CN105742501B - 基于经膦酸或三氯硅烷修饰的ito玻璃基底的有机电存储器件及其制备方法 - Google Patents

基于经膦酸或三氯硅烷修饰的ito玻璃基底的有机电存储器件及其制备方法 Download PDF

Info

Publication number
CN105742501B
CN105742501B CN201610284076.0A CN201610284076A CN105742501B CN 105742501 B CN105742501 B CN 105742501B CN 201610284076 A CN201610284076 A CN 201610284076A CN 105742501 B CN105742501 B CN 105742501B
Authority
CN
China
Prior art keywords
trichlorosilane
glass substrate
preparation
ito glass
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610284076.0A
Other languages
English (en)
Other versions
CN105742501A (zh
Inventor
路建美
贺竞辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201610284076.0A priority Critical patent/CN105742501B/zh
Publication of CN105742501A publication Critical patent/CN105742501A/zh
Priority to US15/581,739 priority patent/US9818963B1/en
Application granted granted Critical
Publication of CN105742501B publication Critical patent/CN105742501B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/202Integrated devices comprising a common active layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Chemically Coating (AREA)

Abstract

本发明公开了基于经膦酸或三氯硅烷修饰的ITO玻璃基底的有机电存储器件及其制备方法。本发明的制备方法包括如下步骤:1)清洗ITO玻璃基底;2)形成膦酸或三氯硅烷修饰层;3)形成有机物镀膜层;4)形成电极,最终得到有机电存储器件。通过该方法,本发明制备了一系列三明治型有机电存储器件,制备方法简单、便捷,易于操作;与传统器件相比,开启电压得到降低,多进制的产率得到提升,解决了目前三进制产率较低的难题。对于未来的存储领域而言,具有极高的应用价值。

Description

基于经膦酸或三氯硅烷修饰的ITO玻璃基底的有机电存储器 件及其制备方法
技术领域
本发明属于有机半导体材料技术领域,涉及基于经膦酸或三氯硅烷修饰的ITO玻璃基底的有机电存储器件的制备方法,以及通过该制备方法制备的有机电存储器件。
背景技术
近年来,随着信息技术的飞速发展,传统的信息存储载体逐渐呈现出一种无法满足日益增长的需求的态势。有机电存储器件的发展极大地扩宽了信息存储载体的研究领域,随着相关研究的逐步深入,科学家们不再仅仅满足于二进制存储器件,而逐渐将目光投向多进制存储器件。传统的二进制使得智能化只能模拟“是”和“不是”两种状态,而无法模拟人类的三种认知状态,即“是”、“不是”和“不知道”。由此可见,三进制存储更加接近于人类对信息的接受方式,更易于实现人工智能。因此,有机电存储器件实现三进制存储将具有非常重要的意义。
发明内容
针对上述情况,本发明的目的在于提供基于经膦酸或三氯硅烷修饰的ITO玻璃基底的有机电存储器件的制备方法,以及通过该制备方法制备的有机电存储器件。
为了实现上述目的,本发明采用如下技术方案:
一种基于经膦酸或三氯硅烷修饰的ITO玻璃基底的有机电存储器件的制备方法,其包括如下步骤:
(1)采用超声清洗的方法清洗ITO玻璃基底;
(2)通过绳拴法将膦酸(PA)修饰到ITO玻璃基底上,或者通过旋涂法将三氯硅烷(TCS)修饰到ITO玻璃基底上,形成修饰层,其中所述修饰层的厚度为单层膦酸分子或单层三氯硅烷分子的厚度;
(3)将有机镀膜分子蒸镀在修饰层上,形成有机物镀膜层,其中所述有机物镀膜层的厚度为80~100 nm;
(4)将电极材料蒸镀在有机物镀膜层上,形成电极,其中所述电极的厚度为80~100nm,最终得到基于经膦酸或三氯硅烷修饰的ITO玻璃基底的有机电存储器件。
优选的,在上述制备方法中,步骤(1)中所述清洗依次使用去离子水、乙醇和丙酮来完成。
优选的,在上述制备方法中,步骤(1)中所述ITO玻璃基底的尺寸为2×2 cm2
优选的,在上述制备方法中,步骤(2)中所述膦酸为芳基膦酸或烷基膦酸,其中所述芳基膦酸优选苯基膦酸(phenylphosphonic acid,PPA,CAS:1571-33-1,其结构式如下所示),所述烷基膦酸优选辛基膦酸(octylphosphonic acid,OPA,CAS:4724-48-5,其结构式如下所示)。
优选的,在上述制备方法中,步骤(2)中所述三氯硅烷的结构式为RSiCl3,其中R为直链烷基;更优选的,所述三氯硅烷选自乙基三氯硅烷(Et-TCS)、正丁基三氯硅烷(n-Bu-TCS)、正己基三氯硅烷(n-Hex-TCS)、正辛基三氯硅烷(n-Oct-TCS)、正癸基三氯硅烷(n-Dec-TCS)中的任意一种;最优选的,所述三氯硅烷为正辛基三氯硅烷。
优选的,在上述制备方法中,步骤(3)中所述有机镀膜分子优选方酸菁类有机物,其中所述方酸菁类有机物优选2-(4-丁基苯基氨基)-4-(4-丁基苯基亚氨基)-3-氧代-1-环丁烯醇内盐,其通过方酸与4-丁基苯胺的缩合反应制得。
优选的,在上述制备方法中,步骤(4)中所述电极材料为铝,优选以铝丝形式存在。
一种根据上述制备方法制备的基于经膦酸或三氯硅烷修饰的ITO玻璃基底的有机电存储器件。
与现有技术相比,利用上述技术方案的本发明具有如下优点:
(1)本发明通过对ITO玻璃基底进行修饰,制备了一系列三明治型有机电存储器件,制备方法简单、便捷,易于操作;
(2)与传统器件相比,本发明中的有机电存储器件的开启电压得到降低;
(3)本发明中的有机电存储器件的多进制的产率较高,解决了目前三进制产率较低的难题,对于未来的存储领域而言,具有极高的应用价值。
附图说明
图1为本发明的基于经膦酸或三氯硅烷修饰的ITO玻璃基底的有机电存储器件的层状结构示意图,其中图1A表示基于经膦酸修饰的ITO玻璃基底的有机电存储器件,图1B表示基于经三氯硅烷修饰的ITO玻璃基底的有机电存储器件。
图2为膦酸修饰ITO基底前后接触角的对比图,其中左侧为苯基膦酸(PPA)修饰ITO基底后修饰层的接触角表征图,右侧为辛基膦酸(OPA)修饰ITO基底后修饰层的接触角表征图,中间为未经修饰的ITO基底的接触角表征图。
图3为三氯硅烷修饰ITO基底前后修饰层的X射线光电子能谱(XPS)谱图。
图4为膦酸修饰ITO基底前后有机电存储器件的三进制开启电压的对比图。
图5为膦酸修饰ITO基底前后有机电存储器件的三进制的产率图。
具体实施方式
下文将结合附图和具体实施例来进一步说明本发明的技术方案。除非另有说明,下列实施例中所使用的试剂、材料、仪器等均可通过商业手段获得。
实施例一:制备基于经膦酸修饰的ITO玻璃基底的有机电存储器件。
如图1A所示,器件基本上分为三层,自下而上依次为经膦酸修饰的ITO玻璃基底层、有机物镀膜层和铝电极层,其具体制备过程如下:
1、在超声波清洗仪中,依次用去离子水、乙醇、丙酮清洗ITO玻璃基底;
2、通过绳拴法将苯基膦酸修饰到ITO玻璃基底上,然后置于乙醇中超声30 min,再置于65℃真空烘箱中,在氮气氛围下退火6 h;退火完毕后,分别在乙醇、5%三乙胺的乙醇溶液、乙醇中超声30 min,形成修饰层,其厚度为单层苯基膦酸分子的厚度;
3、将有机镀膜分子2-(4-丁基苯基氨基)-4-(4-丁基苯基亚氨基)-3-氧代-1-环丁烯醇内盐蒸镀在修饰层上,直至镀膜厚度达100 nm,形成镀膜层;蒸镀条件如下:在5×10-4 Pa真空条件下,蒸镀的速率为2 A/s;
4、将铝电极蒸镀在镀膜层上,直至铝电极厚度达100 nm,得到相应的有机电存储器件A。
将作为修饰成分的苯基膦酸(PPA)替换为辛基膦酸(OPA)后,通过类似的步骤制得相应的有机电存储器件B。
以未经修饰的ITO基底作为对照,分别测定用于制备有机电存储器件A(经PPA修饰)和有机电存储器件A(经OPA修饰)的修饰后的ITO基底的接触角,其结果如图2所示。从中可知,ITO玻璃基底经过膦酸修饰之后,接触角均有所增加,其中辛基膦酸修饰的接触角最大,这说明磷酸已被成功修饰到ITO基底上。
实施例二:制备基于经三氯硅烷修饰的ITO玻璃基底的有机电存储器件。
如图1B所示,器件基本上分为三层,自下而上依次为经三氯硅烷修饰的ITO玻璃基底层、有机物镀膜层和铝电极层,其具体制备过程如下:
1、在超声波清洗仪中,依次用去离子水、乙醇、丙酮清洗ITO玻璃基底;
2、在水分小于20 ppm的手套箱内,将0.01 mmol/L三氯硅烷的甲苯溶液以2000rpm的速度旋涂到ITO玻璃基底上,然后置于70℃真空烘箱中,在氮气氛围下放置6 h,形成修饰层,其厚度为单层三氯硅烷分子的厚度;
3、将有机镀膜分子2-(4-丁基苯基氨基)-4-(4-丁基苯基亚氨基)-3-氧代-1-环丁烯醇内盐蒸镀在修饰层上,直至镀膜厚度达100 nm,形成镀膜层;蒸镀条件如下:在5×10-4 Pa真空条件下,蒸镀的速率为2 A/s;
4、将铝电极蒸镀在镀膜层上,直至铝电极厚度达100 nm,得到相应的有机电存储器件C。
将作为修饰成分的乙基三氯硅烷(Et-TCS)依次替换为正丁基三氯硅烷(n-Bu-TCS)、正己基三氯硅烷(n-Hex-TCS)、正辛基三氯硅烷(n-Oct-TCS)和正癸基三氯硅烷(n-Dec-TCS)后,通过类似的步骤制得相应的有机电存储器件D、E、F和G。
以未经修饰的ITO基底和经食人鱼溶液修饰的ITO基底作为对照,分别测定用于制备有机电存储器件C(经Et-TCS修饰)、有机电存储器件D(经n-Bu-TCS修饰)、有机电存储器件E(经n-Hex-TCS修饰)、有机电存储器件F(经n-Oct-TCS修饰)和有机电存储器件G(经n-Dec-TCS修饰)的修饰后的ITO基底的XPS谱图,其结果分别如图3所示。从图3中可知,三氯硅烷已修饰到ITO玻璃基底上。
实施例三:统计具有不同修饰层的电存储器件的三进制开启电压和产率。
将器件置于4200-SCS半导体分析仪中,在室温条件下,调节电压从-5V~5V,测试器件的阻抗变化。
统计不同器件的测试数据,并计算其平均三进制开启电压,其结果如图4所示。从中可知,修饰后的器件的开启电压降低,并且辛基膦酸修饰后的器件的开启电压最低。开启电压的降低将有利于减小能耗。
统计不同器件的测试数据,并计算其三进制的产率,其结果如图5所示。从中可知,修饰后的器件的三进制的产率提升,并且辛基膦酸修饰后的器件的产率最高。
综上所述,本发明通过对ITO玻璃基底进行修饰,制备了一系列三明治型有机电存储器件,提高了多进制的产率,解决了目前三进制产率较低的难题。对于未来的存储领域而言,本发明的基于经膦酸或三氯硅烷修饰的ITO玻璃基底的有机电存储器件将具有极高的应用价值。

Claims (7)

1.一种基于经膦酸或三氯硅烷修饰的ITO玻璃基底的有机电存储器件的制备方法,其包括如下步骤:
1)采用超声清洗的方法清洗ITO玻璃基底;
2)通过绳拴法将膦酸修饰到ITO玻璃基底上,或者通过旋涂法将三氯硅烷修饰到ITO玻璃基底上,形成修饰层,其中:所述修饰层的厚度为单层膦酸分子或单层三氯硅烷分子的厚度;所述膦酸为芳基膦酸或烷基膦酸;所述三氯硅烷的结构式为RSiCl3,其中R为直链烷基;
3)将有机镀膜分子蒸镀在修饰层上,形成有机物镀膜层,其中:所述有机物镀膜层的厚度为80~100 nm;所述有机镀膜分子为方酸菁类有机物;
4)将电极材料蒸镀在有机物镀膜层上,形成电极,其中所述电极的厚度为80~100 nm,最终得到基于经膦酸或三氯硅烷修饰的ITO玻璃基底的有机电存储器件;
步骤1)中所述清洗依次使用去离子水、乙醇和丙酮来完成;
步骤2)中所述芳基膦酸为苯基膦酸,所述烷基膦酸为辛基膦酸;所述三氯硅烷选自乙基三氯硅烷、正丁基三氯硅烷、正己基三氯硅烷、正辛基三氯硅烷、正癸基三氯硅烷中的任意一种。
2.根据权利要求1所述的制备方法,其特征在于:步骤1)中所述ITO玻璃基底的尺寸为2×2 cm2
3.根据权利要求1所述的制备方法,其特征在于:所述三氯硅烷为正辛基三氯硅烷。
4.根据权利要求1所述的制备方法,其特征在于:步骤3)中所述方酸菁类有机物为2-(4-丁基苯基氨基)-4-(4-丁基苯基亚氨基)-3-氧代-1-环丁烯醇内盐,其通过方酸与4-丁基苯胺的缩合反应制得。
5.根据权利要求1所述的制备方法,其特征在于:步骤4)中所述电极材料为铝。
6.根据权利要求5所述的制备方法,其特征在于:所述铝以铝丝形式存在。
7.一种根据权利要求1至6中任一项所述的制备方法制备的基于经膦酸或三氯硅烷修饰的ITO玻璃基底的有机电存储器件。
CN201610284076.0A 2016-05-03 2016-05-03 基于经膦酸或三氯硅烷修饰的ito玻璃基底的有机电存储器件及其制备方法 Active CN105742501B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610284076.0A CN105742501B (zh) 2016-05-03 2016-05-03 基于经膦酸或三氯硅烷修饰的ito玻璃基底的有机电存储器件及其制备方法
US15/581,739 US9818963B1 (en) 2016-05-03 2017-04-28 Organic electric memory device based on phosphonic acid or trichlorosilane-modified ITO glass substrate and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610284076.0A CN105742501B (zh) 2016-05-03 2016-05-03 基于经膦酸或三氯硅烷修饰的ito玻璃基底的有机电存储器件及其制备方法

Publications (2)

Publication Number Publication Date
CN105742501A CN105742501A (zh) 2016-07-06
CN105742501B true CN105742501B (zh) 2018-07-06

Family

ID=56287801

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610284076.0A Active CN105742501B (zh) 2016-05-03 2016-05-03 基于经膦酸或三氯硅烷修饰的ito玻璃基底的有机电存储器件及其制备方法

Country Status (2)

Country Link
US (1) US9818963B1 (zh)
CN (1) CN105742501B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684245B (zh) * 2016-12-26 2018-08-14 苏州大学 一种基于一维有机无机杂化聚合物链的电存储器件及其制备方法
CN109037441B (zh) * 2018-08-01 2022-06-21 苏州大学 半导体电存储材料及其制备的柔性电存储器件及制备方法
CN110783456B (zh) * 2019-10-09 2023-05-02 苏州大学 基于单层修饰MXene的电存储材料及其制备方法与在制备电存储器件中的应用
CN111537539A (zh) * 2020-05-12 2020-08-14 西安交通大学 一种利用等离子体刻蚀测量聚合物亚层光电子能谱的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101133460A (zh) * 2004-12-30 2008-02-27 薄膜电子有限公司 存储器件制造中的方法
CN102260371A (zh) * 2010-05-27 2011-11-30 海洋王照明科技股份有限公司 一种有机共聚物、其制备方法和应用
CN104986966A (zh) * 2015-04-30 2015-10-21 西安工业大学 一种与ito共价键接的电致变色聚噻吩衍生物薄膜的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658979B2 (en) * 2007-03-19 2010-02-09 Ricoh Company, Ltd. Liquid crystal alignment film composition, liquid crystal device and display apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101133460A (zh) * 2004-12-30 2008-02-27 薄膜电子有限公司 存储器件制造中的方法
CN102260371A (zh) * 2010-05-27 2011-11-30 海洋王照明科技股份有限公司 一种有机共聚物、其制备方法和应用
CN104986966A (zh) * 2015-04-30 2015-10-21 西安工业大学 一种与ito共价键接的电致变色聚噻吩衍生物薄膜的制备方法

Also Published As

Publication number Publication date
US20170324052A1 (en) 2017-11-09
CN105742501A (zh) 2016-07-06
US9818963B1 (en) 2017-11-14

Similar Documents

Publication Publication Date Title
CN105742501B (zh) 基于经膦酸或三氯硅烷修饰的ito玻璃基底的有机电存储器件及其制备方法
CN105723011B (zh) 基材结构体及其制备方法
Lee et al. Wettability control of ZnO nanoparticles for universal applications
Wang et al. WO3-based slippery liquid-infused porous surfaces with long-term stability
JP2016503353A (ja) カプセル化バリアスタック
CN102386329B (zh) 一种柔性电子器件的制作方法
KR20150137101A (ko) 실란 관능화된 완충 층 및 그를 포함하는 전자 기기
CN106449991B (zh) 大气环境中环境稳定的ZnO基钙钛矿太阳能电池的制备方法
Tawade et al. Recent advances in the synthesis of polymer-grafted low-K and high-K nanoparticles for dielectric and electronic applications
CN109972136B (zh) 一种取向生长P(VDF-TrFE)薄膜的制备方法
CN113776423A (zh) 基于MXene的驱动传感一体化智能薄膜的制备方法
KR101431595B1 (ko) 금속 산화물/질화물/황화물 박막의 전사 방법 및 이에 사용되는 전사용 시트
JP5398910B2 (ja) 有機半導体膜及びその製造方法、並びにコンタクトプリント用スタンプ
US9437823B2 (en) Production device for a graphene thin film
KR101560029B1 (ko) 그래핀의 직접 전사 방법
KR20160055334A (ko) 유기 전계 효과 트랜지스터의 제조방법
CN104761154B (zh) 一种利用有机大分子材料作催化剂制备ito纳米线的方法
WO2010137664A1 (ja) アルキルシラン積層体及びその製造方法、並びに薄膜トランジスタ
CN103834188B (zh) 光交联聚合物-有机硅氧烷混合胶柔性衬底及用于制备有机电子器件
KR101600395B1 (ko) 투명 전극 및 이의 제조 방법
CN106587040A (zh) 石墨烯薄膜的衬底转移方法
CN108417711A (zh) 一种非易失性阻变存储器的制备方法
Park et al. Free-standing film electronics using photo-crosslinking layer-by-layer assembly
Park et al. Facile fabrication of polysiloxane nanorods on magnesium surface in the presence of 1, 6-diphosphono-hexane to obtain a superhydrophobic surface
CN104744930B (zh) 一种制备疏水性尼龙复合膜的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Lu Jianmei

Inventor after: He Jinghui

Inventor before: Lu Jianmei

Inventor before: He Jinghui

Inventor before: Hou Xiang

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant