CN105740541A - 一种基于结构动力学模型修正的预应力识别方法 - Google Patents

一种基于结构动力学模型修正的预应力识别方法 Download PDF

Info

Publication number
CN105740541A
CN105740541A CN201610064810.2A CN201610064810A CN105740541A CN 105740541 A CN105740541 A CN 105740541A CN 201610064810 A CN201610064810 A CN 201610064810A CN 105740541 A CN105740541 A CN 105740541A
Authority
CN
China
Prior art keywords
model
mac
prestress
finite element
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610064810.2A
Other languages
English (en)
Inventor
张保强
杨婧
陈庆
苏国强
袁修开
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201610064810.2A priority Critical patent/CN105740541A/zh
Publication of CN105740541A publication Critical patent/CN105740541A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

一种基于结构动力学模型修正的预应力识别方法,涉及预紧结构的预应力识别。建立结构的有限元模型;将固支或简支等边界条件转化为三个或两个方向的弹簧支承,同时施加轴向预应力;通过商用有限元软件计算结构的固有频率和固有振型;实验模态分析技术测试并识别得到结构的固有频率和固有振型;基于模型修正技术同时识别边界的弹簧支承刚度和预应力。方法简单,识别精度高,操作方便;同时考虑边界条件的影响,可信度高。将MAC作为目标函数,补充了实验数据的完备性;遗传算法寻优更有益于获得全局最优解;整个修正模块可以自动驱动求解。

Description

一种基于结构动力学模型修正的预应力识别方法
技术领域
本发明涉及预紧结构的预应力识别,尤其是涉及一种基于结构动力学模型修正的预应力识别方法。
背景技术
在航空航天、机械工程、土木工程以及武器装备系统中,预紧结构广泛存在,比如螺栓连接、框架结构、预应力桥梁等等。在这些预紧结构中,需要对轴向载荷进行识别。虽然实验技术已经得到了长足的发展,但在多数实际工程结构中,外部载荷的直接实验测量并非那么简单。而预应力结构的固有频率会随着轴向预应力的变化而发生改变,即所谓的应力强化效应。因此通过测试结构的动态特性,基于反问题的方法获取载荷分布情况就成为一种可能,并且是一种行之有效的方法。但是结构的边界条件会对轴向力的识别带来一定的影响,因此识别过程中还必须同时考虑边界约束的影响。
发明内容
本发明的目的是克服现有技术的上述不足,提供基于结构动力学模型修正,考虑边界条件的影响,方便监测结构预应力的变化,以便对结构的健康状态做出评估的一种基于结构动力学模型修正的预应力识别方法。
本发明包括以下步骤:
1)建立结构的有限元模型;
2)将固支或简支等边界条件转化为三个或两个方向的弹簧支承,同时施加轴向预应力;
3)通过商用有限元软件计算结构的固有频率和固有振型;
4)实验模态分析技术测试并识别得到结构的固有频率和固有振型;
5)基于模型修正技术同时识别边界的弹簧支承刚度和预应力。
在步骤5)中,所述模型修正技术的具体方法如下:
(1)有限元模型数据和结果导入。将有限元模型中的相关材料参数、属性参数、弹簧刚度以及预应力参数等导入,方便对这类参数进行迭代和识别;同时将有限元模型在初始参数下得到的模态频率和振型数据导入。
(2)模态分析数据导入。所述模态分析数据包括模态分析中的模型数据以及识别得到的频率和振型数据。
(3)振型相关系数计算。计算有限元仿真的振型和实验振型之间的相关系数,达到模态匹配的目的。
(4)模型修正。以实验和仿真计算之间的模态频率最小、对角线振型相关系数最大为目标函数,采用遗传算法进行优化,迭代求解即可同时识别边界刚度和预应力值。
在步骤(3)中,所述振型相关系数的计算式为:
MAC i j = | ( Φ i e T Φ j a ) | 2 ( Φ i e T Φ i e ) ( Φ j a T Φ j a ) - - - ( 1 )
其中,MACij代表试验模型第i阶振型与有限元模型的第j阶振型之间的相关系数;代表试验模型的第i阶振型;是有限元分析模型的第j阶振型;T代表共轭转置;
振型相关系数是一个介于0~1之间的标量;当MAC值为1时,代表两个振型完全相关,为同一模态;当MAC值为0时,代表两个振型之间线性无关;在工程应用中,当MAC矩阵的对角元素≥70%,非对角元素≤10%时即认为两个模型之间存在好的相关性。
在步骤(4)中,所述目标函数的定义为:
f(θ)=wωJω(θ)+wMACJMAC(θ)(2)
式中,wω和wMAC分别为频率残差和MAC残差的加权系数,θ为待修正参数;
J ω = Σ i = 1 n w ω i | ω a i - ω e i ω e i | J M A C = Σ i = 1 n w M A C i ( 1 - max ( MAC i ) )
ωai为有限元模型的第i阶模态频率;ωei为试验的第i阶模态频率;wωi为各阶模态频率的加权系数;Jω为前n阶模态频率的相对误差;max(MACi)为第i阶有限元模型与实验振型相关系数的对角线元素;wMACi为各阶模态振型的加权系数;JMAC为前n阶振型相关系数的和的最小值。
本发明与现有技术相比的有益效果是:
1)识别方法简单,识别精度高,操作方便。
2)识别方法同时考虑边界条件的影响,可信度高。
3)模型修正方法中,将MAC作为目标函数,补充了实验数据的完备性;遗传算法寻优更有益于获得全局最优解;整个修正模块可以自动驱动求解。
附图说明
图1是某梁结构边界条件转化示意图。
图2是梁结构有限元模型。
图3是基于遗传算法的目标函数收敛图。
具体实施方式
预应力识别的具体实施步骤包括:
1、边界条件转化。在图1所示实例中,表示了某梁结构固支边界转化为3个方向Kx、Ky、Kt的弹簧支承。
2、采用商用有限元软件Patran和Nastran建立梁结构的有限元模型。预应力梁长1m,截面为0.02m×0.03m的矩形,材料为钢,弹性模量210GPa,密度7800kg/m3,泊松比为0.3,划分为20个单元。右端受大小为P的预应力,左侧弹簧刚度及预应力初始值如表1所示。在图2所示实例中,表示对该梁结构进行有限元网格划分。
3、通过商用有限元软件Nastran,计算梁结构在预应力下的模态频率和振型。前4阶预应力模态频率初始值列于表2中。
4、对梁结构进行结构动力学模态实验,识别得到其固有频率和固有振型。算例中采用仿真结果代替真实模态实验结果,如表2目标值所示。
5、基于Matlab编程,调用商用有限元软件Nastran,使用遗传算法完成模型修正过程。
表1
参数 目标值 初始值 初始误差(%) 识别后误差(%)
Kx 1.0×1011N/m 0.8×1011N/m -20 10
Ky 1.0×1011N/m 1.2×1011N/m 20 -1.4
Kt 1.0×1011N.m/rad 1.5×1011N.m/rad 50 5.2
P 2×104N 1×104N -50 5×10-3
表2
模型修正的具体实施过程包括:
1、Matlab编程,从Nastran的*.bdf文件中读入有限元模型信息;从结果文件*.f06中读入预应力模态分析的频率和振型数据,并保存为FEM.mat文件。
2、Matlab编程,读入实验模态分析所用的模型信息和模态结果信息,并保存为EMA.mat文件。
3、Matlab编程,分别读入FEM.mat和EMA.mat,计算振型相关系数MAC,并保存为MAC.mat文件。
4、基于Matlab编程,读入有限元模型、模态分析、MAC计算的结果,定义如式(2)所示的目标函数,不断改写新的*.bdf文件,驱动Nastran进行重分析,并不断读取新的*.f06文件,调用遗传算法。遗传算法种群个体数目为30个,最大遗传代数50代,采用二进制编码,编码长度为10,交叉率0.7,变异率0.05,代沟0.9,插入概率0.5,迁移率0.2。最后目标函数随迭代次数的变化如图3所示。识别后参数及频率目标变化情况分别列于表1及表2中。
最后识别得到预应力与目标值之间的误差几乎为0。

Claims (4)

1.一种基于结构动力学模型修正的预应力识别方法,其特征在于包括以下步骤:
1)建立结构的有限元模型;
2)将固支或简支等边界条件转化为三个或两个方向的弹簧支承,同时施加轴向预应力;
3)通过商用有限元软件计算结构的固有频率和固有振型;
4)实验模态分析技术测试并识别得到结构的固有频率和固有振型;
5)基于模型修正技术同时识别边界的弹簧支承刚度和预应力。
2.如权利要求1所述一种基于结构动力学模型修正的预应力识别方法,其特征在于在步骤5)中,所述模型修正技术的具体方法如下:
(1)有限元模型数据和结果导入:将有限元模型中的相关材料参数、属性参数、弹簧刚度以及预应力参数等导入,方便对这类参数进行迭代和识别;同时将有限元模型在初始参数下得到的模态频率和振型数据导入;
(2)模态分析数据导入:所述模态分析数据包括模态分析中的模型数据以及识别得到的频率和振型数据;
(3)振型相关系数计算:计算有限元仿真的振型和实验振型之间的相关系数,达到模态匹配的目的;
(4)模型修正:以实验和仿真计算之间的模态频率最小、对角线振型相关系数最大为目标函数,采用遗传算法进行优化,迭代求解即可同时识别边界刚度和预应力值。
3.如权利要求2所述一种基于结构动力学模型修正的预应力识别方法,其特征在于在步骤(3)中,所述振型相关系数的计算式为:
MAC i j = | ( Φ i e T Φ j a ) | 2 ( Φ i e T Φ i e ) ( Φ j a T Φ j a ) - - - ( 1 )
其中,MACij代表试验模型第i阶振型与有限元模型的第j阶振型之间的相关系数;代表试验模型的第i阶振型;是有限元分析模型的第j阶振型;T代表共轭转置;
振型相关系数是一个介于0~1之间的标量;当MAC值为1时,代表两个振型完全相关,为同一模态;当MAC值为0时,代表两个振型之间线性无关;在工程应用中,当MAC矩阵的对角元素≥70%,非对角元素≤10%时即认为两个模型之间存在好的相关性。
4.如权利要求2所述一种基于结构动力学模型修正的预应力识别方法,其特征在于在步骤(4)中,所述目标函数的定义为:
f(θ)=wωJω(θ)+wMACJMAC(θ)(2)
式中,wω和wMAC分别为频率残差和MAC残差的加权系数,θ为待修正参数;
J ω = Σ i = 1 n w ω i | ω a i - ω e i ω e i | J M A C = Σ i = 1 n w M A C i ( 1 - m a x ( MAC i ) )
ωai为有限元模型的第i阶模态频率;ωei为试验的第i阶模态频率;wωi为各阶模态频率的加权系数;Jω为前n阶模态频率的相对误差;max(MACi)为第i阶有限元模型与实验振型相关系数的对角线元素;wMACi为各阶模态振型的加权系数;JMAC为前n阶振型相关系数的和的最小值。
CN201610064810.2A 2016-01-29 2016-01-29 一种基于结构动力学模型修正的预应力识别方法 Pending CN105740541A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610064810.2A CN105740541A (zh) 2016-01-29 2016-01-29 一种基于结构动力学模型修正的预应力识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610064810.2A CN105740541A (zh) 2016-01-29 2016-01-29 一种基于结构动力学模型修正的预应力识别方法

Publications (1)

Publication Number Publication Date
CN105740541A true CN105740541A (zh) 2016-07-06

Family

ID=56248021

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610064810.2A Pending CN105740541A (zh) 2016-01-29 2016-01-29 一种基于结构动力学模型修正的预应力识别方法

Country Status (1)

Country Link
CN (1) CN105740541A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106354944A (zh) * 2016-08-30 2017-01-25 南京航空航天大学 一种基于振动模态的磨机基础边界支承刚度的识别方法
CN106407606A (zh) * 2016-10-27 2017-02-15 昆明理工大学 一种实验模态频率的丢失辨识及预估方法
CN106777825A (zh) * 2017-01-24 2017-05-31 湖南科技大学 一种基于谱有限元的矩形板振动模态计算方法
CN106777691A (zh) * 2016-12-16 2017-05-31 中国船舶重工集团公司第七0五研究所 用于结构动力学仿真的橡胶o形圈有限元建模方法
CN106777696A (zh) * 2016-12-19 2017-05-31 厦门大学 基于qmu的颤振设计方法
CN106980713A (zh) * 2017-03-07 2017-07-25 中核核电运行管理有限公司 一种基于底载分配的大型结构件调频方法
CN107092751A (zh) * 2017-04-24 2017-08-25 厦门大学 基于Bootstrap的变权重模型组合预测方法
CN108509709A (zh) * 2018-03-28 2018-09-07 南京理工大学 双条裂纹fgm简支梁固有振型的数值计算方法
CN110308268A (zh) * 2019-07-04 2019-10-08 西南交通大学 预应力混凝土框架结构预应力损失识别方法
CN110956001A (zh) * 2019-12-05 2020-04-03 哈尔滨工业大学 一种针对固支边界条件的分步模型修正方法
CN111611693A (zh) * 2020-04-27 2020-09-01 苏州科技大学 一种多段连续梁固有频率的计算方法
CN113282003A (zh) * 2021-05-19 2021-08-20 南京航空航天大学 一种考虑界面接触的磁悬浮轴承-转子系统建模方法
CN113392565A (zh) * 2021-07-12 2021-09-14 中车青岛四方机车车辆股份有限公司 车体与动力包振动匹配状态定量评估方法、系统及设备
CN113468781A (zh) * 2021-06-21 2021-10-01 中国科学院西安光学精密机械研究所 一种基于刚度的空间精密轴系预紧力的测量方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587046A (zh) * 2009-06-19 2009-11-25 同济大学 基于动测法的偏心直线预应力混凝土梁桥承载力评估方法
CN102043019A (zh) * 2010-10-21 2011-05-04 重庆大学 一种框架结构损伤识别方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587046A (zh) * 2009-06-19 2009-11-25 同济大学 基于动测法的偏心直线预应力混凝土梁桥承载力评估方法
CN102043019A (zh) * 2010-10-21 2011-05-04 重庆大学 一种框架结构损伤识别方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
周强: "基于遗传算法的有限元模型修正方法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
张保强,陈国平,郭勤涛: "使用有效模态质量和遗传算法的有限元模型修正", 《振动、测试与诊断》 *
张保强,陈国平,郭勤涛: "基于模态频率和有效模态质量的有限元模型修正", 《振动与冲击》 *
林贤坤,张令弥,郭勤涛: "预应力连续箱梁桥的基准动力有限元模型研究", 《振动与冲击》 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106354944A (zh) * 2016-08-30 2017-01-25 南京航空航天大学 一种基于振动模态的磨机基础边界支承刚度的识别方法
CN106407606A (zh) * 2016-10-27 2017-02-15 昆明理工大学 一种实验模态频率的丢失辨识及预估方法
CN106407606B (zh) * 2016-10-27 2019-05-10 昆明理工大学 一种实验模态频率的丢失辨识及预估方法
CN106777691B (zh) * 2016-12-16 2019-12-03 中国船舶重工集团公司第七0五研究所 用于结构动力学仿真的橡胶o形圈有限元建模方法
CN106777691A (zh) * 2016-12-16 2017-05-31 中国船舶重工集团公司第七0五研究所 用于结构动力学仿真的橡胶o形圈有限元建模方法
CN106777696A (zh) * 2016-12-19 2017-05-31 厦门大学 基于qmu的颤振设计方法
CN106777696B (zh) * 2016-12-19 2019-05-17 厦门大学 基于qmu的颤振设计方法
CN106777825A (zh) * 2017-01-24 2017-05-31 湖南科技大学 一种基于谱有限元的矩形板振动模态计算方法
CN106777825B (zh) * 2017-01-24 2020-03-27 湖南科技大学 一种基于谱有限元的矩形板振动模态计算方法
CN106980713A (zh) * 2017-03-07 2017-07-25 中核核电运行管理有限公司 一种基于底载分配的大型结构件调频方法
CN106980713B (zh) * 2017-03-07 2020-10-23 中核核电运行管理有限公司 一种基于底载分配的大型结构件调频方法
CN107092751A (zh) * 2017-04-24 2017-08-25 厦门大学 基于Bootstrap的变权重模型组合预测方法
CN107092751B (zh) * 2017-04-24 2019-11-26 厦门大学 基于Bootstrap的变权重模型组合预测方法
CN108509709B (zh) * 2018-03-28 2022-05-17 南京理工大学 双条裂纹fgm简支梁固有振型的数值计算方法
CN108509709A (zh) * 2018-03-28 2018-09-07 南京理工大学 双条裂纹fgm简支梁固有振型的数值计算方法
CN110308268A (zh) * 2019-07-04 2019-10-08 西南交通大学 预应力混凝土框架结构预应力损失识别方法
CN110956001A (zh) * 2019-12-05 2020-04-03 哈尔滨工业大学 一种针对固支边界条件的分步模型修正方法
CN110956001B (zh) * 2019-12-05 2022-06-10 哈尔滨工业大学 一种针对固支边界条件的分步模型修正方法
CN111611693A (zh) * 2020-04-27 2020-09-01 苏州科技大学 一种多段连续梁固有频率的计算方法
US20210334423A1 (en) * 2020-04-27 2021-10-28 Suzhou University of Science and Technology Method for calculation of natural frequency of multi-segment continuous beam
CN111611693B (zh) * 2020-04-27 2024-03-19 苏州科技大学 一种多段连续梁固有频率的计算方法
CN113282003A (zh) * 2021-05-19 2021-08-20 南京航空航天大学 一种考虑界面接触的磁悬浮轴承-转子系统建模方法
CN113468781A (zh) * 2021-06-21 2021-10-01 中国科学院西安光学精密机械研究所 一种基于刚度的空间精密轴系预紧力的测量方法
CN113392565A (zh) * 2021-07-12 2021-09-14 中车青岛四方机车车辆股份有限公司 车体与动力包振动匹配状态定量评估方法、系统及设备
CN113392565B (zh) * 2021-07-12 2022-07-29 中车青岛四方机车车辆股份有限公司 车体与动力包振动匹配状态定量评估方法、系统及设备

Similar Documents

Publication Publication Date Title
CN105740541A (zh) 一种基于结构动力学模型修正的预应力识别方法
Möller et al. Fuzzy structural analysis using α-level optimization
Maia et al. Numerical optimization strategies for springback compensation in sheet metal forming
Jensen et al. Implementation of an adaptive meta-model for Bayesian finite element model updating in time domain
CN107766670B (zh) 周期性手征蜂窝结构材料等效弹性模量预测方法
CN111950170B (zh) 获得高精度麦弗逊式前悬架转向节台架试验载荷的方法
CN116090111B (zh) 一种基于深度学习模型的汽车钢板弹簧疲劳寿命预测方法
CN103324798A (zh) 基于区间响应面模型的随机模型修正方法
CN113343374B (zh) 汽车板簧疲劳测试方法
CN106599489A (zh) 空间圆管结构极限承载力分析的一次线弹性估算方法
CN106777694A (zh) 平面圆管结构极限承载力分析的一次线弹性估算方法
CN111539071B (zh) 一种差厚板晶体塑性本构模型建立方法、系统及电子设备
CN110955933B (zh) 一种基于响应面法的机械结构模糊疲劳可靠度计算方法
Liu Improving wilson-θ and newmark-β methods for quasi-periodic solutions of nonlinear dynamical systems
JP2011107759A (ja) 部材の弾塑性変形解析方法
CN115292953A (zh) 一种用于分析二维周期性非均质结构的力学仿真分析方法
Anagnostou et al. Optimized tooling design algorithm for sheet metal forming over reconfigurable compliant tooling
Ma et al. Numerical simulation of new generation non-pneumatic tire (Tweel™) and sand
CN113378354A (zh) 一种考虑剪力作用的薄壁梁弯曲极限强度计算方法
Pandit et al. On numerical moment-curvature relationship of a beam
CN114970237B (zh) 一种提升稳定杆系统疲劳耐久仿真精度的方法
Özmen et al. Adaptive methods for MOR in non‐linear FE simulations of unit cells
Su et al. Application of a new local effective constrained response surface method in structural reliability optimization design
CN112525519B (zh) 基于脉动测试的桁架结构损伤评估方法
JP5254109B2 (ja) 決め押し解析方法、プログラム、記憶媒体、及び、決め押し解析装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160706