CN105727910A - 三明治结构手性色谱固定相及其制备方法 - Google Patents
三明治结构手性色谱固定相及其制备方法 Download PDFInfo
- Publication number
- CN105727910A CN105727910A CN201610092281.7A CN201610092281A CN105727910A CN 105727910 A CN105727910 A CN 105727910A CN 201610092281 A CN201610092281 A CN 201610092281A CN 105727910 A CN105727910 A CN 105727910A
- Authority
- CN
- China
- Prior art keywords
- sandwich structure
- preparation
- phase
- fixes
- silica gel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/281—Sorbents specially adapted for preparative, analytical or investigative chromatography
- B01J20/29—Chiral phases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/80—Aspects related to sorbents specially adapted for preparative, analytical or investigative chromatography
- B01J2220/82—Shaped bodies, e.g. monoliths, plugs, tubes, continuous beds
- B01J2220/825—Shaped bodies, e.g. monoliths, plugs, tubes, continuous beds comprising a cladding or external coating
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
一种三明治结构手性色谱固定相,包括:聚合物层、纳米金粒子层、硅胶核;其中,纳米金粒子层通过Au?N键或者Au?S键包裹在硅胶核外,聚合物层为最外层,聚合物层通过物理包裹的方法形成稳定的外层壳。本发明还提供一种三明治结构手性色谱固定相的制备方法,包括以下步骤:(1)金纳米溶胶的制备;(2)SiO2Au的制备;(3)三明治结构手性色谱固定相的合成。本发明通过将纳米粒子通过层层自组装的方法负载到硅胶表面,然后在表面涂敷一层聚合物,克服了传统键合硅胶不耐碱以及手性选择性有限的问题。
Description
技术领域:
本发明涉及正相高效液相色谱固定相技术领域,具体地说,涉及一种三明治结构手性色谱固定相及其制备方法。
背景技术:
手性是自然界的一种普遍现象,手性与很多重要的生物行为有关,有效的手性分离技术的发展对于制药和对称体的合成具有至关重要的意义。但是硅胶在碱性条件下本身不稳定易溶解,使分析物的保留特性和峰形发生变化。研究和开发增强硅胶基质在碱性环境中的稳定性和消除硅羟基对碱性物质的不可逆吸附的新型固定相一直以来都是研究人员追求的目标。
随着纳米科学的发展,为分离提供了契机,纳米粒子具有大的比表面积和独特的物理化学性质,被广泛应用到手性分离当中。Li Yang(Yang L,Chen C,Liu X,et al.Electrophoresis.2010,31(10):1697-1705.)等用SH-β-CD修饰的纳米粒子做毛细管色谱固定相,快速分离了三对药物对映体和四对氨基酸对映体,结果表明,纳米粒子显著提高对映体的分离能力。Wang(Wang J,Sun C,Liu X,etal.Colloids and Surfaces A:Physicochemical and Engineering Aspects.2014,455:104-110.)等利用还原法得到纳米粒子并通过自组装法在巯基树脂表面包裹一层纳米粒子,利用表面增强拉曼效应来检测饮用水中百草枯的含量10-12M。Moliner-Martinez(Y.M.Martinez,S.Cardenas,M.Valcarcel.Electrophoresis,2007,28:2573-2579.)等用手性选择剂改性的纳米粒子作准固定相,基线分离了麻黄碱和伪麻黄碱对映体。纳米粒子还被用于手性选择性吸附和识别(N.Shukla,M.A.Bartel,A.J.Gellman,J.Am.Chem.Soc.132(2010)8575;Y.J.Kang,J.W.Oh,Y.R.Kim,J.S.Kim,H.Kim,Chem.Commun.(2010)5665.)。可见,纳米材料作为分离材料可以极大地提高分析物的分离效率。
发明内容:
鉴于此,有必要发明一种在碱性条件下稳定不易溶解的三明治结构手性色谱固定相;同时,还要提供一种三明治结构手性色谱固定相的制备方法。
一种三明治结构手性色谱固定相,包括:聚合物层、纳米金粒子层、硅胶核;其中,纳米金粒子层通过Au-N键或者Au-S键包裹在硅胶核外,聚合物层为最外层,聚合物层通过物理包裹的方法形成稳定的外层壳。通过将纳米粒子通过种子生长法负,载到硅胶表面,然后在表面涂敷一层聚合物,克服了传统键合硅胶不耐碱以及手性选择性有限的问题。
优选的,硅胶核直径为3~10μm,孔径为3~20nm。硅胶核为球形。
优选的,金纳米粒子粒径在5~25nm,纳米金粒子层厚度为50~200nm。
优选的,聚合物层其物质为具有手性识别能力的聚合物。
优选的,具有手性识别能力的聚合物为3,5-二甲基苯基异氰酸酯衍生的纤维素或者3,5-二甲基苯基异氰酸酯衍生多糖。
一种三明治结构手性色谱固定相的制备方法,包括以下步骤:
(1)金纳米溶胶的制备:取1~4mmol/L的HAuCl4溶液,搅拌下加入0.01~1mmol/L的柠檬酸钠作为还原剂,50~200mmol/L的硼氢化钠作为保护剂,避光反应0.2~2h;
(2)SiO2@Au的制备:取0.1~1mmol/L金纳米溶胶与10~20mmol/L的氨基或巯基硅胶反应5~18h,将所得溶液离心分离,然后将固体相分散在水中,再与HAuCl4/K2CO3陈化液反应10~18h,加入0.1~1M的盐酸羟胺为还原剂,搅拌8~20h,之后在4000~10000r/min下离心,水洗,在40~100℃下干燥,得到SiO2@Au核壳结构材料;
(3)三明治结构手性色谱固定相的合成:以四氢呋喃为溶剂,充分混合SiO2@Au核壳结构材料、具有手性识别能力的聚合物,用旋转蒸发法得到三明治结构手性色谱固定相。
优选的,步骤(3)中具有手性识别能力的聚合物为3,5-二甲基苯基异氰酸酯衍生的纤维素或者3,5-二甲基苯基异氰酸酯衍生的多糖,制备方法如下:纤维素或者多糖与3,5-二甲基苯基异氰酸酯在无水吡啶60~120℃下回流18~32h,然后过滤、洗涤、干燥得到3,5-二甲基苯基异氰酸酯衍生的纤维素或者3,5-二甲基苯基异氰酸酯衍生的多糖。
优选的,步骤(1)中HAuCl4溶液、柠檬酸钠、硼氢化钠的体积比为125∶20000∶600。
优选的,步骤(2)中金纳米溶胶、氨基或巯基硅胶、HAuCl4/K2CO3陈化液、盐酸羟胺的体积比为30∶10∶300∶20。
本发明有益效果如下:
1.结构新颖;本发明合成的固定相是以硅胶为核,纳米粒子为中间层,手性聚合物为壳的三明治结构手性色谱固定相。该手性聚合物具有防止纳米粒子流失的作用,并且具有较高的手性分离能力。
2.分离效率高;由于纳米粒子的“表面效应”,使得该固定相对手性化合物具有高的对映体选择性。
3.制备过程简单;原料来源广泛,反应条件温和,在水溶液中进行。
4.对手性药物对映体的分离具有重要的意义。
附图说明:
附图1是三明治结构手性色谱固定相的结构示意图。
附图2是纳米金粒子层包裹的硅胶的SEM表征图。
附图3是倍硫磷分离色谱图。
附图4是二嗪磷分离色谱图。
附图5是布洛芬分离色谱图。
附图6是黄烷酮分离色谱图。
具体实施方式:
如图1所示,一种三明治结构手性色谱固定相,包括:聚合物层、纳米金粒子层、硅胶核;其中,纳米金粒子层通过Au-N键或者Au-S键包裹在硅胶核外,聚合物层为最外层,聚合物层通过物理包裹的方法形成稳定的外层壳。图1中内层球体为SiO2,其外包裹的黑色实心球体表示纳米金粒子,最外部的不规则线状层为聚合物层。
在本实时方式中,硅胶核直径为3~10μm,孔径为3~20nm。金纳米粒子粒径在5~25nm,纳米金粒子层厚度为50~200nm。聚合物层其物质为具有手性识别能力的聚合物,具体为3,5-二甲基苯基异氰酸酯衍生的纤维素或者3,5-二甲基苯基异氰酸酯衍生多糖。
一种三明治结构手性色谱固定相的制备方法,包括以下步骤:
(1)金纳米溶胶的制备:取125μL 1~4mmol/L的HAuCl4溶液,快速搅拌下加入20mL 0.01~1mmol/L的柠檬酸钠作为还原剂,0.6mL 50~200mmol/L的硼氢化钠作为保护剂,避光反应0.2~2h;
(2)SiO2@Au的制备:取30mL 0.1~1mmol/L金纳米溶胶与10mL 10~20mmol/L的氨基或巯基硅胶反应5~18h,将所得溶液离心分离,然后将固体相分散在水中,再与300mL HAuCl4/K2CO3陈化液反应10~18h,加入20mL 0.1~1M的盐酸羟胺为还原剂,快速搅拌8~20h,之后在4000~10000r/min下离心,水洗,在40~100℃下干燥,得到纳米金粒子层包裹的硅胶,即SiO2@Au核壳结构材料,如图2所示;
(3)三明治结构手性色谱固定相的合成:以四氢呋喃为溶剂,充分混合SiO2@Au核壳结构材料、具有手性识别能力的聚合物,用旋转蒸发法得到三明治结构手性色谱固定相。
在本实时方式中,步骤(3)中具有手性识别能力的聚合物为3,5-二甲基苯基异氰酸酯衍生的纤维素或者3,5-二甲基苯基异氰酸酯衍生的多糖,制备方法如下:纤维素或者多糖与3,5-二甲基苯基异氰酸酯在无水吡啶60~120℃下回流18~32h,然后过滤、洗涤、干燥得到3,5-二甲基苯基异氰酸酯衍生的纤维素或者3,5-二甲基苯基异氰酸酯衍生的多糖。
将三明治结构手性色谱固定相,匀浆法填充于长150mm,内径为4.6mm的不锈钢柱子中,得到的色谱柱用于分析分离样品,在HPLC模式下,分离了几种手性磷试剂,结果如图3、4所示,色谱条件分别为:正己烷/异丙醇(65/35,V/V)、(60/40,V/V);流速为1.0mL/min;检测波长分别为252nm、250nm。
将三明治结构手性色谱固定相在正相色谱模式下,分离了两种手性药物,结果如图5、6所示,色谱条件分别为:正己烷/异丙醇(60/40,V/V)、正己烷/异丙醇(85/15,V/V)流速为1.0mL/min;检测波长分别为250nm、254nm。
Claims (9)
1.一种三明治结构手性色谱固定相,其特征在于:包括:聚合物层、纳米金粒子层、硅胶核;其中,纳米金粒子层通过Au-N键或者Au-S键包裹在硅胶核外,聚合物层为最外层,聚合物层通过物理包裹的方法形成稳定的外层壳。
2.如权利要求1所述的三明治结构手性色谱固定相,其特征在于:硅胶核直径为3~10μm,孔径为3~20nm。
3.如权利要求1所述的三明治结构手性色谱固定相,其特征在于:金纳米粒子粒径在5~25nm,纳米金粒子层厚度为50~200nm。
4.如权利要求1所述的三明治结构手性色谱固定相,其特征在于:聚合物层其物质为具有手性识别能力的聚合物。
5.如权利要求4所述的三明治结构手性色谱固定相,其特征在于:具有手性识别能力的聚合物为3,5-二甲基苯基异氰酸酯衍生的纤维素或者3,5-二甲基苯基异氰酸酯衍生多糖。
6.一种三明治结构手性色谱固定相的制备方法,其特征在于:包括以下步骤:
(1)金纳米溶胶的制备:取1~4mmol/L的HAuCl4溶液,搅拌下加入0.01~1mmol/L的柠檬酸钠,50~200mmol/L的硼氢化钠,避光反应0.2~2h;
(2)SiO2@Au的制备:取0.1~1mmol/L金纳米溶胶与10~20mmol/L的氨基或巯基硅胶反应5~18h,将所得溶液离心分离,然后将固体相分散在水中,再与HAuCl4/K2CO3陈化液反应10~18h,加入0.1~1M的盐酸羟胺为还原剂,搅拌8~20h,之后在4000~10000r/min下离心,水洗,在40~100℃下干燥,得到SiO2@Au核壳结构材料;
(3)三明治结构手性色谱固定相的合成:以四氢呋喃为溶剂,充分混合SiO2@Au核壳结构材料、具有手性识别能力的聚合物,用旋转蒸发法得到三明治结构手性色谱固定相。
7.如权利要求6所述的三明治结构手性色谱固定相的制备方法,其特征在于:步骤(3)中具有手性识别能力的聚合物为3,5-二甲基苯基异氰酸酯衍生的纤维素或者3,5-二甲基苯基异氰酸酯衍生的多糖,制备方法如下:纤维素或者多糖与3,5-二甲基苯基异氰酸酯在无水吡啶60~120℃下回流18~32h,然后过滤、洗涤、干燥得到3,5-二甲基苯基异氰酸酯衍生的纤维素或者3,5-二甲基苯基异氰酸酯衍生的多糖。
8.如权利要求6所述的三明治结构手性色谱固定相的制备方法,其特征在于:步骤(1)中HAuCl4溶液、柠檬酸钠、硼氢化钠的体积比为125∶20000∶600。
9.如权利要求6所述的三明治结构手性色谱固定相的制备方法,其特征在于:步骤(2)中金纳米溶胶、氨基或巯基硅胶、HAuCl4/K2CO3陈化液、盐酸羟胺的体积比为30∶10∶300∶20。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610092281.7A CN105727910A (zh) | 2016-02-03 | 2016-02-03 | 三明治结构手性色谱固定相及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610092281.7A CN105727910A (zh) | 2016-02-03 | 2016-02-03 | 三明治结构手性色谱固定相及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105727910A true CN105727910A (zh) | 2016-07-06 |
Family
ID=56245420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610092281.7A Pending CN105727910A (zh) | 2016-02-03 | 2016-02-03 | 三明治结构手性色谱固定相及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105727910A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106362714A (zh) * | 2016-10-14 | 2017-02-01 | 宁夏大学 | 银功能化硅基手性色谱固定相及其制备方法 |
CN109433170A (zh) * | 2018-12-24 | 2019-03-08 | 中国科学院兰州化学物理研究所 | 一种纳米金杂化硅胶及十八烷基硫醇修饰纳米金杂化硅胶的制备和应用 |
US10435309B2 (en) * | 2016-04-22 | 2019-10-08 | Korea Atomic Energy Research Institute | Process and device for removing iodine using gold particles |
CN110787779A (zh) * | 2019-12-17 | 2020-02-14 | 中国科学院兰州化学物理研究所 | 一种聚合物包裹硅胶核-壳型色谱填料的制备和应用 |
CN113789172A (zh) * | 2021-09-10 | 2021-12-14 | 江南大学 | 一种复合手性纳米组装体及其制备方法和应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5584536A (en) * | 1978-10-05 | 1980-06-25 | Kazuo Imaeda | Trapping agent for gaseous mercury |
CN104353442A (zh) * | 2014-11-04 | 2015-02-18 | 华文蔚 | 一种纳米硅胶-金手性分离固定相的制备方法 |
-
2016
- 2016-02-03 CN CN201610092281.7A patent/CN105727910A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5584536A (en) * | 1978-10-05 | 1980-06-25 | Kazuo Imaeda | Trapping agent for gaseous mercury |
CN104353442A (zh) * | 2014-11-04 | 2015-02-18 | 华文蔚 | 一种纳米硅胶-金手性分离固定相的制备方法 |
Non-Patent Citations (3)
Title |
---|
FU-KEN LIU等: "Immobilization of a Monolayer of Bovine Serum Albumin on Gold Nanoparticles for Stereo-specified Recognition of Dansyl-norvaline", 《JOURNAL OF THE CHINESE CHEMICAL SOCIETY》 * |
侯经国等: "纤维素-三(3 ,5-二甲基苯基氨基甲酸酯)涂敷手性固定相的制备、表征及评价", 《色谱》 * |
胡永红等: "SiO2/Au核壳结构纳米粒子的制备及表征", 《无机化学学报》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10435309B2 (en) * | 2016-04-22 | 2019-10-08 | Korea Atomic Energy Research Institute | Process and device for removing iodine using gold particles |
CN106362714A (zh) * | 2016-10-14 | 2017-02-01 | 宁夏大学 | 银功能化硅基手性色谱固定相及其制备方法 |
CN106362714B (zh) * | 2016-10-14 | 2019-03-22 | 宁夏大学 | 银功能化硅基手性色谱固定相及其制备方法 |
CN109433170A (zh) * | 2018-12-24 | 2019-03-08 | 中国科学院兰州化学物理研究所 | 一种纳米金杂化硅胶及十八烷基硫醇修饰纳米金杂化硅胶的制备和应用 |
CN110787779A (zh) * | 2019-12-17 | 2020-02-14 | 中国科学院兰州化学物理研究所 | 一种聚合物包裹硅胶核-壳型色谱填料的制备和应用 |
CN113789172A (zh) * | 2021-09-10 | 2021-12-14 | 江南大学 | 一种复合手性纳米组装体及其制备方法和应用 |
CN113789172B (zh) * | 2021-09-10 | 2022-06-17 | 江南大学 | 一种复合手性纳米组装体及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105727910A (zh) | 三明治结构手性色谱固定相及其制备方法 | |
Ostovan et al. | Hollow porous molecularly imprinted polymer for highly selective clean-up followed by influential preconcentration of ultra-trace glibenclamide from bio-fluid | |
Malik et al. | Recent applications of molecularly imprinted polymers in analytical chemistry | |
Hussain | Nanomaterials in chromatography: current trends in chromatographic research technology and techniques | |
Chen et al. | Trace analysis and chemical identification on cellulose nanofibers-textured SERS substrates using the “coffee ring” effect | |
Kuang et al. | High-performance liquid chromatographic enantioseparation of racemic drugs based on homochiral metal–organic framework | |
Wang et al. | Preparation and applications of cellulose-functionalized chiral stationary phases: a review | |
Tarongoy Jr et al. | Open tubular‐capillary electrochromatography: Developments and applications from 2013 to 2015 | |
Liu et al. | Plant-mediated synthesis of Au nanoparticles: separation and identification of active biomolecule in the water extract of Cacumen Platycladi | |
Xie et al. | Efficient determination of protocatechuic acid in fruit juices by selective and rapid magnetic molecular imprinted solid phase extraction coupled with HPLC | |
Pena-Pereira et al. | Immobilization strategies and analytical applications for metallic and metal-oxide nanomaterials on surfaces | |
Luo et al. | SERS detection of dopamine using label-free acridine red as molecular probe in reduced graphene oxide/silver nanotriangle sol substrate | |
Sun et al. | Constructing a highly sensitivity SERS sensor based on a magnetic metal–organic framework (MOF) to detect the trace of thiabendazole in fruit juice | |
Zhai et al. | Chip-based molecularly imprinted monolithic capillary array columns coated GO/SiO2 for selective extraction and sensitive determination of rhodamine B in chili powder | |
Bahrani et al. | A highly selective nanocomposite based on MIP for curcumin trace levels quantification in food samples and human plasma following optimization by central composite design | |
Karrat et al. | A novel magnetic molecularly imprinted polymer for selective extraction and determination of quercetin in plant samples | |
Lerma-García et al. | Use of gold nanoparticle-coated sorbent materials for the selective preconcentration of sulfonylurea herbicides in water samples and determination by capillary liquid chromatography | |
CN105675759B (zh) | 一种双酚a的分离检测方法 | |
CN103896846A (zh) | 一种以壳聚糖修饰的金纳米通道膜分离组氨酸对映体的方法及其检测方法 | |
Wu et al. | Individual SERS substrate with core–satellite structure decorated in shrinkable hydrogel template for pesticide detection | |
Ren et al. | Design and synthesis of a sandwiched silver microsphere/TiO2 nanoparticles/molecular imprinted polymers structure for suppressing background noise interference in high sensitivity surface-enhanced Raman scattering detection | |
Li et al. | High-sensitive molecularly imprinted sensor with multilayer nanocomposite for 2, 6-dichlorophenol detection based on surface-enhanced Raman scattering | |
CN109738415A (zh) | 一种用于tnt检测的纳米银sers探针的制备方法 | |
Dong et al. | Novel synthesized attapulgite nanoparticles–based hydrophobic monolithic column for in-tube solid-phase microextraction of thiosildenafil, pseudovardenafil, and norneosildenafil in functional foods | |
Murtada et al. | Strategies for antidepressants extraction from biological specimens using nanomaterials for analytical purposes: A review |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160706 |