CN105720946A - 松弛振荡器 - Google Patents

松弛振荡器 Download PDF

Info

Publication number
CN105720946A
CN105720946A CN201610040199.XA CN201610040199A CN105720946A CN 105720946 A CN105720946 A CN 105720946A CN 201610040199 A CN201610040199 A CN 201610040199A CN 105720946 A CN105720946 A CN 105720946A
Authority
CN
China
Prior art keywords
nmos tube
control signal
electric capacity
grid
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610040199.XA
Other languages
English (en)
Other versions
CN105720946B (zh
Inventor
王耀
戎亮
文光俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201610040199.XA priority Critical patent/CN105720946B/zh
Publication of CN105720946A publication Critical patent/CN105720946A/zh
Application granted granted Critical
Publication of CN105720946B publication Critical patent/CN105720946B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/011Modifications of generator to compensate for variations in physical values, e.g. voltage, temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/013Modifications of generator to prevent operation by noise or interference

Landscapes

  • Manipulation Of Pulses (AREA)

Abstract

本发明涉及一种振荡器,具体为松弛振荡器,包括主振荡器电路、负反馈稳压电路、从振荡器电路、比较器及逻辑电路。本发明提供的松弛振荡器,同时消除比较器延迟与输入失调对振荡频率的影响;采用主从双振荡器结构,利用从振荡器测量比较器延迟时长,并产生相应时长的脉宽信号控制电容充电电流切换为2I,从而有效消除比较器延迟对时钟周期的影响;同时,由主振荡器电路的4开关电路结构在时钟周期内切换比较器输入端的参考电压与充电电容电压,从而有效消除比较器输入失调对时钟周期的影响。

Description

松弛振荡器
技术领域
本发明涉及一种振荡器,具体为松弛振荡器。
背景技术
松弛振荡器具有低成本、低功耗、中等频率精度的特点,常被用于为射频识别标签芯片、无线传感器芯片等低功耗SoC提供时钟信号。振荡频率精度是松弛振荡器的一个关键性能指标。但是,随着工作电压、功耗的不断降低,电路性能受工艺偏差、温度、工作电压波动的影响也不断增大。晶体振荡器以其高精度、低功耗、对温度不敏感的特点通常被用于提供高精度的时钟信号。但是,晶体作为片外元件提高了元件成本和体积。因此,片上全集成的极低功耗高精度松弛振荡器技术是实现低功耗、小型化、低成本SoC的一项关键技术,研究和设计具有高精度、低功耗、低成本特点的松弛振荡器具有较高的科学和工程价值。
在极低功耗下,传统松弛振荡器中的电路延迟、比较器失调等非理想因素恶化,并导致时钟频率对工艺、工作电压、温度(ProcessVoltageTemperature,PVT)变化更加敏感。例如,在极低偏置电流下,松弛振荡器中比较器或施密特触发器的延迟时间增大,导致其与时钟周期相比无法忽略,而比较器、施密特触发器等电路延迟时间受PVT变化的影响十分明显,从而使得时钟周期的精度严重下降。同理,比较器的输入失调电压也会降低时钟的频率精度。然而,现有的技术方案无法同时消除比较器延迟和输入失调对振荡频率的影响。
发表在“A280nW,100kHz,1-cyclestart-uptime,on-chipCMOSrelaxationoscillatoremployingafeedforwardperiodcontrolscheme”(2012SymposiumonVLSICircuits(VLSIC)),其工作原理为:oscillatorcore中的电容充电电流受Vctrl信号控制,当Vctrl为高时,充电电流为2Ic;当Vctrl为低时,充电电流为Ic。通过Periodcontroller测量oscillatorcore中比较器延时td,并产生与td时长相等的脉宽信号S1和S2,由S1和S2做或运算产生Vctrl。通过以上两步,每当电容开始充电时,使得oscillatorcore的电容充电电流在最初的td时间内为2倍充电电流2Ic,在随后的充电时间内(T/2-td)为Ic。由此使得电容充电时间缩短至RC,而传统RC松弛振荡器的电容充电时间为RC+td。从而消除了比较器延迟td对时钟周期的影响。该技术缺点是,未考虑比较器输入失调对时钟频率的影响。
发表在“A120nW18.5kHzRCoscillatorwithcomparatoroffsetcancellationfor±0.25%temperaturestability”(IEEEInternationalSolid-StateCircuitsConferenceDigestofTechnicalPapers(ISSCC),2013)。其工作原理为:在前半个时钟周期内,开关S1、S4导通,开关S2、S3关断,对C1充电且V1逐渐上升,同时V2=I*R保持不变,V2成为比较器的参考电压。当V1上升至超过V2-Vos时比较器输出翻转,开关S1、S4关断,开关S2、S3导通,振荡器进入后半个时钟周期,此时V2随着电容充电而升高,V1则成为固定的参考电压I*R,当V2上升至超过V1+Vos时比较器输出翻转。通过以上方法,使得前半个时钟周期等于RC-CVos/I+td,后半个时钟周期等于RC+CVos/I+td,总的时钟周期等于2RC+2td,从而消除了Vos的影响。该技术缺点是未能消除比较器延时td对时钟周期的影响。
发明内容
针对现有的松弛振荡器频率受温度波动、比较器延迟/失调等因素影响大的缺点,本发明提供一种松弛振荡器,可同时消除比较器延迟和输入失调对振荡频率影响的松弛振荡器电路,进一步提高频率精度。
具体技术方案为:
松弛振荡器,包括主振荡器电路、负反馈稳压电路、从振荡器电路、比较器及逻辑电路。
其中,主振荡器电路,包括PMOS管M12和PMOS管M13、PMOS管M14、PMOS管M15、PMOS管M16分别组成镜像电流源电路,将主振荡器电路的每一条支路的电流都设置为I;NMOS管M4作为开关,NMOS管M4的栅极与控制信号S2连接,漏极与PMOS管M13漏极相连,源极分别与NMOS管M6的漏极、NMOS管M7的漏极相连,作为比较器Comp1的输入V1;NMOS管M5作为开关,NMOS管M5的栅极与控制信号S1连接,漏极与PMOS管M16漏极相连,源极分别与NMOS管M8的漏极、NMOS管M9的漏极相连,作为比较器Comp1的输入V2;NMOS管M6的栅极与控制信号Q1B相连,源极与电容C1相连;NMOS管M17作为开关管与电容C1并联,栅极接控制信号Q1;NMOS管M9的栅极与控制信号Q1相连,源极与电容C2相连;NMOS管M18作为开关管与电容C2并联,栅极接控制信号Q1B;NMOS管M7的栅极与控制信号Q1相连,NMOS管M8的栅极与控制信号Q1B相连,源极与电阻R1和电容C5相连。
其中,负反馈稳压电路,NMOS管M1的栅极与NMOS管M2的漏极相连,作为偏置电路的输入;NMOS管M2的栅极与NMOS管M1的源级相连,作为后续振荡电路的供电电压;PMOS管M3以二极管连接的方式与电容C0并联到地。
其中,从振荡器电路,PMOS管M19和PMOS管M20作为镜像电流电路将从振荡器电路的两条支路电流偏置为I;PMOS管M19漏极分别与NMOS管M21、PMOS管M22的漏极相连;NMOS管M21的栅极与控制信号S2相连,源极与电容C3和电容C6相连;电容C3与控制信号S2的NMOS管并联;电容C6与NMOS管M10源极相连,作为比较器Comp2的输入V3;NMOS管M10漏极接Vcl,栅极接控制信号Q1B;NMOS管M22栅极与控制信号S2相连,源极与电阻R2和电容C8相连;NMOS管M23栅极与控制信号S1相连,源极与电阻R2和电容C8相连;PMOS管M20漏极分别与NMOS管M24、NMOS管M23的漏极相连;NMOS管M24的栅极与控制信号S2相连,源极与电容C4和电容C7相连;电容C4与控制信号S1的NMOS管并联,电容C7与NMOS管M11源极相连,作为比较器Comp2的输入V4,NMOS管M11漏极接Vcl,栅极接控制信号Q1。
其中,比较器及逻辑电路,V1和V2作为比较器Comp1的输入,输出经过反相器Inv1、反相器Inv2作为触发器RS1的R端和S端的输入,触发器RS1的输出为控制信号Q1和控制信号Q1B;V3和V4作为比较器Comp2的输入,输出经过反相器Inv3、反相器Inv4作为触发器RS2的R端和S端的输入,触发器RS2的输出为控制信号Q2和控制信号Q2B;由控制信号Q1与控制信号Q2B作为控制信号S1,同样由控制信号Q1B与控制信号Q2作为控制信号S2。
主振荡器电路对电容C1和电容C2交替充放电,同时由电流I流过电阻R1产生参考电压,通过比较器将电容C1或电容C2电压与参考电压相比较产生周期振荡时钟信号;从振荡器电路和逻辑电路用于测量比较器的延迟时间,并在时钟信号翻转时产生与比较器延迟时间相等的脉宽信号,该脉宽信号被用于控制主振荡器电路中的NMOS管M4和NMOS管M5,使其在脉宽信号为高电平的时间内导通从而为电容C1或电容C2提供两倍的充电电流,消除比较器延迟对时钟周期的影响;负反馈稳压电路用于降低电源电压波动对时钟频率的影响。
本发明提供的松弛振荡器,同时消除比较器延迟与输入失调对振荡频率的影响;采用主从双振荡器结构,利用从振荡器测量比较器延迟时长,并产生相应时长的脉宽信号控制电容充电电流切换为2I,从而有效消除比较器延迟对时钟周期的影响;同时,由主振荡器电路的4开关电路结构在时钟周期内切换比较器输入端的参考电压与充电电容电压,从而有效消除比较器输入失调对时钟周期的影响。
附图说明
图1是本发明的结构示意图;
图2是本发明的信号波形图。
具体实施方式
结合附图说明本发明的具体实施方式。
如图1所示,松弛振荡器,包括主振荡器电路2、负反馈稳压电路1、从振荡器电路3、比较器及逻辑电路4;
主振荡器电路2,PMOS管M12和PMOS管M13、PMOS管M14、PMOS管M15、PMOS管M16分别组成镜像电流源电路,将主振荡器电路2的每一条支路的电流都设置为I;
NMOS管M4作为开关,NMOS管M4的栅极与控制信号S2连接,漏极与PMOS管M13漏极相连,源极分别与NMOS管M6的漏极、NMOS管M7的漏极相连,作为比较器Comp1的输入V1;
NMOS管M5作为开关,NMOS管M5的栅极与控制信号S1连接,漏极与PMOS管M16漏极相连,源极分别与NMOS管M8的漏极、NMOS管M9的漏极相连,作为比较器Comp1的输入V2;
NMOS管M6的栅极与控制信号Q1B相连,源极与电容C1相连;
NMOS管M17作为开关管与电容C1并联,栅极接控制信号Q1;
NMOS管M9的栅极与控制信号Q1相连,源极与电容C2相连;
NMOS管M18作为开关管与电容C2并联,栅极接控制信号Q1B;
NMOS管M7的栅极与控制信号Q1相连,NMOS管M8的栅极与控制信号Q1B相连,源极与电阻R1和电容C5相连。
负反馈稳压电路1,NMOS管M1的栅极与NMOS管M2的漏极相连,作为偏置电路的输入;NMOS管M2的栅极与NMOS管M1的源级相连,作为后续振荡电路的供电电压;PMOS管M3以二极管连接的方式与电容C0并联到地。
从振荡器电路3,PMOS管M19和PMOS管M20作为镜像电流电路将从振荡器电路3的两条支路电流偏置为I;PMOS管M19漏极分别与NMOS管M21、PMOS管M22的漏极相连;
NMOS管M21的栅极与控制信号S2相连,源极与电容C3和电容C6相连;电容C3与控制信号S2的NMOS管并联;电容C6与NMOS管M10源极相连,作为比较器Comp2的输入V3;NMOS管M10漏极接Vcl,栅极接控制信号Q1B;
NMOS管M22栅极与控制信号S2相连,源极与电阻R2和电容C8相连;
NMOS管M23栅极与控制信号S1相连,源极与电阻R2和电容C8相连;
PMOS管M20漏极分别与NMOS管M24、NMOS管M23的漏极相连;
NMOS管M24的栅极与控制信号S2相连,源极与电容C4和电容C7相连;电容C4与控制信号S1的NMOS管并联,电容C7与NMOS管M11源极相连,作为比较器Comp2的输入V4,NMOS管M11漏极接Vcl,栅极接控制信号Q1。
比较器及逻辑电路4,V1和V2作为比较器Comp1的输入,输出经过反相器Inv1、反相器Inv2作为触发器RS1的R端和S端的输入,触发器RS1的输出为控制信号Q1和控制信号Q1B;
V3和V4作为比较器Comp2的输入,输出经过反相器Inv3、反相器Inv4作为触发器RS2的R端和S端的输入,触发器RS2的输出为控制信号Q2和控制信号Q2B;由控制信号Q1与控制信号Q2B作为控制信号S1,同样由控制信号Q1B与控制信号Q2作为控制信号S2。
该松弛振荡器,主要信号波形如图2所示。
负反馈稳压电路1可降低工作电压的波动对主振荡器电路2的影响。消除比较器输入失调对时钟周期的影响。主振荡器电路2在一个时钟周期内交替对电容C1和电容C2充电,对电容C1充电时,V2=IR作为Comp1比较器负输入端的参考电压;对C2充电时,V1=IR作为Comp1比较器正输入端的参考电压。从而使比较器的输入失调电压在延长一个电容充电过程的同时缩短了另一个电容充电过程,消除了比较器输入失调对时钟周期的影响。
消除电路延迟对时钟周期的影响。从振荡器中的Vcl被设置为略低于主振荡器电路2翻转电平IR(R1=R2=R),从主振荡器电路2输出控制信号Q1/控制信号Q1B发生翻转至从振荡器电路3输出控制信号Q2/控制信号Q2B发生翻转的时间就是电路延迟时间td,也即控制信号S1和控制信号S2的高电平脉冲持续的时间。利用控制信号S1、控制信号S2分别控制开关NMOS管M4、NMOS管M5,在主振荡器电路2的每个电容充电过程的初始阶段开启持续时间为td的2倍充电电流,从而使其充电时间消除掉电路延迟td的影响。

Claims (1)

1.松弛振荡器,其特征在于,包括主振荡器电路、负反馈稳压电路、从振荡器电路、比较器及逻辑电路;
其中主振荡器电路,包括PMOS管M12和PMOS管M13、PMOS管M14、PMOS管M15、PMOS管M16分别组成镜像电流源电路,将主振荡器电路的每一条支路的电流都设置为I;
NMOS管M4作为开关,NMOS管M4的栅极与控制信号S2连接,漏极与PMOS管M13漏极相连,源极分别与NMOS管M6的漏极、NMOS管M7的漏极相连,作为比较器Comp1的输入V1;
NMOS管M5作为开关,NMOS管M5的栅极与控制信号S1连接,漏极与PMOS管M16漏极相连,源极分别与NMOS管M8的漏极、NMOS管M9的漏极相连,作为比较器Comp1的输入V2;
NMOS管M6的栅极与控制信号Q1B相连,源极与电容C1相连;
NMOS管M17作为开关管与电容C1并联,栅极接控制信号Q1;
NMOS管M9的栅极与控制信号Q1相连,源极与电容C2相连;
NMOS管M18作为开关管与电容C2并联,栅极接控制信号Q1B;
NMOS管M7的栅极与控制信号Q1相连,NMOS管M8的栅极与控制信号Q1B相连,源极与电阻R1和电容C5相连;
负反馈稳压电路,NMOS管M1的栅极与NMOS管M2的漏极相连,作为偏置电路的输入;NMOS管M2的栅极与NMOS管M1的源级相连,作为后续振荡电路的供电电压;PMOS管M3以二极管连接的方式与电容C0并联到地;
其中,从振荡器电路,PMOS管M19和PMOS管M20作为镜像电流电路将从振荡器电路的两条支路电流偏置为I;PMOS管M19漏极分别与NMOS管M21、PMOS管M22的漏极相连;
NMOS管M21的栅极与控制信号S2相连,源极与电容C3和电容C6相连;电容C3与控制信号S2的NMOS管并联;电容C6与NMOS管M10源极相连,作为比较器Comp2的输入V3;NMOS管M10漏极接Vcl,栅极接控制信号Q1B;
NMOS管M22栅极与控制信号S2相连,源极与电阻R2和电容C8相连;
NMOS管M23栅极与控制信号S1相连,源极与电阻R2和电容C8相连;
PMOS管M20漏极分别与NMOS管M24、NMOS管M23的漏极相连;
NMOS管M24的栅极与控制信号S2相连,源极与电容C4和电容C7相连;电容C4与控制信号S1的NMOS管并联,电容C7与NMOS管M11源极相连,作为比较器Comp2的输入V4,NMOS管M11漏极接Vcl,栅极接控制信号Q1;
比较器及逻辑电路,V1和V2作为比较器Comp1的输入,输出经过反相器Inv1、反相器Inv2作为触发器RS1的R端和S端的输入,触发器RS1的输出为控制信号Q1和控制信号Q1B;
V3和V4作为比较器Comp2的输入,输出经过反相器Inv3、反相器Inv4作为触发器RS2的R端和S端的输入,触发器RS2的输出为控制信号Q2和控制信号Q2B;由控制信号Q1与控制信号Q2B作为控制信号S1,同样由控制信号Q1B与控制信号Q2作为控制信号S2。
CN201610040199.XA 2016-01-21 2016-01-21 松弛振荡器 Active CN105720946B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610040199.XA CN105720946B (zh) 2016-01-21 2016-01-21 松弛振荡器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610040199.XA CN105720946B (zh) 2016-01-21 2016-01-21 松弛振荡器

Publications (2)

Publication Number Publication Date
CN105720946A true CN105720946A (zh) 2016-06-29
CN105720946B CN105720946B (zh) 2018-05-18

Family

ID=56153792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610040199.XA Active CN105720946B (zh) 2016-01-21 2016-01-21 松弛振荡器

Country Status (1)

Country Link
CN (1) CN105720946B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107947764A (zh) * 2017-12-13 2018-04-20 中国科学院微电子研究所 一种coms振荡器电路
EP3316482A1 (en) * 2016-10-28 2018-05-02 ams AG Oscillator circuit and method for generating a clock signal
CN109347459A (zh) * 2018-10-30 2019-02-15 郑州大学 基于温度传感的松弛振荡器
CN113507264A (zh) * 2021-07-26 2021-10-15 上海聆芯科技有限公司 一种rc振荡器及计时芯片
TWI821142B (zh) * 2023-04-06 2023-11-01 智原科技股份有限公司 弛張振盪器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675617A (en) * 1986-02-03 1987-06-23 Martin Kenneth W Stable voltage controlled oscillator
CN102386848A (zh) * 2011-09-21 2012-03-21 电子科技大学 一种环形压控振荡器
US20130049875A1 (en) * 2011-08-26 2013-02-28 Seichiro SHIGA Relaxation oscillator circuit including two clock generator subcircuits having same configuration operating alternately
CN103580649A (zh) * 2012-07-31 2014-02-12 成都锐成芯微科技有限责任公司 低失调低温漂高电源抑制比的rc振荡器电路
CN103701411A (zh) * 2013-12-13 2014-04-02 电子科技大学 一种具有温度和工艺自补偿特性的cmos松弛振荡器
CN104124921A (zh) * 2014-07-02 2014-10-29 浙江大学 基于电流模比较器的低压低功耗cmos张弛振荡器及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675617A (en) * 1986-02-03 1987-06-23 Martin Kenneth W Stable voltage controlled oscillator
US20130049875A1 (en) * 2011-08-26 2013-02-28 Seichiro SHIGA Relaxation oscillator circuit including two clock generator subcircuits having same configuration operating alternately
CN102386848A (zh) * 2011-09-21 2012-03-21 电子科技大学 一种环形压控振荡器
CN103580649A (zh) * 2012-07-31 2014-02-12 成都锐成芯微科技有限责任公司 低失调低温漂高电源抑制比的rc振荡器电路
CN103701411A (zh) * 2013-12-13 2014-04-02 电子科技大学 一种具有温度和工艺自补偿特性的cmos松弛振荡器
CN104124921A (zh) * 2014-07-02 2014-10-29 浙江大学 基于电流模比较器的低压低功耗cmos张弛振荡器及方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3316482A1 (en) * 2016-10-28 2018-05-02 ams AG Oscillator circuit and method for generating a clock signal
WO2018077719A1 (en) * 2016-10-28 2018-05-03 Ams Ag Oscillator circuit and method for generating a clock signal
US10742200B2 (en) 2016-10-28 2020-08-11 Ams Ag Oscillator circuit and method for generating a clock signal
CN107947764A (zh) * 2017-12-13 2018-04-20 中国科学院微电子研究所 一种coms振荡器电路
CN107947764B (zh) * 2017-12-13 2021-05-07 中国科学院微电子研究所 一种coms振荡器电路
CN109347459A (zh) * 2018-10-30 2019-02-15 郑州大学 基于温度传感的松弛振荡器
CN109347459B (zh) * 2018-10-30 2022-08-30 郑州大学 基于温度传感的松弛振荡器
CN113507264A (zh) * 2021-07-26 2021-10-15 上海聆芯科技有限公司 一种rc振荡器及计时芯片
TWI821142B (zh) * 2023-04-06 2023-11-01 智原科技股份有限公司 弛張振盪器

Also Published As

Publication number Publication date
CN105720946B (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
CN105720946A (zh) 松弛振荡器
CN106059538B (zh) 一种自带工艺偏差校准功能的张弛振荡器
CN102118148B (zh) 一种振荡器
CN104124921A (zh) 基于电流模比较器的低压低功耗cmos张弛振荡器及方法
US11245360B2 (en) Oscillator circuit, chip and electronic device
CN103546121B (zh) Rc振荡器
CN105628243B (zh) 一种电阻型温度传感芯片
CN103023461A (zh) Rc振荡电路
TW201711373A (zh) 用於晶體振盪器之週期性啟動器
CN102931913B (zh) 高精度振荡器
CN1835398B (zh) 振荡电路及振荡控制方法
CN105071786A (zh) 一种采用半周期预充电补偿技术的电阻电容型弛豫振荡器
CN100460880C (zh) 检测电容变化的方法和集成电路
CN102158202A (zh) 高精度数字可调rc振荡器
CN108667439B (zh) 一种新型低功耗高精度低温漂rc振荡器
CN217741695U (zh) 一种无比较器的张弛振荡器电路
CN112953526A (zh) 一种环形振荡电路、方法以及集成芯片
CN109245723B (zh) 一种片上rc振荡器电路
CN106026983B (zh) 一种环形振荡器
CN203590176U (zh) Rc振荡器
CN108173520B (zh) 一种温度补偿的振荡器电路及方法
CN101075801B (zh) 振荡电路
TWI399915B (zh) Low-power relaxation-type oscillator
CN211791469U (zh) 振荡器电路及开关霍尔传感器
CN103825555A (zh) 一种振荡电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant