件下用于对25mL浓度为500mg/L的2,4-二氯苯酚的去除,其吸附量为337mg/g。
实施例3:
按照均苯四甲酸二酐(PMDA)与三聚氰胺(MA)的摩尔比1:3,称取1.0511gPMDA与1.8188gMA,在98℃下充分真空干燥,将MA溶解于30mL DMSO中,待MA完全溶解后在溶液中加入PMDA,在真空氮气条件下溶解,并在170℃条件下磁力搅拌反应72h,所制得的白色溶液分别用二氯甲烷、四氢呋喃、丙酮清洗,清洗后的产物在80℃条件下充分真空干燥,即制得产物PI。CNT先用浓硫酸与浓硝酸体积比为3:1的混酸酸化,80℃反应3h,冷却至室温,后洗样至pH至中性,在80℃条件下真空干燥24h得CNTS-COOH。取质量比例为PI:CNTS-COOH为1:3共混于乙醇中,超声、搅拌,干燥去掉乙醇,烘干,制得有机多孔聚酰亚胺/碳纳米管复合材料。然后取10mg复合材料在pH=6、温度为298K,反应时间为6h条件下用于对25mL浓度为500mg/L的2,4-二氯苯酚的去除,其吸附量为284mg/g。
实施例4:
按照均苯四甲酸二酐(PMDA)与三聚氰胺(MA)的摩尔比1:3,称取1.0511gPMDA与1.8188gMA,在99℃下充分真空干燥,将MA溶解于30mL DMSO中,待MA完全溶解后在溶液中加入PMDA,在真空氮气条件下溶解,并在170℃条件下磁力搅拌反应72h,所制得的白色溶液分别用二氯甲烷、四氢呋喃、丙酮清洗,清洗后的产物在80℃条件下充分真空干燥,即制得产物PI。CNT先用浓硫酸与浓硝酸体积比为3:1的混酸酸化,80℃反应3h,冷却至室温,后洗样至pH至中性,在80℃条件下真空干燥24h得CNTS-COOH。取质量比例为PI:CNTS-COOH为1:4共混于乙醇中,超声、搅拌,干燥去掉乙醇,烘干,制得有机多孔聚酰亚胺/碳纳米管复合材料。然后取10mg复合材料在pH=6、温度为298K,反应时间为6h条件下用于对25mL浓度为500mg/L的2,4-二氯苯酚的去除,其吸附量为262mg/g。
实施例5:
按照均苯四甲酸二酐(PMDA)与三聚氰胺(MA)的摩尔比1:3,称取1.0511gPMDA与1.8188gMA,在100℃下充分真空干燥,将MA溶解于30mL DMSO中,待MA完全溶解后在溶液中加入PMDA,在真空氮气条件下溶解,并在170℃条件下磁力搅拌反应72h,所制得的白色溶液分别用二氯甲烷、四氢呋喃、丙酮清洗,清洗后的产物在80℃条件下充分真空干燥,即制得产物PI。CNT先用浓硫酸与浓硝酸体积比为3:1的混酸酸化,80℃反应3h,冷却至室温,后洗样至pH至中性,在80℃条件下真空干燥24h得CNTS-COOH。取质量比例为PI:CNTS-COOH为1:5共混于乙醇中,超声、搅拌,干燥去掉乙醇,烘干,制得有机多孔聚酰亚胺/碳纳米管复合材料。然后取10mg复合材料在pH=6、温度为298K,反应时间为6h条件下用于对25mL浓度为500mg/L的2,4-二氯苯酚的去除,其吸附量为241mg/g。
实施例6:
按照均苯四甲酸二酐(PMDA)与三聚氰胺(MA)的摩尔比1:1,称取1.8188gPMDA与1.0511gMA,在102℃下充分真空干燥,将MA溶解于30mL DMSO中,待MA完全溶解后在溶液中加入PMDA,在真空氮气条件下溶解,并在170℃条件下磁力搅拌反应72h,所制得的白色溶液分别用二氯甲烷、四氢呋喃、丙酮清洗,清洗后的产物在80℃条件下充分真空干燥,即制得产物PI。CNT先用浓硫酸与浓硝酸体积比为3:1的混酸酸化,80℃反应3h,冷却至室温,后洗样至pH至中性,在80℃条件下真空干燥24h得CNTS-COOH。取质量比例为PI:CNTS-COOH为1:1共混于乙醇中,超声、搅拌,干燥去掉乙醇,烘干,制得有机多孔聚酰亚胺/碳纳米管复合材料。然后取10mg复合材料在pH=6、温度为298K,反应时间为6h条件下用于对25mL浓度为500mg/L的2,4-二氯苯酚的去除,其吸附量为274mg/g。
实施例7:
按照均苯四甲酸二酐(PMDA)与三聚氰胺(MA)的摩尔比1:1,称取1.8188gPMDA与1.0511gMA,在103℃下充分真空干燥,将MA溶解于30mL DMSO中,待MA完全溶解后在溶液中加入PMDA,在真空氮气条件下溶解,并在175℃条件下磁力搅拌反应72h,所制得的白色溶液分别用二氯甲烷、四氢呋喃、丙酮清洗,清洗后的产物在85℃条件下充分真空干燥,即制得产物PI。CNT先用浓硫酸与浓硝酸体积比为3:1的混酸酸化,80℃反应3h,冷却至室温,后洗样至pH至中性,在80℃条件下真空干燥24h得CNTS-COOH。取质量比例为PI:CNTS-COOH为1:3共混于乙醇中,超声、搅拌,干燥去掉乙醇,烘干,制得有机多孔聚酰亚胺/碳纳米管复合材料。然后取10mg复合材料在pH=6、温度为298K,反应时间为6h条件下用于对25mL浓度为500mg/L的2,4-二氯苯酚的去除,其吸附量为251mg/g。
实施例8:
按照均苯四甲酸二酐(PMDA)与三聚氰胺(MA)的摩尔比1:1,称取1.8188gPMDA与1.0511gMA,在105℃下充分真空干燥,将MA溶解于30mL DMSO中,待MA完全溶解后在溶液中加入PMDA,在真空氮气条件下溶解,并在180℃条件下磁力搅拌反应80h,所制得的白色溶液分别用二氯甲烷、四氢呋喃、丙酮清洗,清洗后的产物在90℃条件下充分真空干燥,即制得产物PI。CNT先用浓硫酸与浓硝酸体积比为3:1的混酸酸化,80℃反应3h,冷却至室温,后洗样至pH至中性,在80℃条件下真空干燥24h得CNTS-COOH。取质量比例为PI:CNTS-COOH为1:5共混于乙醇中,超声、搅拌,干燥去掉乙醇,烘干,制得有机多孔聚酰亚胺/碳纳米管复合材料。然后取10mg复合材料在pH=6、温度为298K,反应时间为6h条件下用于对25mL浓度为500mg/L的2,4-二氯苯酚的去除,其吸附量为237mg/g。

Claims (4)

1.一种有机多孔聚酰亚胺/碳纳米管复合材料,其特征在于该材料采用以下方法制备:(1)、按照1:1~1:3的摩尔比称取均苯四甲酸二酐和三聚氰胺,在95~105℃下充分真空干燥;
(2)、将三聚氰胺溶解于二甲基亚砜中,配制成质量浓度为3~10%的溶液,待三聚氰胺完全溶解后在溶液中加入均苯四甲酸二酐,在真空氮气条件下溶解,并在160~180℃条件下磁力搅拌反应60~80h,所制得的白色溶液分别用二氯甲烷、四氢呋喃、丙酮清洗,清洗后的产物在70~90℃条件下充分真空干燥,即制得多孔聚酰亚胺;
(3)、将碳纳米管加入到浓硫酸和浓硝酸的混合酸液中,进行处理后制得CNTs-COOH;
(4)、按照多孔聚酰亚胺:CNTs-COOH的质量比为1:1~1:5来称取多孔聚酰亚胺和CNTs-COOH,将两者分散于乙醇中,超声搅拌使两者充分混匀,然后除去乙醇,即制得有机多孔聚酰亚胺/碳纳米管复合材料。
2.根据权利要求1所述的有机多孔聚酰亚胺/碳纳米管复合材料,其特征在于:步骤(3)混合酸液中浓硫酸与浓硝酸体积比为3:1,将碳纳米管加入至混合酸液后超声0.5h,再在80℃条件下,氮气氛围中加热3h,降至室温,用蒸馏水洗样至pH=6.5~7.5,在80℃条件下真空干燥24h,即得CNTs-COOH。
3.权利要求1所述的有机多孔聚酰亚胺/碳纳米管复合材料的用途,其特征在于用于吸附水体中的2,4-二氯苯酚。
4.根据权利要求3所述的通途,其特征在于:在温度为298K,pH=6,吸附剂投加量0.4g/L的条件下,对水体中的2,4-二氯苯酚进行吸附。
CN201610354896.2A 2016-05-25 2016-05-25 一种用于吸附水体2,4-二氯苯酚的多孔聚酰亚胺/碳纳米管复合材料 Active CN105771935B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610354896.2A CN105771935B (zh) 2016-05-25 2016-05-25 一种用于吸附水体2,4-二氯苯酚的多孔聚酰亚胺/碳纳米管复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610354896.2A CN105771935B (zh) 2016-05-25 2016-05-25 一种用于吸附水体2,4-二氯苯酚的多孔聚酰亚胺/碳纳米管复合材料

Publications (2)

Publication Number Publication Date
CN105771935A true CN105771935A (zh) 2016-07-20
CN105771935B CN105771935B (zh) 2019-02-01

Family

ID=56379458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610354896.2A Active CN105771935B (zh) 2016-05-25 2016-05-25 一种用于吸附水体2,4-二氯苯酚的多孔聚酰亚胺/碳纳米管复合材料

Country Status (1)

Country Link
CN (1) CN105771935B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107216605A (zh) * 2017-06-22 2017-09-29 中国地质大学(武汉) 碳化氮结构支撑的多孔席夫碱聚合物复合材料及其应用
CN109092258A (zh) * 2018-10-15 2018-12-28 东华理工大学 一种纳米复合材料吸附剂及其制备方法、应用
CN109201019A (zh) * 2018-09-20 2019-01-15 河南中医药大学 一种磁性聚酰亚胺复合材料及其制备方法和应用
CN111554889A (zh) * 2020-04-10 2020-08-18 上海应用技术大学 一种聚酰亚胺/MXene复合材料及其制备和应用
CN112194795A (zh) * 2020-10-16 2021-01-08 天津理工大学 一种球形聚酰亚胺微球的制备及其电容去离子应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928937A (zh) * 2015-06-18 2015-09-23 中国地质大学(武汉) 一种多孔聚酰亚胺/电纺聚酰亚胺纤维复合材料及其用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928937A (zh) * 2015-06-18 2015-09-23 中国地质大学(武汉) 一种多孔聚酰亚胺/电纺聚酰亚胺纤维复合材料及其用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YAN WANG ET AL.: "Porous polyimide framework:A novel versatile adsorbent for highly efficient removals of azo dye and antibiotic", 《REACTIVE AND FUNCTIONAL POLYMERS》 *
彭思敏等: "原位聚合制备羧酸化多壁碳纳米管/聚酰亚胺纳米复合薄膜", 《功能材料与器件学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107216605A (zh) * 2017-06-22 2017-09-29 中国地质大学(武汉) 碳化氮结构支撑的多孔席夫碱聚合物复合材料及其应用
CN107216605B (zh) * 2017-06-22 2019-08-16 中国地质大学(武汉) 碳化氮结构支撑的多孔席夫碱聚合物复合材料及其应用
CN109201019A (zh) * 2018-09-20 2019-01-15 河南中医药大学 一种磁性聚酰亚胺复合材料及其制备方法和应用
CN109201019B (zh) * 2018-09-20 2021-06-01 河南中医药大学 一种磁性聚酰亚胺复合材料及其制备方法和应用
CN109092258A (zh) * 2018-10-15 2018-12-28 东华理工大学 一种纳米复合材料吸附剂及其制备方法、应用
CN111554889A (zh) * 2020-04-10 2020-08-18 上海应用技术大学 一种聚酰亚胺/MXene复合材料及其制备和应用
CN112194795A (zh) * 2020-10-16 2021-01-08 天津理工大学 一种球形聚酰亚胺微球的制备及其电容去离子应用

Also Published As

Publication number Publication date
CN105771935B (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
CN105771935A (zh) 一种用于吸附水体2,4-二氯苯酚的多孔聚酰亚胺/碳纳米管复合材料
Viotti et al. Diclofenac removal from water by adsorption on Moringa oleifera pods and activated carbon: Mechanism, kinetic and equilibrium study
Ooi et al. Conversion and characterization of activated carbon fiber derived from palm empty fruit bunch waste and its kinetic study on urea adsorption
Sobhanardakani et al. Removal of Janus Green dye from aqueous solutions using oxidized multi-walled carbon nanotubes
Li et al. Cyclodextrin modified filter paper for removal of cationic dyes/Cu ions from aqueous solutions
Wang et al. Sorption of peat humic acids to multi-walled carbon nanotubes
Khan et al. Tea dust as a potential low-cost adsorbent for the removal of crystal violet from aqueous solution
Naushad et al. Adsorption of methylene blue on chemically modified pine nut shells in single and binary systems: isotherms, kinetics, and thermodynamic studies
Oleszczuk et al. Influence of anionic, cationic and nonionic surfactants on adsorption and desorption of oxytetracycline by ultrasonically treated and non-treated multiwalled carbon nanotubes
Zhuang et al. Facile synthesis of three-dimensional graphene–soy protein aerogel composites for tetracycline adsorption
Wang et al. Competitive adsorption of PPCP and humic substances by carbon nanotube membranes: Effects of coagulation and PPCP properties
Chung et al. Degradation of azo dye reactive violet 5 by TiO 2 photocatalysis
Khomri et al. Modification of low-cost adsorbent prepared from agricultural solid waste for the adsorption and desorption of cationic dye
Tofighy et al. Copper ions removal from aqueous solutions using acid-chitosan functionalized carbon nanotubes sheets
Guo et al. Dummy-surface molecularly imprinted polymers as a sorbent of micro-solid-phase extraction combined with dispersive liquid–liquid microextraction for determination of five 2-phenylpropionic acid NSAIDs in aquatic environmental samples
Zuo et al. Sulfonamide antibiotics sorption by high silica ZSM-5: effect of pH and humic monomers (vanillin and caffeic acid)
CN108201877B (zh) 一种石墨烯过滤材料及其制备方法和用途
Cimirro et al. Removal of pharmaceutical compounds from aqueous solution by novel activated carbon synthesized from lovegrass (Poaceae)
Wang et al. Preparation and photocatalytic activity of chitosan‐supported cobalt phthalocyanine membrane
Yang et al. Preparation of activated carbon from waste cation exchange resin and its application in wastewater treatment
Galloni et al. pH-driven selective adsorption of multi-dyes solutions by loofah sponge and polyaniline-modified loofah sponge
Zhang et al. Adsorption characteristics of chloramphenicol onto powdered activated carbon and its desorption performance by ultrasound
Meng et al. Fabrication of a novel cellulose acetate imprinted membrane assisted with chitosan‐wrapped multi‐walled carbon nanotubes for selective separation of salicylic acid from industrial wastewater
Cheng et al. Highly selective removal of 2, 4‐dinitrophenol by a surface imprinted sol–gel polymer
Al-Mhyawi et al. Synthesis and characterization of orange peel modified hydrogels as efficient adsorbents for methylene blue (MB)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant