CN105749891B - 全多孔硅胶微球手性色谱填料的制备方法 - Google Patents

全多孔硅胶微球手性色谱填料的制备方法 Download PDF

Info

Publication number
CN105749891B
CN105749891B CN201610288389.3A CN201610288389A CN105749891B CN 105749891 B CN105749891 B CN 105749891B CN 201610288389 A CN201610288389 A CN 201610288389A CN 105749891 B CN105749891 B CN 105749891B
Authority
CN
China
Prior art keywords
microballoon
full multi
preparation
hours
chiral chromatogram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610288389.3A
Other languages
English (en)
Other versions
CN105749891A (zh
Inventor
郭兴忠
王睿
赵岳星
杨辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201610288389.3A priority Critical patent/CN105749891B/zh
Publication of CN105749891A publication Critical patent/CN105749891A/zh
Application granted granted Critical
Publication of CN105749891B publication Critical patent/CN105749891B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28088Pore-size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

本发明公开了一种全多孔硅胶微球手性色谱填料的制备方法,包括以下步骤:将四乙氧基硅烷、无水乙醇、稳定剂、致孔剂均匀混合后,在惰性气体的保护下,升温进行反应,得到聚乙氧基硅烷;将聚乙氧基硅烷与去离子水、无水乙醇充分混合后依次进行凝胶、陈化、洗涤、干燥、热处理,得全多孔硅胶微球;将全多孔微球填料于0.1g/ml盐酸中回流活化,然后放入0.1g/ml直链淀粉-三(3,5-二甲基苯基氨基甲酸酯)溶液中搅拌5~7小时,对其进行改性处理,最后干燥,得到全多孔硅胶微球手性色谱填料。

Description

全多孔硅胶微球手性色谱填料的制备方法
技术领域
本发明属于多孔微球色谱填料的制备领域,具体涉及一种多孔二氧化硅微球手性色谱填料的制备方法。
背景技术
手性(Chirality)是指物质的本身与其镜像不能完全重合,是自然界本质属性之一,手性现象在药物合成中非常普遍,手性药物大多含一个或多个手性中心,因此含有一对及一对以上的对映异构体。而不同手性对映体往往表现出不同的药物活性,有些手性异构体甚至含有毒性,因此对于手性药物的分离显得十分重要。如今,随着色谱理论基础研究的日益深入、色谱技术的日臻完善,并且由于高效液相色谱操作时间较短且有较高的载样量,有利于得到一定量的对映体单体,高效液相色谱法分离技术已成为一项重要的对映体制备和纯化的工具,在对映体分离及单一异构体制备中被广泛应用。
高效液相色谱技术(HPLC)是自20世纪70年代发展起来的一项高效快速的新型分析分离技术,是一种应用广泛的分离手段,现已成为化学化工、食品卫生、药物检测、环保监测等诸多领域中最常用的分析分离手段。而液相色谱填料则是高效液相色谱技术赖以建立和发展的关键性基础。
硅胶即二氧化硅,因其具有优异的机械强度、易控制的孔结构和比表面积、较好的化学稳定性和热稳定性以及表面含有丰富的硅羟基易于进行化学键合或改性等诸多特性,成为一种目前最为理想的液相色谱填料基质。以硅胶为基质的现代高效液相色谱填料占90%以上,绝大部分为全多孔球形基质。全多孔球形硅胶的制备通常是按照:反应,凝胶,陈化,洗涤,干燥,焙烧的流程进行的。
目前现有的作为填料的全多孔球形硅胶的制备方法为:堆砌硅珠法生产硅胶微球,即,使硅胶微球与模板剂复活,进行热处理后将模板剂去除产生孔洞。其存在着制备出的微球定型较差,且大小不一的不足之处。
发明内容
本发明要解决的技术问题是提供一种全多孔硅胶微球手性色谱填料的制备方法,采用本发明方法制备而得的色谱填料能对手性药物进行手性分离。
为了解决上述技术问题,本发明提供一种全多孔硅胶微球手性色谱填料的制备方法,包括以下步骤:
1)、将四乙氧基硅烷(TEOS)加入到无水乙醇中,于25~35℃搅拌20~40分钟(较佳为30℃搅拌30分钟),再加入稳定剂、致孔剂,混合充分后调节pH为2±0.1,继续搅拌1~2小时后,将温度升高至85~95℃(从而将全部的无水乙醇蒸除),然后再通入惰性气体,在惰性气体保护下继续保温(85~95℃)搅拌22~26小时(较佳24小时),最后将温度升至130~150℃并保温23~25h(较佳为140℃并保温24h,目的是将剩余液态有机物蒸出),得到聚乙氧基硅烷;
四乙氧基硅烷与稳定剂的质量比为50:1.2~1.8(较佳为50:1.5);
四乙氧基硅烷与致孔剂的质量比为50:7~8(较佳为50:7.5);
2)、按照1:0.9~1.1:1.8~2.2(较佳为1:1:2)的质量比,将聚乙氧基硅烷与去离子水、无水乙醇充分混合,调节pH为2±0.1,然后于25~35℃凝胶2.5~3.5小时(较佳为30℃凝胶3小时),再于40~45℃中陈化45~50小时(较佳为48小时)后,接着用酒精洗涤后、干燥,最后于480~520℃热处理9.5~10.5小时(较佳为500℃热处理10小时),得全多孔硅胶微球;
3)、将步骤2)所得的全多孔微球填料于0.1g/ml盐酸中回流活化(将微球置于盐酸溶液中并在冷凝管中进行回流),然后放入0.1g/ml直链淀粉-三(3,5-二甲基苯基氨基甲酸酯)溶液中搅拌5~7小时(较佳为6小时),对其进行改性处理,最后干燥,得到全多孔硅胶微球手性色谱填料。
作为本发明的全多孔硅胶微球手性色谱填料的制备方法的改进:
所述步骤3)中,回流活化的次数为5~7次,每次50~70min。
作为本发明的全多孔硅胶微球手性色谱填料的制备方法的进一步改进:
所述步骤1)中的稳定剂为环己烷;致孔剂为聚乙二醇(其分子量为400)。
作为本发明的全多孔硅胶微球手性色谱填料的制备方法的进一步改进:
所述步骤2),以3℃/min的速率升温至500℃后热处理10小时。
作为本发明的全多孔硅胶微球手性色谱填料的制备方法的进一步改进:
所述步骤1)中,四乙氧基硅烷与无水乙醇的质量比为5:8~12(较佳为1:2)。
作为本发明的全多孔硅胶微球手性色谱填料的制备方法的进一步改进:
所述步骤1)中,惰性气体为氩气。
作为本发明的全多孔硅胶微球手性色谱填料的制备方法的进一步改进:
所述步骤1)和步骤2)中,利用浓度为0.1g/ml盐酸溶液进行pH值的调节。
作为本发明的全多孔硅胶微球手性色谱填料的制备方法的进一步改进:
所述步骤2)和步骤3)中的干燥均为:于50~70℃(例如为60℃烘箱)干燥24~48小时。
在本发明中,未明确限定温度的步骤均在室温下进行,室温是指10~30℃。
本发明具有以下技术优势:
(1)、本发明通过溶胶凝胶法制备全多孔硅胶微球填料,步骤简单,成本低廉。
(2)、本发明方法制备的产物孔隙率较高,孔结构及粒度较为均匀。
(3)、本发明采用的是改进TEOS水解的方法制备全多孔硅胶微球,利用致孔剂与水分子的结合来产生孔洞结构,制得的微球粒径孔径分布较窄,成球性较好。能成功对手性药物进行了分离。采用本方法制备的全多孔微球比表面积高达230m2·g-1,可作为手性高效液相色谱填料,对手性药物进行分离。
综上所述,本发明制备了一种全多孔硅胶微球手性色谱填料;采用四乙氧基硅烷作为前驱体,盐酸作为催化剂(即在步骤1和步骤2中利用0.1g/ml盐酸溶液进行pH值的调节)、环己烷作为稳定剂以及聚乙二醇作为致孔剂。该方法制备工艺简单,制备的全多孔硅胶微球比表面积高并且孔隙均匀有序(孔隙/孔径为3~15nm),可应用于高效液相色谱分离领域。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细说明。
图1为实施例1制备的全多孔硅胶微球20000倍扫描电镜照片。
图2为实施例1制备的全多孔硅胶微球50000倍扫描电镜照片。
具体实施方式
实施例1、一种全多孔硅胶微球手性色谱填料的制备方法,依次进行以下步骤:
1)、将50g四乙氧基硅烷加入到100g无水乙醇中,30℃下在三颈烧瓶中搅拌30分钟,再加入作为稳定剂的环己烷1.5g、作为致孔剂的聚乙二醇(其分子量为400)7.5g,混合充分后加入0.1g/ml盐酸溶液使pH控制在2,继续搅拌60分钟后将温度升高到90℃,从而将无水乙醇蒸干,然后通入氩气,在氩气保护下继续保温(90℃)搅拌24小时,最后将温度升至140℃从而将剩余液态有机物蒸出,得到聚乙氧基硅烷;
2)、将30g步骤1)的所得聚乙氧基硅烷与30g去离子水,60g无水乙醇充分混合,加入0.1g/ml盐酸控制溶液pH值在2,充分混合后在30℃环境下进行凝胶3小时,在40℃环境中陈化48小时后取出样品并使用酒精洗涤后,在60℃烘箱中干燥48小时,然后对其进行500℃的热处理10小时,得全多孔硅胶微球;
3)、将步骤2)所得的全多孔硅胶微球在0.1g/ml盐酸中回流6次进行活化(每次回流的时间为1小时),并将样品在0.1g/ml直链淀粉-三(3,5-二甲基苯基氨基甲酸酯)溶液中搅拌6小时,从而对其进行改性处理;最后于60℃烘箱中干燥48小时,得到全多孔硅胶微球手性色谱填料。
上述所得的作为手性色谱填料的全多孔硅胶微球,所述微球外形为分散球形,颗粒粒径大小为4-7μm,比表面积为230m2/g,微球含有全贯通的纳米孔洞,孔径为5nm左右。
实验1、采用实施例1制备而得的色谱填料对手性药物进行手性分离,具体分离步骤如下:将填料装柱,以0.5%异丙醇–正己烷溶液作为流动相,使用Welchrom S60正相色谱仪对手性药物氟比洛芬酯进行液相色谱分离。所得结果为:氟比洛芬酯中含有的四种手性异构体得到里完全的分离。
对比例1、将实施例1步骤1)中的环己烷改成丙酮,用量不变,其余等同于实施例1。
对比例2、将实施例1步骤1)中的聚乙二醇改成Span80,用量不变,其余等同于实施例1。
对比例3、将实施例1步骤1)和步骤2)的中“调节pH为2”改成“调节pH为5”,其余等同于实施例1。
对比例4、将实施例1步骤2)中的热处理温度由500℃改为800℃,其余等同于实施例1。
对比例5、将实施例1步骤2)中的陈化时间改为5小时,其余等同于实施例1。
对比例6-1、将环己烷的用量由1.5g改成0.5g(即,环己烷与四乙氧基硅烷的重量比由3%改成1%);其余等同于实施例1。
对比例6-2、将环己烷的用量由1.5g改成4g(即,环己烷与四乙氧基硅烷的重量比由3%改成8%);其余等同于实施例1。
所有的对比例所得填料的性能数据如下表1所述。
将上述所有的对比例按照上述实验1所述方法进行检测,所得结果如表1所述。
表1
备注说明:
对比例1由于球形不好,因此无法进行后续的实验。
最后,还需要注意的是,以上列举的仅是本发明的若干个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (7)

1.全多孔硅胶微球手性色谱填料的制备方法,其特征是包括以下步骤:
1)、将四乙氧基硅烷加入到无水乙醇中,于25~35℃搅拌20~40分钟,再加入稳定剂、致孔剂,混合充分后调节pH为2±0.1,继续搅拌1~2小时后,将温度升高至85~95℃,然后再通入惰性气体,在惰性气体保护下继续保温搅拌22~26小时,最后将温度升至130~150℃并保温23~25h,得到聚乙氧基硅烷;
四乙氧基硅烷与稳定剂的质量比为50:1.2~1.8;
四乙氧基硅烷与致孔剂的质量比为50:7~8;
稳定剂为环己烷,致孔剂为聚乙二醇;
2)、按照1:0.9~1.1:1.8~2.2的质量比,将聚乙氧基硅烷与去离子水、无水乙醇充分混合,调节pH为2±0.1,然后于25~35℃凝胶2.5~3.5小时,再于40~45℃中陈化45~50小时后,接着用酒精洗涤后、干燥,最后于480~520℃热处理9.5~10.5小时,得全多孔硅胶微球;
3)、将步骤2)所得的全多孔微球填料于0.1g/ml盐酸中回流活化,然后放入0.1g/ml直链淀粉-三(3,5-二甲基苯基氨基甲酸酯)溶液中搅拌5~7小时,对其进行改性处理,最后干燥,得到全多孔硅胶微球手性色谱填料。
2.根据权利要求1所述的全多孔硅胶微球手性色谱填料的制备方法,其特征是:
所述步骤3)中,回流活化的次数为5~7次,每次50~70min。
3.根据权利要求2所述的全多孔硅胶微球手性色谱填料的制备方法,其特征是:
所述步骤2),以3℃/min的速率升温至500℃后热处理10小时。
4.根据权利要求2所述的全多孔硅胶微球手性色谱填料的制备方法,其特征是:
所述步骤1)中,四乙氧基硅烷与无水乙醇的质量比为5:8~12。
5.根据权利要求2所述的全多孔硅胶微球手性色谱填料的制备方法,其特征是:
所述步骤1)中,惰性气体为氩气。
6.根据权利要求2所述的全多孔硅胶微球手性色谱填料的制备方法,其特征是:
所述步骤1)和步骤2)中,利用浓度为0.1g/ml盐酸溶液进行pH值的调节。
7.根据权利要求2所述的全多孔硅胶微球手性色谱填料的制备方法,其特征是:
所述步骤2)和步骤3)中的干燥均为:于50~70℃干燥24~48小时。
CN201610288389.3A 2016-05-01 2016-05-01 全多孔硅胶微球手性色谱填料的制备方法 Active CN105749891B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610288389.3A CN105749891B (zh) 2016-05-01 2016-05-01 全多孔硅胶微球手性色谱填料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610288389.3A CN105749891B (zh) 2016-05-01 2016-05-01 全多孔硅胶微球手性色谱填料的制备方法

Publications (2)

Publication Number Publication Date
CN105749891A CN105749891A (zh) 2016-07-13
CN105749891B true CN105749891B (zh) 2018-01-09

Family

ID=56323348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610288389.3A Active CN105749891B (zh) 2016-05-01 2016-05-01 全多孔硅胶微球手性色谱填料的制备方法

Country Status (1)

Country Link
CN (1) CN105749891B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109865497A (zh) * 2019-04-02 2019-06-11 青岛硕远硅胶科技有限公司 一种高纯多孔球形硅胶填料的制备方法
CN110988230B (zh) * 2019-11-28 2022-03-22 纳谱分析技术(苏州)有限公司 氟比洛芬酯对映异构体及杂质a的液相色谱分离检测方法
CN113559830B (zh) * 2021-08-11 2023-08-18 天津博蕴纯化装备材料科技有限公司 磁性多孔球形硅胶微球及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103816856A (zh) * 2014-03-06 2014-05-28 南京信息工程大学 用于降解水中微量有机污染物的材料及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101472380B1 (ko) * 2013-03-28 2014-12-15 명지대학교 산학협력단 Li2MnO3 기반의 흡착제 제조방법 및 이에 따라 제조된 흡착제

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103816856A (zh) * 2014-03-06 2014-05-28 南京信息工程大学 用于降解水中微量有机污染物的材料及其制备方法和应用

Also Published As

Publication number Publication date
CN105749891A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
CN105749891B (zh) 全多孔硅胶微球手性色谱填料的制备方法
Monier et al. Preparation of cross-linked chitosan/glyoxal molecularly imprinted resin for efficient chiral resolution of aspartic acid isomers
Fan et al. Water-compatible graphene oxide/molecularly imprinted polymer coated stir bar sorptive extraction of propranolol from urine samples followed by high performance liquid chromatography-ultraviolet detection
Han et al. Ionic liquid–hybrid molecularly imprinted material–filter solid-phase extraction coupled with HPLC for determination of 6-benzyladenine and 4-chlorophenoxyacetic acid in bean sprouts
You et al. One-pot synthesis of zeolitic imidazolate framework-8/poly (methyl methacrylate-ethyleneglycol dimethacrylate) monolith coating for stir bar sorptive extraction of phytohormones from fruit samples followed by high performance liquid chromatography-ultraviolet detection
Wu et al. Applications of hybrid organic–inorganic materials in chiral separation
EP2829873A1 (en) Porous silica powder
D’Orazio et al. Enantiomers separation by capillary electrochromatography using polysaccharide‐based stationary phases
Kumar et al. Enantioseparation on cellulose dimethylphenylcarbamate-modified zirconia monolithic columns by reversed-phase capillary electrochromatography
Yu et al. De novo synthesis of microspheical cellulose 3, 5-dichlorophenylcarbamates: An organic-inorganic hybrid chiral stationary phase for enantiospearation
Ma et al. Preparation of epoxy-functionalized hierarchically porous hybrid monoliths via free radical polymerization and application in HILIC enrichment of glycopeptides
Fan et al. Cyromazine imprinted polymers for selective stir bar sorptive extraction of melamine in animal feed and milk samples
CN104458975A (zh) 一种应用于金花茶茶多酚、黄酮类成分检测的测试方法
EP1721664A1 (en) Separating agent for optical isomer
Zhang et al. Comparative evaluation of a one‐pot strategy for the preparation of β‐cyclodextrin‐functionalized monoliths: Effect of the degree of amino substitution of β‐cyclodextrin on the column performance
Wang et al. Preparation of ionic liquid-mediated imprinted monolith for selective capture and purification of corilagin
CN103193898B (zh) L-苯丙氨酸衍生β-环糊精键合硅胶的合成及其对丙氨酸对映体的分离应用
Lou et al. Synthesis of resins with ionic liquids for purification of flavonoids from Hippophae rhamnoides L. leaves
Lie et al. Molecularly imprinted mesoporous silica: Potential of the materials, synthesis and application in the active compound separation from natural product
CN103599755A (zh) 苯乙醇胺a分子印迹膜及其制备方法与应用
Yu et al. Novel polymeric monolith materials with a β‐cyclodextrin‐graphene composite for the highly selective extraction of methyl jasmonate
JP2004003935A (ja) 擬似移動床式クロマトグラフィー用光学異性体分離用充填剤
CN109158095A (zh) 一种填充柱填料及其制备方法
Aboul-Enein et al. Polysaccharide and cyclodextrin-based monolithic chiral stationary phases and its application to chiral separation
Li et al. Computational simulation-assisted design and experimental verification of molecularly imprinted polymers for selective extraction of chlorogenic acid

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant