CN105758765A - 一种沥青最佳自愈合温度和最短愈合时间的测试与计算方法 - Google Patents

一种沥青最佳自愈合温度和最短愈合时间的测试与计算方法 Download PDF

Info

Publication number
CN105758765A
CN105758765A CN201610116148.0A CN201610116148A CN105758765A CN 105758765 A CN105758765 A CN 105758765A CN 201610116148 A CN201610116148 A CN 201610116148A CN 105758765 A CN105758765 A CN 105758765A
Authority
CN
China
Prior art keywords
healing
pitch
temperature
self
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610116148.0A
Other languages
English (en)
Inventor
刘全涛
唐进
吴少鹏
薛理辉
孙艺涵
余万
艾瑞克思朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201610116148.0A priority Critical patent/CN105758765A/zh
Publication of CN105758765A publication Critical patent/CN105758765A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/42Road-making materials

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明属建筑材料领域,具体涉及沥青最佳自愈合温度和最短愈合时间的测试与计算方法。一种沥青最佳自愈合温度和最短愈合时间的测试与计算方法,其特征在于包括如下步骤:1)首先利用动态流变剪切仪在不同温度下对沥青进行频率?粘度扫描实验,分析得到沥青的最佳自愈合温度;2)然后利用疲劳?愈合?再疲劳实验测试沥青在该自愈合温度下三个不同修复时间的修复率,分析计算沥青疲劳寿命恢复率达到100%时所需的自愈合时间。该方法可确定沥青自愈合的最佳愈合温度和最短愈合时间,提高愈合效率,节约加热修复沥青所产生的能耗。

Description

一种沥青最佳自愈合温度和最短愈合时间的测试与计算方法
技术领域
本发明属建筑材料领域,具体涉及沥青最佳自愈合温度和最短愈合时间的测试与计算方法。
背景技术
沥青属一种粘弹性材料,本身具有一定的自愈合性能。在载荷间歇,裂纹界面的沥青分子为降低表面能会自发地进行界面浸润,裂缝界面分子的范德华力、氢键等形成的吸附作用,可使沥青中的微裂纹自动愈合。沥青的这种自愈合能力与多种因素有关,其中愈合温度和愈合时间对其自修复水平的影响最大。当温度过低时,沥青分子的浸润、扩散等热力学运动受阻,沥青的自愈合速率缓慢,所需要的愈合时间很长。一般来说,温度越高越有利于沥青的快速愈合,但能耗也越大,加热温度过高会造成能源的浪费。因此,确定沥青的最佳愈合温度以及在该温度下的最短愈合时间是道路工程领域一直关心并亟待解决的重要问题。
发明内容
本发明的目的在于提供一种沥青最佳自愈合温度和最短愈合时间的测试与计算方法,该方法可确定沥青自愈合的最佳愈合温度和最短愈合时间,提高愈合效率,节约加热修复沥青所产生的能耗。
为实现上述目的,本发明所采取的技术方案是:一种沥青最佳自愈合温度和最短愈合时间的测试与计算方法,其特征在于包括如下步骤:1)利用动态流变剪切仪在不同温度下对沥青进行频率-粘度扫描实验,分析得到沥青的最佳自愈合温度;2)利用疲劳-愈合-再疲劳实验测试沥青在该自愈合温度下三个不同修复时间的修复率,分析计算沥青疲劳寿命恢复率达到100%时所需的自愈合时间。
步骤1)具体为:利用动态流变剪切仪(DSR)在不同温度下对沥青进行频率-粘度扫描实验,获得沥青在不同温度下的粘度与频率的关系曲线,根据公式η*=a·|ω|n-1(式中ω为频率;η*为复数粘度,单位为Pa·s;a为修正常数),可直接拟合出沥青在不同温度下的流动行为因子n和修正常数a,求得沥青在不同温度下的流动行为因子n;当n=1时,沥青处于牛顿流体状态;当n<1时,沥青具有高程度的假塑性流体性质;当0.9≤n<1时,沥青表现出近牛顿流体行为;绘制不同温度与相应流动行为因子n的关系曲线,求得当n=0.9时所对应 的温度,该温度为沥青从假塑性流体转变为近牛顿流体的转化温度,是沥青具有较好流动性的临界温度,即沥青所需要的最佳愈合温度。
步骤2)具体为:定义沥青的愈合率HI=(N2/N1),其N1为愈合前沥青疲劳寿命次数,N2为愈合后沥青疲劳寿命次数;通过疲劳-愈合-再疲劳实验,测试沥青在最佳自愈合温度T下不同愈合时间对应的愈合率(三个不同修复时间的沥青愈合率),根据式中HI0为瞬时愈合率;K为愈合速率因子,是反映愈合过程快慢的参数;R为理想气体常数,R=8.314J.mol-1.K-1;t为愈合时间,单位为s;Ea为活化能,单位为KJ/mol;绘制愈合率HI(T,t)与愈合时间t0.25的关系曲线,将作为整体线性回归,得到HI(T,t)函数,令HI(T,t)=100%,解得t为沥青达到完全愈合所需要的最短时间(利用回归法计算,求解得到沥青在该最佳自愈合温度下疲劳寿命愈合率达到100%所需要的最短自愈合时间)。
所述疲劳-愈合-再疲劳实验为:让沥青的复数模量下降到初始值的一半,得到疲劳沥青,在上述最佳自愈合温度下对疲劳沥青进行三种不同愈合时间的修复,之后再次进行疲劳试验,此过程简称为疲劳-愈合-再疲劳实验。
本发明的有益效果为:
1)本发明利用沥青的疲劳寿命恢复率定义了其在不同愈合温度、不同愈合时间下的愈合率,能确切地反映沥青愈合后性能恢复的程度。
2)本发明所述方法,确定了沥青自愈合的最佳温度,计算了沥青性能恢复率达到100%时所需要的(最短)愈合时间,有利于提高沥青的愈合效率,从而避免因加热温度过高或加热时间太长所带来的愈合效果差和浪费能源的问题。
附图说明
图1a是实施例1中90#基质沥青的复数粘度-频率图。
图1b是实施例1中90#基质沥青的流动行为因子-温度图。
图1c是实施例1中90#基质沥青在40℃下愈合时间与愈合率的关系曲线。
图2a是实施例2中70#基质沥青的复数粘度-频率图。
图2b是实施例2中70#基质沥青的流动行为因子-温度图。
图2c是实施例2中70#基质沥青的愈合时间与愈合率关系曲线。
具体实施方式
为了清晰说明本发明的目的、技术方案及其优点,以下结合实施例,对本发明进行进一步详细介绍。这里所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
一种沥青最佳自愈合温度和最短愈合时间的测试与计算方法,包括如下步骤:
1)采用90#基质沥青,利用动态流变剪切仪(DSR)进行不同温度下的频率-复数粘度扫描实验,拟合各个温度下的粘度与频率的关系曲线,如图1a所示。根据公式η*=a·|ω|n-1(式中ω为频率;η*为复数粘度,单位为Pa·s;a为修正常数;n为流动行为因子),得到每个温度下的修正参数流动行为因子n,在10℃时,n=0.646,a=2000000;15℃时,n=0.682,a=672828;20℃时,n=0.729,a=259700;25℃时,n=0.774,a=96165;30℃时,n=0.819,a=35076;35℃时,n=0.860,a=13024;40℃时,n=0.899,a=5211.6;45℃时,n=0.917,a=2164;50℃时,n=0.939,a=9321.46;55℃时,n=0.959,a=523.12;60℃时,n=0.974,a=207.6。绘制流动行为因子-温度关系曲线,如图1b所示,从图1b可以得到流动因子n=0.9时的温度为40℃,该温度即为90#沥青的最佳愈合温度。
2)定义沥青的愈合率HI=(N2/N1),其N1为愈合前沥青疲劳寿命次数,N2为愈合后沥青疲劳寿命次数;通过疲劳-愈合-再疲劳实验,测试90#基质沥青在最佳自愈合温度T为40℃下三个不同修复时间(300s,600s和900s)的沥青愈合率,得到愈合前后的疲劳寿命和愈合率,如表1所示:
表1:疲劳的90#基质沥青在40℃时修复300s,600s和900s后的愈合率
愈合时间t(s) 愈合前的疲劳寿命(N1) 愈合后的疲劳寿命(N2) 愈合率(%)
300 34390 500 1.5%
600 28750 27500 72.7%
900 47040 34180 95.7%
根据式中HI0为瞬时愈合率;K为愈合速率因子;R为理想气体常数,R=8.314J.mol-1.K-1;t为愈合时间,单位为s;Ea为活化能,单位为KJ/mol;利用表1中的数据,绘制HI与t0.25的关系曲线,如图1c所示,将看作为整体回归得到HI(T,t)=-2.987+0.7307t0.25,令HI=100%,解得t=886.4s,该时间即为90#基质沥青在40℃下达到100%愈合时所需要的最短愈合时间。
实施例2
一种沥青最佳自愈合温度和最短愈合时间的测试与计算方法,包括如下步骤:
1)采用70#基质沥青,利用动态流变剪切仪(DSR)进行不同温度下的频率-复数粘度扫描实验,拟合各个温度下的粘度与频率的关系曲线,如图2a所示。根据η*=a·|ω|n-1(式中ω为频率;η*为复数粘度;a为修正常数),得到每个温度下的流动行为因子n:10℃时,n=0.619,a=2000000;15℃时,n=0.666,a=962883;20℃时,n=0.713,a=368812;25℃时,n=0.774,a=136094;30℃时,n=0.823,a=48957;35℃时,n=0.856,a=18010;40℃时,n=0.884,a=6818.5;45℃时,n=0.914,a=2757;50℃时,n=0.943,a=1215.9;55℃时,n=0.960,a=564.64;60℃时,n=0.972,a=274.36。绘制流动行为因子-温度关系曲线,如图2b所示,得到流动因子n=0.9时的温度为44℃,此为70#沥青的最佳愈合温度。
2)定义沥青的愈合率HI=(N2/N1),其N1为愈合前沥青疲劳寿命次数,N2为愈合后沥青疲劳寿命次数;通过疲劳-愈合-再疲劳实验,测试70#基质沥青在最佳自愈合温度T为44℃下三个不同修复时间(300s,600s和900s)的沥青愈合率,得到愈合前后的疲劳寿命和愈合率,如表2所示。
表2:疲劳的70#基质沥青在44℃时修复300s,600s和900s后的愈合率
愈合时间t(s) 愈合前的疲劳寿命(N1) 愈合后的疲劳寿命(N2) 愈合率(%)
300 31050 620 2.00%
600 33410 25110 75.16%
900 29980 29110 97.10%
根据式中HI0为瞬时愈合率;K为愈合速率因子;R为理想气体常数,R=8.314J.mol-1.K-1;t为愈合时间,单位为s;Ea为活化能,单位为KJ/mol;利用表2中的数据,绘制HI与t0.25的关系曲线,如图2c所示,将看作为整体回归得到HI(T,t)=0.739t0.25-3.0126,令HI=100%,解得t=869.2s,该时间即为70#基质沥青在44℃下的性能恢复率达到100%时所需要的最短愈合时间。

Claims (3)

1.一种沥青最佳自愈合温度和最短愈合时间的测试与计算方法,其特征在于包括如下步骤:1)利用动态流变剪切仪在不同温度下对沥青进行频率-粘度扫描实验,分析得到沥青的最佳自愈合温度;2)利用疲劳-愈合-再疲劳实验测试沥青在该自愈合温度下三个不同修复时间的修复率,分析计算沥青疲劳寿命恢复率达到100%时所需的自愈合时间。
2.根据权利要求1所述的一种沥青最佳自愈合温度和最短愈合时间的测试与计算方法,其特征在于,步骤1)具体为:利用动态流变剪切仪(DSR)在不同温度下对沥青进行频率-粘度扫描实验,获得沥青在不同温度下的粘度与频率的关系曲线,根据公式η*=a·|ω|n-1(式中ω为频率;η*为复数粘度,单位为Pa·s;a为修正常数),可直接拟合出沥青在不同温度下的流动行为因子n和修正常数a;绘制不同温度与相应流动行为因子n的关系曲线,求得当流动行为因子n=0.9时所对应的温度,该温度为沥青从假塑性流体转变为近牛顿流体的转化温度,是沥青具有较好流动性的临界温度,即沥青所需要的最佳愈合温度。
3.根据权利要求1所述的一种沥青最佳自愈合温度和最短愈合时间的测试与计算方法,其特征在于,步骤2)具体为:定义沥青的愈合率HI=(N2/N1)%,其N1为愈合前沥青疲劳寿命次数,N2为愈合后沥青疲劳寿命次数;通过疲劳-愈合-再疲劳实验,测试沥青在最佳自愈合温度T下不同愈合时间对应的愈合率,根据式中HI0为瞬时愈合率;K为愈合速率因子;R为理想气体常数,R=8.314J.mol-1.K-1;t为愈合时间,单位为s;Ea为活化能,单位为KJ/mol;绘制愈合率HI(T,t)与愈合时间t0.25的关系曲线,得到HI(T,t)函数,令HI(T,t)=100%,解得t为沥青达到完全愈合所需要的最短时间。
CN201610116148.0A 2016-03-01 2016-03-01 一种沥青最佳自愈合温度和最短愈合时间的测试与计算方法 Pending CN105758765A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610116148.0A CN105758765A (zh) 2016-03-01 2016-03-01 一种沥青最佳自愈合温度和最短愈合时间的测试与计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610116148.0A CN105758765A (zh) 2016-03-01 2016-03-01 一种沥青最佳自愈合温度和最短愈合时间的测试与计算方法

Publications (1)

Publication Number Publication Date
CN105758765A true CN105758765A (zh) 2016-07-13

Family

ID=56332263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610116148.0A Pending CN105758765A (zh) 2016-03-01 2016-03-01 一种沥青最佳自愈合温度和最短愈合时间的测试与计算方法

Country Status (1)

Country Link
CN (1) CN105758765A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111551457A (zh) * 2020-05-18 2020-08-18 合肥工业大学 一种测试和评估沥青愈合性能的方法
CN111855498A (zh) * 2020-06-24 2020-10-30 同济大学 一种基于表面能理论的沥青混合料拌和温度确定方法
CN113433304A (zh) * 2021-06-24 2021-09-24 哈尔滨工业大学 沥青自愈合性能的测试和评价方法
CN113567269A (zh) * 2021-07-22 2021-10-29 同济大学 一种考虑自愈合的沥青疲劳寿命评价方法
CN116678769A (zh) * 2023-07-27 2023-09-01 北京工业大学 沥青路面修复时间的确定方法、装置、终端及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879272A (zh) * 2012-09-29 2013-01-16 长安大学 评价沥青砂浆损伤自愈合能力的方法
CN103487333A (zh) * 2013-10-11 2014-01-01 东南大学 一种沥青混合料自愈合能力评价方法
CN104713783A (zh) * 2015-04-09 2015-06-17 东南大学 一种检测沥青自愈合强度的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879272A (zh) * 2012-09-29 2013-01-16 长安大学 评价沥青砂浆损伤自愈合能力的方法
CN103487333A (zh) * 2013-10-11 2014-01-01 东南大学 一种沥青混合料自愈合能力评价方法
CN104713783A (zh) * 2015-04-09 2015-06-17 东南大学 一种检测沥青自愈合强度的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALESSANDRO MENOZZI ER AL.: ""Induction healing of fatigue damage in asphalt test samples"", 《CONSTRUCTION AND BUILDING MATERIALS》 *
DAQUAN SUN ET AL.: ""Calculation and evaluation of activation energy as a self-healing indication of asphalt mastic"", 《CONSTRUCTION AND BUILDING MATERIALS》 *
徐辰 等: ""沥青自愈合性能在不同影响因素下的评价"", 《中外公路》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111551457A (zh) * 2020-05-18 2020-08-18 合肥工业大学 一种测试和评估沥青愈合性能的方法
CN111551457B (zh) * 2020-05-18 2023-02-28 合肥工业大学 一种测试和评估沥青愈合性能的方法
CN111855498A (zh) * 2020-06-24 2020-10-30 同济大学 一种基于表面能理论的沥青混合料拌和温度确定方法
CN113433304A (zh) * 2021-06-24 2021-09-24 哈尔滨工业大学 沥青自愈合性能的测试和评价方法
CN113433304B (zh) * 2021-06-24 2022-03-29 哈尔滨工业大学 沥青自愈合性能的测试和评价方法
CN113567269A (zh) * 2021-07-22 2021-10-29 同济大学 一种考虑自愈合的沥青疲劳寿命评价方法
CN113567269B (zh) * 2021-07-22 2022-06-17 同济大学 一种考虑自愈合的沥青疲劳寿命评价方法
CN116678769A (zh) * 2023-07-27 2023-09-01 北京工业大学 沥青路面修复时间的确定方法、装置、终端及存储介质
CN116678769B (zh) * 2023-07-27 2023-10-31 北京工业大学 一种沥青路面修复时间的确定方法

Similar Documents

Publication Publication Date Title
CN105758765A (zh) 一种沥青最佳自愈合温度和最短愈合时间的测试与计算方法
RU2017103309A (ru) Способ и устройство для низкотемпературного разделения воздуха с переменным потреблением энергии
CN107628923A (zh) 一种富油半负压脱苯系统及其方法
Dai et al. Hybrid CO2 air source heat pump system integrating with vapor injection and mechanical subcooling technology for space heating of global application: Life cycle techno-energy-enviro-economics assessment
CN102603175B (zh) 钢化玻璃生产装置及其生产方法
CN105369847A (zh) 循环水系统的整体优化节能方法
CN101457774B (zh) 可利用废热联合式蒸汽喷射真空泵系统
CN102155767B (zh) 一种多级蒸发冷却制冷的方法
Zhang et al. Thermal performance of a simplified parallel power and refrigeration combined cycle with refrigeration as the main task
CN203257489U (zh) 焦炉烟道气余热发电系统
CN202705309U (zh) 废润滑油再生分子蒸馏二段组合装置
CN103089358A (zh) 塑胶生产工艺废气低温余热发电的方法与装置
CN103244210A (zh) 焦炉烟道气余热发电系统和方法
CN208136191U (zh) 一种焦炉煤气处理系统
CN211522135U (zh) 一种利用焦炉上升管余热加热富油脱苯的装置
CN203035277U (zh) 一种利用塑胶生产工艺废气低温余热发电的装置
CN107722960A (zh) 一种用于压裂液稠化剂的生产工艺
CN207230924U (zh) 水源热泵原油加热系统
CN2758666Y (zh) 利用余热制冷的装置
CN110776962A (zh) 一种利用焦炉上升管余热加热富油脱苯的装置及方法
CN106202826B (zh) 一种火电机组双背压冷端系统双速泵循环水流量优化方法
CN220567337U (zh) 一种柠檬酸废低温热源综合利用系统
CN219307956U (zh) 一种用于果糖浓缩的废热利用多级蒸发系统
CN104195035B (zh) 沼气工程余热综合利用系统
CN103089359A (zh) 一种利用塑胶生产工艺废气低温余热发电的装置与方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160713