CN105742407A - 一种在掺杂膜层上制备黑硅的方法 - Google Patents

一种在掺杂膜层上制备黑硅的方法 Download PDF

Info

Publication number
CN105742407A
CN105742407A CN201610169139.8A CN201610169139A CN105742407A CN 105742407 A CN105742407 A CN 105742407A CN 201610169139 A CN201610169139 A CN 201610169139A CN 105742407 A CN105742407 A CN 105742407A
Authority
CN
China
Prior art keywords
silicon
black silicon
doped
doping
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610169139.8A
Other languages
English (en)
Other versions
CN105742407B (zh
Inventor
吴志明
李睿
杜玲艳
唐菲
胡征
李世彬
李伟
吴雪飞
姬春晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201610169139.8A priority Critical patent/CN105742407B/zh
Publication of CN105742407A publication Critical patent/CN105742407A/zh
Application granted granted Critical
Publication of CN105742407B publication Critical patent/CN105742407B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明涉及半导体光电子材料领域,应用于掺杂黑硅的制备。具体地说是在制备掺杂膜层之后,利用飞秒激光辐照的方法制备掺杂黑硅微结构。本发明通过靶材贴合的方式,用磁控溅射的方法在清洁的硅衬底表面沉积一层掺杂硅膜膜层,接着利用飞秒激光辐照制备表面微结构,在气氛环境下热退火后制备得到对400nm~2400nm波段的光都有一致的高吸收特性的掺杂黑硅材料:在400~1100nm的可见光波段有95%的吸收率,在1100~2400nm的近红外波段有90%的吸收率,为拓展黑硅材料的应用打下了技术基础。相对现有技术,固体膜层掺杂的方式丰富了掺杂元素种类,提高了掺杂浓度,降低了掺杂成本;减少了工艺步骤,提高了制备效率。

Description

一种在掺杂膜层上制备黑硅的方法
技术领域
本发明涉及半导体光电子材料领域,应用于掺杂黑硅的制备。具体地说是在制备掺杂膜层之后,利用飞秒激光辐照的办法制备掺杂黑硅微结构。
背景技术
硅材料作为作为低成本、易集成的重要半导体材料,在微电子领域和光电子领域占据着主导地位,由其制成的器件及产品已经广泛地应用到计算机、通讯、信息技术和能源技术等领域。但是由于其本身禁带宽度的约束,在光电器件上的应用受到限制。具体地说,由于晶体硅对波长大于1100nm的光基本不吸收(吸收系数小于100cm-1),导致由其制备的红外探测器响应率低、光伏器件转化效率低。而黑硅的发现则正好弥补了晶体硅的不足之处,对半导体行业有着重要的影响。
20世纪90年代,哈佛大学的Mazur实验室在SF6气氛下用飞秒激光作发现其在可见光—红外波段(400~2400nm)有着一致的高吸用硅衬底表面时,发现了表面呈黑色,微观结构为有序尖锥的硅材料,命名为“黑硅”。并且收特性,对波长范围在400~2400nm的入射光具有几乎零反效果,除此之外还能对入射到其体内的光(波长400~2400nm)几乎全部吸收。突破了晶体硅的吸收限制,对拓展硅基器件的应用有着巨大的潜在价值。
自Mazur等人利用飞秒激光发现黑硅以后,又发展了诸多黑硅的制备工艺,如反应离子刻蚀、湿法刻蚀等,各有优缺点。
反应离子刻蚀是利用在高频电场下的气体辉光放电产生的离子轰击样品表面,以及活性粒子的化学效应综合来实现刻蚀的技术。优点是方向性和选择性较好,刻蚀速率较高,刻蚀图形精度较高。但是设备复杂昂贵,工艺繁琐,同时往往带有离子损伤,破坏材料基底。
湿法刻蚀主要有:电化学、掩膜辅助和金属辅助刻蚀等。电化学刻蚀过程发生在装有氢氟酸和乙醇溶液的化学槽中,选用硅衬底作为阳极,铂丝作为阴极,通过控制化学反应时的溶液浓度、腐蚀时间及电流密度等参数,实现不同折射率黑硅的制备。掩膜辅助刻蚀是先在硅衬底上制备一层掩模层,然后通过光刻等手段将需要刻蚀的图形先加工到掩模上,接着把硅衬底浸泡在化学溶液(如酸、碱等)中,将没有被光刻胶保护的部分刻蚀掉。金属辅助刻蚀是在硅衬底表面镀一层金属膜,然后用氢氟酸和过氧化氢的混合液作为腐蚀液从而得到黑硅。但是湿法刻蚀步骤繁琐,得到的形貌精度不高,尺寸小,且会产生有毒害的废气、废液。
相较前两种未引入掺杂的黑硅制备方法,目前研究中常用飞秒激光辐照的方法。2003年R.Younkin等发现仅在含硫的SF6和H2S气氛中辐照才有对光的高吸收性,限制了气氛种类的同时就限制了掺杂元素的种类;2006年,MichaelA.Sheehy等和2009年,BrainR.Tull等分别用旋涂和蒸镀的方法在硅衬底上制备了硫系元素的膜层,证明了固体膜层的制备同样可以引入掺杂。
发明内容
针对上述存在问题或不足,本发明提供了一种在掺杂膜层上制备黑硅的方法,该方法简化掺杂工艺,降低成本,适合超饱和掺杂黑硅的制备;同时可避免制备过程中对环境及人体造成伤害。
一种在掺杂膜层上制备黑硅的方法,其具体步骤为:
步骤1、对硅衬底进行清洁处理;
将硅衬底依次在三种溶液中各超声10~15min,洗去衬底表面的油污、颗粒和氧化物等;三种溶液分别为:I号清洗液是浓度15~18.4mol/L的浓硫酸H2SO4和浓度8~9.7mol/L的双氧水H2O2的混合溶液,体积比为5:1;II号清洗液是去离子水H2O、浓度8~9.7mol/L的双氧水H2O2和浓度10~13.3mol/L的氨水NH3·H2O的混合溶液,体积比为5:2:1;III号清洗液是去离子水H2O、浓度为8~9.7mol/L双氧水H2O2和浓度为10~12mol/L浓盐酸HCl的混合溶液,体积比为7:2:1;更换三种清洗溶液的间隙都需要用去离子水冲洗衬底;最后将洗净的硅衬底在无水乙醇中浸泡密封备用;或者用无水乙醇冲洗后,再用纯度99.99%的氮气吹干立即使用。
步骤2、采用硅靶上固定放置掺杂元素靶材的方式,用磁控溅射的方法在硅片表面沉积一层厚度为50~500nm的掺杂硅膜,掺杂元素为硫系元素;
用无水乙醇清洁溅射机腔室后,将步骤1得到的清洁硅衬底用托盘固定在溅射机的行走单元上,使抛光面面对溅射的靶材;以贴片的方式在纯硅靶材上放置碲Te元素靶材,并用挡板遮住靶材,碲靶尺寸不超过硅靶的1/20;关闭腔室,先使用机械泵将腔室气压抽至2.5~3pa,再用分子泵使腔室气压降至5.0×10-4~7.0×10-4pa;接下来通入氩气(Ar)使腔室的气压回到4.5×10-1~5.0×10-1pa,打开射频电源,待腔室内起辉后打开靶材上的挡板,运行行走单元,开始溅射;通过预设的溅射条件,在硅衬底表面沉积50~500nm厚含有杂质的硅膜层,即掺杂硅膜。
步骤3、将步骤2沉积有掺杂硅膜的硅衬底在0.2~0.8atm氮气保护下用飞秒激光辐照,飞秒激光辐照的入射光波长为750~850nm,通量为1~10kJ/m2,扫描速度为0.5~10mm/s;
将硅衬底固定在二维平移台的真空腔中,抽出空气使真空度达到10-2~10-1pa,然后充入纯度为99.99%的保护气体N2;开启制冷、除湿设备,在温度及湿度达到要求参数后,启动激光器,预热10分钟;通过控制软件调整激光器的中心波长、重复频率等,用出射光路的透镜组调整出射光斑的位置;使用功率计检测实际出射功率后,启动平移台完成飞秒激光将整个硅衬底辐照,关闭激光器,取出样品。
步骤4、将步骤3制得的硅衬底于浓度为5%的HF溶液中浸泡1~5min后,置于管式炉中,进行热退火,退火温度为500~1200K,退火时间为30~300min,保护气氛为N2或者Ar。
本发明通过掺杂膜层的制备使杂质掺入超过了在硅中原本的固溶度,掺杂膜层的制备提供了杂质来源;再利用飞秒激光辐照使杂质在硅中形成替位式或间隙式原子,同时解决了形貌制备和掺杂的问题,飞秒激光辐照制备黑硅形貌精度高,操作简单,无毒害残留产生。两者相结合的黑硅制备方法,能够实现杂质的超饱和掺入,使形貌制备和杂质掺入同时进行,精简了工艺程序,提高了制备效率,降低了掺杂成本。本发明制备的掺杂黑硅在可见—近红外光波段都有一致的高吸收特性。掺杂膜层的制备,不仅可用在飞秒激光辐照制备的方法,在其他黑硅刻蚀的方法中也同样适用。
综上所述,本发明相对现有技术:固体膜层掺杂的方式丰富了掺杂元素种类,提高了掺杂浓度,降低了掺杂成本;减少了工艺步骤,提高了制备效率。由此制备的掺杂黑硅材料对400~1100nm的可见光波段有95%的吸收,对1100~2400nm的近红外波段有90%的吸收,为拓展黑硅材料的应用打下了技术基础。
附图说明
图1是本发明实施例的工艺流程图;
图2是本发明实施例的吸收光谱图;
图3是本发明实施例的样品表面微结构形貌图。
具体实施方式
下面结合附图对本发明加以详细说明。
如图1所示,本发明制备掺杂黑硅材料是在制备掺杂膜层之后,利用飞秒激光辐照的办法制备掺杂黑硅微结构,具体步骤如下:
步骤1:获取清洁硅衬底
将尺寸为10mm×10mm的硅衬底依次在三种溶液中各超声15min,洗去衬底表面的油污、颗粒和氧化物等。三种溶液分别为:I号清洗液是浓度18.4mol/L的浓硫酸(H2SO4)和浓度9.7mol/L的双氧水(H2O2)的混合溶液,体积比为5:1;II号清洗液是去离子水(H2O)、浓度9.7mol/L的双氧水(H2O2)和浓度13.3mol/L的氨水(NH3·H2O)的混合溶液,体积比为5:2:1;III号清洗液是去离子水(H2O)、浓度为9.7mol/L双氧水(H2O2)和浓度为12mol/L浓盐酸(HCl)的混合溶液,体积比为7:2:1。更换溶液的间隙都需要用去离子水冲洗衬底,防止三种溶液间相互污染。最后将洗净的硅衬底在无水乙醇中浸泡密封备用;或者用无水乙醇冲洗后,再用纯度99.99%的氮气吹干立即使用。
步骤2:磁控溅射法沉积掺杂硅膜
用无水乙醇清洁溅射机腔室后,将步骤1得到的清洁硅衬底用托盘固定在溅射机的行走单元上,使抛光面面对溅射的靶材;以贴片的方式在纯硅靶材上放置碲(Te)元素靶材,并用挡板遮住靶材,碲靶尺寸不超过硅靶的1/20;关闭腔室,先使用机械泵将腔室气压抽至3pa,再用分子泵使腔室气压降至5.0×10-4pa;接下来通入氩气(Ar)使腔室的气压回到5.0×10-1pa,打开射频电源,待腔室内起辉后打开靶材上的挡板,运行行走单元,开始溅射。通过预设的溅射条件,在硅衬底表面沉积一层200nm厚含有杂质的硅膜层(即掺杂膜层),结束溅射,取出样品。
步骤3:飞秒激光辐照制备掺杂黑硅
将步骤2制得的硅衬底固定在二维平移台的真空腔中,抽出空气使真空度达到0.1pa,然后充入纯度为99.99%的保护气体N2;开启制冷、除湿设备,在温度及湿度达到要求参数后,启动激光器,预热10分钟;通过控制软件调整激光器的中心波长、重复频率等,用出射光路的透镜组调整出射光斑的位置;使用功率计检测实际出射功率后,启动平移台使辐照路径为连续S形,如图2所示。使硅衬底的掺杂膜层在飞秒激光辐照下形成掺杂的黑硅微结构。在飞秒激光将整个硅衬底辐照完成后,关闭激光器,取出样品。
步骤4:保护气氛下热退火
将步骤3制得的硅衬底于浓度为5%的HF溶液中浸泡5min后,置于管式炉中,在保护气体N2(纯度为99.99%)中进行热退火。退火温度为873K,时间为30分钟。
本发明的实施例测试及表征结果如图2和图3所示。从图2中可以看出,依照本发明步骤所制备的掺杂黑硅(Te-dopedSi)与未掺杂黑硅(structured-Si)及晶体硅(crystalline-Si)相比较,在可见-红外波段都有着一致的高吸收特性(在400~1100nm的可见光波段有95%的吸收率,在1100~2400nm的近红外波段有90%的吸收率),由其是在红外光波段更是有着显著的吸收率提升;从图3中可以看出,本发明制备的掺杂黑硅表面微结构有序、清晰。
本发明的实施例中,掺杂硅膜层的制备保证了杂质的引入,为飞秒激光辐照制备黑硅时提供了杂质来源;并且混合膜最大限度的阻止了杂质在辐照时的溢出,保证了超饱和掺杂的成功。按照此法制得掺杂黑硅材料在红外波段有着高吸收率,证明了杂质掺入的成功,客观证实了掺杂膜层制备的效用。

Claims (5)

1.一种在掺杂膜层上制备黑硅的方法,其具体步骤为:
步骤1、对硅衬底进行清洁处理;
步骤2、采用硅靶上固定放置掺杂元素靶材的方式,用磁控溅射的方法在步骤1制得的硅衬底表面沉积一层厚度为50~500nm的掺杂硅膜,掺杂元素为硫系元素;
步骤3、将步骤2制得沉积有掺杂硅膜的硅衬底在0.2~0.8atm氮气保护下用飞秒激光辐照,飞秒激光辐照的入射光波长为750~850nm,通量为1~10kJ/m2,扫描速度为0.5~10mm/s;
步骤4、将步骤3制得的硅衬底于浓度为5%的HF溶液中浸泡1~5min后,置于管式炉中进行热退火,退火温度为500~1200K,退火时间为30~300min,保护气氛为N2或者Ar。
2.如权利要求1所述在掺杂膜层上制备黑硅的方法,其特征在于:所述步骤1具体为,将硅衬底依次在三种溶液中各超声10~15min,洗去衬底表面的油污、颗粒和氧化物等;三种溶液分别为:Ⅰ号清洗液是浓度15~18.4mol/L的浓硫酸H2SO4和浓度8~9.7mol/L的双氧水H2O2的混合溶液,体积比为5:1;II号清洗液是去离子水H2O、浓度8~9.7mol/L的双氧水H2O2和浓度10~13.3mol/L的氨水NH3·H2O的混合溶液,体积比为:5:2:1;III号清洗液是去离子水H2O、浓度为8~9.7mol/L双氧水H2O2和浓度为10~12mol/L浓盐酸HCl的混合溶液,体积比为:7:2:1;更换三种清洗溶液的间隙都需要用去离子水冲洗衬底;最后将洗净的硅衬底在无水乙醇中浸泡密封备用;或者用无水乙醇冲洗后,再用纯度99.99%的氮气吹干立即使用。
3.如权利要求1所述在掺杂膜层上制备黑硅的方法,其特征在于:所述步骤2具体为,用无水乙醇清洁溅射机腔室后,将步骤1得到的清洁硅衬底用托盘固定在溅射机的行走单元上,使抛光面面对溅射的靶材;以贴片的方式在纯硅靶材上放置碲Te元素靶材,并用挡板遮住靶材,碲靶尺寸不超过硅靶的1/20;关闭腔室,先使用机械泵将腔室气压抽至2.5~3pa,再用分子泵使腔室气压降至5.0×10-4~7.0×10-4pa;接下来通入氩气Ar使腔室的气压回到4.5×10-1~5.0×10-1pa,打开射频电源,待腔室内起辉后打开靶材上的挡板,运行行走单元,开始溅射;通过预设的溅射条件,在硅衬底表面沉积50~500nm厚含有杂质的硅膜层,即掺杂硅膜。
4.如权利要求1所述在掺杂膜层上制备黑硅的方法,其特征在于:所述步骤3具体为,将步骤2制得的硅衬底固定在二维平移台的真空腔中,抽出空气使真空度达到10-2~10-1pa,然后充入纯度为99.99%的保护气体N2;开启制冷、除湿设备,在温度及湿度达到要求参数后,启动激光器,预热10分钟;通过控制软件调整激光器的中心波长、重复频率等,用出射光路的透镜组调整出射光斑的位置;使用功率计检测实际出射功率后,启动平移台完成飞秒激光将整个硅衬底辐照,关闭激光器,取出样品。
5.采用权利要求1-4任一所述在掺杂膜层上制备黑硅的方法,制得的黑硅,其特征在于:对400~1100nm的可见光波段有95%的吸收,对1100~2400nm的近红外波段有90%的吸收。
CN201610169139.8A 2016-03-22 2016-03-22 一种在掺杂膜层上制备黑硅的方法 Expired - Fee Related CN105742407B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610169139.8A CN105742407B (zh) 2016-03-22 2016-03-22 一种在掺杂膜层上制备黑硅的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610169139.8A CN105742407B (zh) 2016-03-22 2016-03-22 一种在掺杂膜层上制备黑硅的方法

Publications (2)

Publication Number Publication Date
CN105742407A true CN105742407A (zh) 2016-07-06
CN105742407B CN105742407B (zh) 2017-08-11

Family

ID=56251297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610169139.8A Expired - Fee Related CN105742407B (zh) 2016-03-22 2016-03-22 一种在掺杂膜层上制备黑硅的方法

Country Status (1)

Country Link
CN (1) CN105742407B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981543A (zh) * 2017-04-05 2017-07-25 中国电子科技集团公司第四十四研究所 采用铝硅共晶薄膜辅助干法刻蚀制备黑硅层的方法
CN107069399A (zh) * 2017-05-08 2017-08-18 中国兵器装备研究院 一种返回光处理装置
CN113257957A (zh) * 2021-06-11 2021-08-13 四川蜀旺新能源股份有限公司 超掺杂硅薄膜太阳能电池及其制作方法
JP2022517527A (ja) * 2018-12-20 2022-03-09 ハジェテペ ユニヴェルシテシ 広帯域範囲で機能する半導体フォトダイオードおよびその取得方法
CN116219544A (zh) * 2023-05-08 2023-06-06 南京邮电大学 一种基于激光干涉技术制备单晶硅薄膜的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100165336A1 (en) * 2005-06-14 2010-07-01 Ebstein Steven M Applications of laser-processed substrate for molecular diagnostics
CN101824654A (zh) * 2009-03-04 2010-09-08 中国科学院半导体研究所 一种制作黑硅材料的方法
CN102290481A (zh) * 2011-09-01 2011-12-21 中国科学院半导体研究所 具有宽光谱响应的硅探测器结构及其制作方法
CN102361039A (zh) * 2011-10-31 2012-02-22 上海理工大学 一种基于透明导电层的黑硅太阳能电池及制备方法
CN102496638A (zh) * 2011-11-28 2012-06-13 中国科学院半导体研究所 深能级杂质掺杂的晶体硅红外探测器及其制备方法
CN103236446A (zh) * 2013-04-19 2013-08-07 复旦大学 一种广谱吸收的黑硅中间带太阳能电池结构及制作方法
CN103681970A (zh) * 2013-12-18 2014-03-26 电子科技大学 一种制造黑硅材料的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100165336A1 (en) * 2005-06-14 2010-07-01 Ebstein Steven M Applications of laser-processed substrate for molecular diagnostics
CN101824654A (zh) * 2009-03-04 2010-09-08 中国科学院半导体研究所 一种制作黑硅材料的方法
CN102290481A (zh) * 2011-09-01 2011-12-21 中国科学院半导体研究所 具有宽光谱响应的硅探测器结构及其制作方法
CN102361039A (zh) * 2011-10-31 2012-02-22 上海理工大学 一种基于透明导电层的黑硅太阳能电池及制备方法
CN102496638A (zh) * 2011-11-28 2012-06-13 中国科学院半导体研究所 深能级杂质掺杂的晶体硅红外探测器及其制备方法
CN103236446A (zh) * 2013-04-19 2013-08-07 复旦大学 一种广谱吸收的黑硅中间带太阳能电池结构及制作方法
CN103681970A (zh) * 2013-12-18 2014-03-26 电子科技大学 一种制造黑硅材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王熙元 等: "飞秒激光诱导碲超饱和掺杂硅材料的表面形貌及宽谱光吸收率研究", 《第十七届全国化合物半导体材料微波器件和光电器件学术会议》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981543A (zh) * 2017-04-05 2017-07-25 中国电子科技集团公司第四十四研究所 采用铝硅共晶薄膜辅助干法刻蚀制备黑硅层的方法
CN106981543B (zh) * 2017-04-05 2018-05-22 中国电子科技集团公司第四十四研究所 采用铝硅共晶薄膜辅助干法刻蚀制备黑硅层的方法
CN107069399A (zh) * 2017-05-08 2017-08-18 中国兵器装备研究院 一种返回光处理装置
JP2022517527A (ja) * 2018-12-20 2022-03-09 ハジェテペ ユニヴェルシテシ 広帯域範囲で機能する半導体フォトダイオードおよびその取得方法
CN113257957A (zh) * 2021-06-11 2021-08-13 四川蜀旺新能源股份有限公司 超掺杂硅薄膜太阳能电池及其制作方法
CN113257957B (zh) * 2021-06-11 2022-08-23 四川蜀旺新能源股份有限公司 超掺杂硅薄膜太阳能电池及其制作方法
CN116219544A (zh) * 2023-05-08 2023-06-06 南京邮电大学 一种基于激光干涉技术制备单晶硅薄膜的方法

Also Published As

Publication number Publication date
CN105742407B (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
CN105742407A (zh) 一种在掺杂膜层上制备黑硅的方法
Park et al. Highly reproducible large‐area perovskite solar cell fabrication via continuous megasonic spray coating of CH3NH3PbI3
Leguijt et al. Low temperature surface passivation for silicon solar cells
US20090199901A1 (en) Photovoltaic device comprising a sputter deposited passivation layer as well as a method and apparatus for producing such a device
Lee et al. 17.6%-Efficient radial junction solar cells using silicon nano/micro hybrid structures
CN105824138A (zh) 基于石墨烯/掺杂硅复合双层结构的光控太赫兹调制器
CN108183149A (zh) 一种太阳能电池片的生产方法
US9123840B2 (en) Solar cell element manufacturing method, solar cell element, and solar cell module
CN103646868A (zh) 水热-蒸汽刻蚀法制备多孔硅的方法
CN103594302B (zh) 一种GaAs纳米线阵列光电阴极及其制备方法
JP5018688B2 (ja) 成膜装置及び成膜方法
Khezami et al. Theoretical and experimental analysis on effect of porous silicon surface treatment in multicrystalline silicon solar cells
EP2088630A1 (en) Photovoltaic device comprising a sputter deposited passivation layer as well as method and apparatus for producing such a device
CN105206709A (zh) 一种用于优化黑硅表面结构的处理方法
JP4715474B2 (ja) 太陽電池の反射防止膜成膜方法、および太陽電池反射防止膜成膜装置
JP5473187B2 (ja) 製膜条件設定方法、光電変換装置の製造方法及び検査方法
CN102945894A (zh) 一种晶体硅太阳能电池氧化铝钝化膜和背电极的制备方法
GB2590499A (en) Method and wet bench for selectively removing an emitter layer on a single side of a silicon substrate
Swanson et al. Plasma cleaning of TCO surfaces prior to CdS/CdTe deposition
JP2012074669A (ja) 太陽電池の製造方法
CN107482081A (zh) 太阳能电池片及其制备方法和太阳能电池
Griffin et al. Comparative Study of Radiative Heating Techniques for Fast Processing of Functional Coatings for Sustainable Energy Applications: Applications of radiative mechanisms in solar energy, battery storage and fuel cells
CN109950336A (zh) 一种黑硅材料及其制备方法
WO2018235422A1 (ja) 高効率太陽電池の製造方法
Deng Polysilicon contacts for next-generation industrial silicon solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170811

Termination date: 20200322

CF01 Termination of patent right due to non-payment of annual fee