CN105719967A - 制造包括金属氮化物层的半导体器件的方法和半导体器件 - Google Patents

制造包括金属氮化物层的半导体器件的方法和半导体器件 Download PDF

Info

Publication number
CN105719967A
CN105719967A CN201510947758.0A CN201510947758A CN105719967A CN 105719967 A CN105719967 A CN 105719967A CN 201510947758 A CN201510947758 A CN 201510947758A CN 105719967 A CN105719967 A CN 105719967A
Authority
CN
China
Prior art keywords
metal nitride
nitride layer
semiconductor device
semi
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510947758.0A
Other languages
English (en)
Inventor
J.P.康拉特
R.舍尔纳
H-J.舒尔策
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of CN105719967A publication Critical patent/CN105719967A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/0495Schottky electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28537Deposition of Schottky electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • H01L21/28581Deposition of Schottky electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3215Doping the layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • H01L29/475Schottky barrier electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1602Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)

Abstract

本发明涉及制造包括金属氮化物层的半导体器件的方法和半导体器件。制造半导体器件的方法包括将氮引入到金属层中或引入到金属氮化物层中,金属层或金属氮化物层被形成为与半导体材料接触。半导体器件包括半导体材料以及与半导体材料接触的金属氮化物层。金属氮化物具有大于金属氮化物中氮的溶解度限制的氮含量。

Description

制造包括金属氮化物层的半导体器件的方法和半导体器件
技术领域
包括金属半导体结的肖特基二极管一般用作整流器件。特别是SiC肖特基二极管越来越多地用在功率电子设备的领域中。
发明内容
本发明的目标是提供用于制造包括金属半导体结的半导体器件的改进的方法。此外,目标是提供包括金属半导体结的这样的半导体器件。
根据实施例,制造半导体器件的方法包括将氮引入到金属氮化物层中或到金属层中,所述金属氮化物层或金属层被形成为与半导体材料接触。
根据实施例,半导体器件包括半导体材料和与半导体材料接触的金属氮化物层。金属氮化物具有大于金属氮化物中的氮的溶解度限制的氮含量。
根据实施例,电部件包括如以上所描述的半导体器件,其中电部件选自由以下组成的组:肖特基二极管、合并肖特基二极管、结势垒肖特基二极管、JFET、集成回扫二极管、整流器、逆变器以及电源。
本领域技术人员在阅读以下的详细描述时和在观看所附附图时将认识到附加的特征和优点。
附图说明
附图被包括以提供对本发明的实施例的进一步理解,并且被并入该说明书中且构成该说明书的一部分。附图图示了本发明的实施例,且与描述一起用来解释原理。将容易意识到本发明的其它实施例以及意图的优点中的许多,因为通过参考以下详细描述它们变得更好理解。附图的元件不必相对于彼此按比例。相似的参考数字指定对应的类似部分。
图1A图示根据实施例的方法。
图1B概述根据实施例的方法的步骤。
图2A图示根据另外的实施例的方法。
图2B图示当执行根据另外的实施例的方法时的半导体衬底。
图2C图示当执行根据另外的实施例的方法时的半导体衬底。
图3A图示可以用于执行根据实施例的方法的器件。
图3B图示可以用于执行根据另外的实施例的方法的器件。
图4A图示根据实施例的半导体器件的示例的横截面视图。
图4B示出根据另外的实施例的半导体器件的横截面视图。
图4C示出根据另外的实施例的半导体器件的横截面视图。
图4D示出根据另外的实施例的半导体器件的横截面视图。
图5A图示欧姆接触的电流电压特性的示例。
图5B图示整流接触的横截面视图。
图6图示肖特基接触的能带图。
具体实施方式
在以下的详细描述中,参考形成其部分的附图,并且在所述附图中作为例证图示在其中本发明可以被实践的特定实施例。在这方面,参考正被描述的图的取向使用方向性术语,诸如“顶部”、“底部”、“前部”、“背部”、“头部”、“尾部”等等。因为本发明的实施例的部件可以被定位在许多不同的取向上,所以方向性术语用于例证的目的,且决不是限制性的。将理解的是,在不脱离由权利要求限定的范围的情况下可以利用其它实施例并且可以进行结构或逻辑的改变。
实施例的描述不是限制性的。特别是,下文描述的实施例的元件可以与不同实施例的元件组合。
用在以下描述中的术语“晶片”、“衬底”、或“半导体衬底”可以包括具有半导体表面的任何基于半导体的结构。晶片和结构将被理解为包括硅、绝缘体上硅(SOI)、蓝宝石上硅(SOS)、掺杂的和未掺杂的半导体、由基本半导体基础支持的硅的外延层、以及其它半导体结构。半导体不需要是基于硅的。半导体也可以是硅锗、锗、或砷化镓。根据其它实施例,金刚石、碳化硅(SiC)或者氮化镓(GaN)可以形成半导体衬底材料。
图和描述通过指示紧邻掺杂类型“n”或“p”的“-”或“+”来图示相对掺杂浓度。例如,“n-”意指小于“n”掺杂区的掺杂浓度的掺杂浓度,而“n+”掺杂区具有比“n”掺杂区高的掺杂浓度。相同的相对掺杂浓度的掺杂区不必具有相同的绝对掺杂浓度。例如,两个不同的n掺杂区可以具有相同或不同的绝对掺杂浓度。在图和描述中,为了更好理解起见,掺杂部分经常被指定为是“p”或“n”掺杂的。如清楚地将被理解的,该指定决不意在是限制性的。掺杂类型可以是任意的,只要达到所描述的功能。此外,在所有实施例中,掺杂类型可以被反转。
如在该说明书中采用的,术语“耦合”和/或“电耦合”不意味着意指元件必须直接耦合在一起——中间元件可以被提供在“耦合”或“电耦合”的元件之间。术语“电连接”意在描述在电连接在一起的元件之间的低电阻连接。
如本文中使用的,术语“具有”、“含有”、“包括”、“包含”等等是开放式术语,其指示所陈述的元件或特征的存在,但不排除附加的元件或特征。冠词“一”、“一个”和“该”意在包括复数以及单数,除非上下文另有清楚指示。
如在该说明书中使用的术语“横向”和“水平”意在描述平行于半导体衬底或半导体主体的第一表面的取向。这可以例如是晶片或管芯的表面。
如在该说明书中使用的术语“垂直”意在描述与半导体衬底或半导体主体的第一表面正交布置的取向。
图1A图示根据实施例的方法。工件1可以包括半导体材料100和形成在半导体材料的第一主表面110上的金属氮化物层130或金属层131。金属氮化物层130或金属层131被形成为与半导体材料100接触。例如,半导体材料100可以是半导体衬底101的一部分。根据另外的实施方式,半导体材料100可以是形成在任意衬底(未图示)之上的任意半导体层。半导体材料100可以包括另外的掺杂部分(未在该附图中图示)。根据实施例的方法包括将氮135引入到金属氮化物层130或金属层131中。
例如,金属氮化物或金属包括选自由以下组成的组的金属:钼、钛、钽、和钨。已经发现的是,与没有引入氮离子的方法相比,由于引入氮离子135的工艺,金属氮化物层130的氮含量可以被增加。如果氮离子135被引入到金属层131中,则形成具有增加的氮含量的金属氮化物130。使用形成金属氮化物层的常规方法(例如,通过反应溅射),氮含量的上限由金属氮化物中的氮的溶解度的限制来确定。该限制可以例如取决于所使用的金属。例如,对于MoN,在不执行引入氮的专门工艺(掺杂工艺)的情况下,氮含量的上限可以是47.5至48at-%(原子百分比)。由于引入氮的工艺,可以增加氮含量。结果,根据实施例,氮含量可以大于大约48at-%,例如,大于50at-%。根据另外的实施例,氮含量可以大于55at-%或大于60at-%。
通过改变金属氮化物层的氮含量,可以改变金属氮化物层的功函数。由于金属氮化物层的改变的功函数,肖特基势垒的高度可以改变,以及因此正向电压降可以由于肖特基势垒的改变的高度而改变。例如,通过增加金属氮化物层的氮含量,金属氮化物的功函数可以被减小。结果,肖特基势垒以及因此的在半导体材料100和金属氮化物层130之间的肖特基接触的正向电压降可以被减少。
例如,半导体材料100可以具有大于2eV且小于10eV(例如小于6eV)的带隙。半导体材料100的示例包括碳化硅、氮化铝、磷化铟、AlGaAS、金刚石以及III-V半导体的另外的示例。例如,非欧姆接触(例如,肖特基接触)被形成在半导体材料100和金属氮化物层130之间。根据另外的实施例,欧姆接触可以形成在半导体材料100和金属氮化物层130之间。
图1B概述了根据实施例的方法。该方法包括:将氮引入到金属氮化物层或金属层中,所述金属氮化物层或金属层被形成为与半导体材料接触(S110)。例如,该方法还可以包括提供与金属氮化物层接触的半导体材料(S100)。例如,预先处理的工件可以被提供,并且可以被掺杂有氮。例如,预先处理的工件可以包括在半导体材料上的金属或金属氮化物层。根据另外的实施例,方法可以包括在半导体衬底之上形成金属氮化物层,以及此后,将氮引入到金属氮化物层中。替换地,方法可以包括在半导体衬底之上形成金属层,以及此后,将氮引入到金属层中。作为示例,通过将氮引入到金属层中来形成金属氮化物层可以在其中溅射工艺将不与先前执行的处理半导体衬底的表面处理工艺兼容的情况下完成。
将氮引入到金属或金属氮化物层中可以使用如一般已知的任意方法来完成。例如,氮可以使用离子注入方法来引入,如稍后将解释的。根据另外的实施例,氮可以使用等离子体辅助的掺杂工艺来引入,这稍后将被解释。一般地,通常的注入剂量是1015至1016cm2。通常的注入能量是30keV至100keV。
可以执行引入氮的工艺,例如注入工艺,以便获得氮离子的穿透深度的均匀分布。例如,这可以通过执行注入后处理来完成。例如,工件1可以经受将工件加热到例如200至500℃的高温的退火工艺。
根据另外的实施例,该处理也可以使用激光处理工艺(例如,局部熔化金属氮化物层的激光退火工艺)来执行。例如,IR激光器可以用于在数10W/cm2的功率下执行该退火工艺。根据实施例,可以使用不熔化金属氮化物层的激光工艺。
通过调整穿透深度的轮廓,氮离子135可以以更均匀的方式分布在金属氮化物层中,从而导致金属氮化物层的功函数的均匀分布以及因此肖特基势垒的均匀势垒高度。
图2A图示当执行根据另外的实施例的方法时的工件1。图2A的实施例与在图1A示出的实施例的不同之处在于:薄氧化硅层145设置在金属氮化物层130之上。例如,氧化硅层145可以具有40至60nm的厚度。例如,该层可以使用等离子体增强化学气相沉积(PECVD)方法来形成。该薄氧化硅层145引起氮离子的散射,从而导致氮离子的动量的分布的加宽。由此,氮离子的穿透深度的分布也可以被加宽。例如,当使用薄氧化硅层145时,穿透深度的均匀分布可以在不执行随后的温度或退火步骤的情况下达到。
图2B示出另外的实施例,根据该另外的实施例可以使用合适的掩模材料来对金属氮化物层130的表面的一部分进行掩模。例如,光刻胶层可以用作注入掩模。替换地,可以采用具有大约1至1.5μm的厚度的图案化的氧化硅层。通过使用掩模155,金属氮化物层130的功函数以及因此肖特基势垒的势垒高度可以局部地变化。图2B还示出半导体材料部分180,其可以被掺杂有不同于半导体材料100的导电类型的导电类型。例如,半导体材料100可以是n掺杂的,而掺杂部分180可以是p掺杂的。掩模材料150可以被设置以便覆盖金属氮化物层的邻近于n掺杂部分的表面,同时使金属氮化物层130的邻近于p掺杂部分180的表面暴露。当此后执行引入氮的工艺时,仅金属氮化物层130的邻近于p掺杂部分180的部分可以被掺杂,从而导致金属氮化物层的氮含量以及因此金属氮化物层的功函数的改变。根据实施例,氮离子也可以被引入到金属氮化物层130的覆盖部分中,所述覆盖部分可以以比金属氮化物层130的暴露部分低的浓度被掺杂有氮离子。
图2C示出另外的实施例,根据该另外的实施例,掩模层150包括具有变化的厚度且因此导致氮离子135的变化的掺杂浓度的掩模结构150a、150b或150c。例如,掩模结构150a具有倾斜的侧壁。因此,氮掺杂或注入剂量相对于暴露部分是减弱的,但比在具有水平表面的部分中的大。以对应的方式,掩模结构150b也具有成角度的侧壁。成角度的侧壁可以具有如由掩模结构150a、150b例示的连续减少或增加的厚度。根据另外的修改,掩模结构150c具有逐步增加的厚度。由此,使用氮的实现剂量可以变化。
图3A图示离子注入设备300的示例,该离子注入设备300可以用于执行用于引入氮的所描述的一个或多个掺杂工艺。氮分子在气体放电室310内被离子化。氮离子135借助于合适的电场朝向衬底370加速,所述电场可以由加速管340生成。例如,射束可以使用磁装置320、350、360来整形和偏转。此外,装置可以包括用于射束控制的狭缝330。磁装置可以包括垂直扫描仪350以及水平扫描仪360。
图3B示出用于执行可以用于引入氮的等离子体辅助掺杂工艺的装置的示例。如示出的,可以在衬底325上方生成等离子体345,该衬底325被保持在反应室375中。例如,等离子体可以使用施加至上电极355的RF电压来生成。诸如氮气的反应气体经由气体入口315被馈送。通过使用等离子体辅助掺杂工艺(PLAD),可以在更短时间内掺杂更高剂量。氮离子的穿透深度比使用实现方法的更小。
一般地,在图3A中示出的离子注入设备和在图3B中图示的等离子体辅助掺杂设备中,通常的注入时间是30分钟至1小时。
图4A示出根据实施例的半导体器件4的横截面视图。图4A中图示的半导体器件4包括半导体材料400和与半导体材料400接触的金属氮化物层430。如上面已经解释的,金属氮化物层430具有大于溶解度限制的氮含量。例如,氮的含量可以大于48at-%,例如大于50at-%或者大于55at-%。例如,非欧姆接触可以形成在半导体材料400和金属氮化物层430之间。根据另一个实施例,欧姆接触可以形成在半导体材料400和金属氮化物层430之间。半导体材料400的带隙可以大于2eV且小于10eV。
半导体材料400可以是半导体主体101,该半导体主体101包括在其的任一侧处的一个或多个掺杂部分或层。掺杂部分可以通过诸如掺杂层的离子注入、扩散和外延生长的各种方法来形成。例如,半导体材料可以是具有大于2eV的带隙的材料。作为示例,半导体材料可以包括碳化硅、金刚石、氮化镓、磷化铟、AlGaAs和III-V半导体的另外的示例。
例如,半导体主体401可以是重n掺杂的,且可以包括在较低掺杂水平下n掺杂的部分,该部分被设置在半导体主体的第一表面410处。金属氮化物层430可以包括对于x和y具有不同值的MxNy的混合物,其中M表示金属。例如,金属氮化物层可以包括MN和MxNy的混合物或者MN2和MxNy的混合物。一般地,在这些分子式中,x可以等于1,且y可以是满足0<y<3的实数。替换地,y可以等于1,而x可以是满足0<x<3的实数。例如,金属可以选自钼、钛、钽、和钨的组。此外,金属氮化物可以包括两种金属,诸如MoTiN。
金属氮化物层430可以电连接至阳极端子。此外,半导体器件4可以包括背侧金属化460,该背侧金属化460形成至半导体主体401的欧姆接触。背侧金属化460设置在半导体主体401的与第一表面410相对的第二表面415处。背侧金属化460可以电连接至阴极端子。在提及图5A和5B的同时,术语“欧姆接触”、“肖特基接触”、和“整流接触”将在下面进行解释。
图4B示出半导体器件4的另外的实施例。图4B中图示的半导体器件4包括例如半导体主体401的半导体材料400以及与半导体材料接触的金属层430。金属氮化物层430包括金属氮化物,并且非欧姆接触形成在半导体材料400和金属层430之间。金属氮化物层430具有大于金属氮化物中的氮的溶解度限制的氮含量。一般地,半导体材料400可以是包括另外的掺杂部分的半导体主体401。例如,这些掺杂部分可以邻近于半导体主体401的第一表面410或第二表面415设置。不同于图4A的实施例,图4B的半导体器件4还包括第二导电类型的掺杂区480。例如,半导体材料400可以是n-掺杂的,并且该掺杂部分480可以是P+掺杂的。该掺杂部分480可以设置在半导体主体401的第一表面410处,而例如是n-掺杂的半导体材料400的部分可以存在于第一表面410处。金属层430可以与半导体材料400和掺杂部分480接触。图4B中图示的半导体器件4还包括在半导体主体401的第二表面处的重n+掺杂区470。半导体器件还包括背侧金属化层460,该背侧金属化层460形成与掺杂层470的欧姆接触。背侧金属化层460可以电连接至阴极端子。金属层430可以电连接至阳极端子。半导体材料可以包括上面提到的材料中的任何材料。例如,半导体材料可以是碳化硅。
图4B中图示的半导体器件可以实现包括p+注入部分480的结势垒肖特基(JBS)二极管。当反向电压被施加至半导体器件时,形成在n-部分400和p+部分480之间的界面处的耗尽区夹断可能从器件的肖特基接触出现的泄露电流。因此,这样的结势垒肖特基二极管具有减少的泄露电流。这样的JBS可以合适地用在开关模式电源中。
根据另外的实施例,半导体器件4可以实现合并PIN肖特基二极管(MPS)。图4C示出这样的合并PIN肖特基二极管的横截面视图。MPS包括与JBS类似的部件,这些部件具有与JBS的对应部件相同的参考数字。特别是,MPS的p+部分485被配置为在正向方向上将少数载流子注入到n-部分400中。例如,p+部分485可以以例如1019至1020cm-3的高掺杂浓度被掺杂。
图4D图示半导体器件的另外的示例。如示出的,半导体器件4包括半导体主体401、金属层430,所述半导体主体401包括具有大于2eV且小于10eV的带隙的半导体材料,所述金属层430与半导体主体401的第一表面410接触,所述金属层430包括金属氮化物。金属氮化物层430具有大于金属氮化物中的氮的溶解度限制的氮含量。金属层430电连接至第一负载端子440。非欧姆接触形成在半导体主体401和金属层430之间。半导体主体401的第二表面415电连接至第二负载端子450。第二表面415与第一表面410相对。例如,金属层430可以与掺杂部分420接触。根据实施例,半导体主体401可以是重n+掺杂的,且可以具有n导电类型。掺杂部分420可以具有n导电类型,处于n型掺杂剂的较低浓度。
例如,图4D中示出的半导体器件可以实现肖特基二极管或肖特基二极管相关的器件。在这种情况下,第一负载端子440可以是阳极端子,而第二负载端子450可以是阴极端子。根据半导体器件的不同实现,例如,在MOSFET(金属氧化物场效应晶体管)或JEFT(结型场效应晶体管)的情况下,第一负载端子440可以是源极端子,而第二负载端子450可以是漏极端子。根据另外的示例,例如在IGBT(绝缘栅双极型晶体管)的情况下,第一负载端子440可以是发射极端子,而第二负载端子450可以是集电极端子。
半导体器件可以包括有源区481和结端子区域482。在有源区481中,金属层430与半导体主体401接触。结端子区域482关于功能和结构不同于有源区480。具体来说,在有源区480中,半导体器件的负载端子(例如,阳极端子)为了电流传导的目的而电连接至半导体主体。相比之下,结终止区域的目的是边缘终止用于减少在半导体器件4的外围处的电场峰值。例如,结终止区域的通常的结构元件包括场板、诸如浮动保护环或环片段的环结构、结终止延伸(JTE)结构和横向掺杂变化(VLD)结构中的一个或多个。
图5A示出欧姆接触的电流电压特性的示例。如可以看到的,电流大约相对于所施加的电压成比例。电压和电流之比被表示为接触的电阻。
在另一方面,如图5B中图示的,跨越非欧姆接触,电流不需要相对于电压成比例。更确切地说,如可以在图5B中图示的图的左手侧上看到的,几乎没有电流可以在流动,独立于所施加的负电压。此外,当施加正电压时,电流可以以非线性方式增加。在其中电流针对所施加的电压是非线性的任何种类的电流电压特性可以被认为是建立非欧姆接触。例如,接触可以是在其中当在反向方向上施加低电压时仅小电流(即反向饱和电流)流动的整流接触,诸如例如pn结或肖特基结。当较高的电压被施加在反向方向上时,击穿电流可以流动。
在本说明书的上下文中,术语“非欧姆接触”被理解为表示具有非线性电流电压特性的任何种类的接触。根据另外的修改,术语“整流接触”被认为表示以下任何种类的接触,根据所述接触,当施加在反向方向上的电压时,仅很少或没有电流流动,所述电流相对于所施加的电压不成比例。
图6示出整流金属半导体结的能带图的示例。图6的右手侧示出在半导体材料内的能带图,其中WC表示导带的能级,WV表示价带的能级以及WF表示半导体材料的费米能级。在导带的能级WC和价带的能级WV之间的差ΔW表示半导体材料的带隙。图6的能带图的左手侧部分示出金属的功函数qxφM。当金属和半导体材料形成结时,势垒在金属的费米能级WF和半导体材料的价带之间的界面处生成。势垒的高度qxφB也被称为接触的“肖特基势垒”。
一般地,包括具有宽带隙的半导体材料的肖特基接触具有由于所使用的接触金属的肖特基势垒和功函数而导致的大正向电压降。根据所描述的实施例,通过选择包括金属氮化物的金属层,可以调整肖特基势垒的高度。特别是,通过使金属氮化物的氮含量变化,金属的功函数可以被合适地设置。结果,肖特基势垒以及因此正向电压降可以通过设置金属氮化物的氮含量来设置。例如,金属氮化物的氮含量可以大于45at-%,特别是,大于金属氮化物中氮的溶解度的限制。例如,氮含量可以使用俄歇离子光谱法、次级离子质谱法(SIMS)或X射线光电子光谱法(XPS)来确定。
半导体器件可以是可以选自由以下组成的组的半导体部件:肖特基二极管、合并pn肖特基二极管、JFET、集成回扫二极管、整流器、逆变器和电源。
尽管上面已经描述了本发明的实施例,但显而易见的是,可以实现另外的实施例。例如,另外的实施例可以包括权利要求中记载的特征的任何子组合或者上面给出的示例中描述的元件的任何子组合。因此,所附权利要求的该精神和范围不应当受限于本文中包含的实施例的描述。

Claims (22)

1.一种制造半导体器件的方法,所述方法包括:
将氮引入到金属氮化物层中或引入到金属层中,金属氮化物层或金属层被形成为与半导体材料接触。
2.根据权利要求1所述的方法,其中将氮引入到金属氮化物层中或引入到金属层中包括注入氮离子的离子注入工艺。
3.根据权利要求1所述的方法,其中将氮引入到金属氮化物层中或引入到金属层中包括使用氮的等离子体辅助掺杂工艺。
4.根据权利要求1所述的方法,还包括温度处理工艺。
5.根据权利要求1所述的方法,还包括激光处理工艺。
6.根据权利要求1所述的方法,还包括在将氮引入到金属氮化物层或金属层中之前在金属氮化物层之上或在金属层之上形成氧化硅层。
7.根据权利要求1所述的方法,还包括在将氮引入到金属氮化物层或金属层中之前在金属氮化物层或金属层的表面之上形成掩模,所述掩模包括开口。
8.根据权利要求1所述的方法,其中金属层或金属氮化物层包括选自由以下组成的组的金属:钼、钛、钽、和钨。
9.根据权利要求1所述的方法,其中肖特基接触形成在半导体材料和金属氮化物层之间。
10.根据权利要求1所述的方法,还包括至少在金属氮化物层的部分之上形成掩模层并且通过使掩模层的厚度变化来使氮浓度横向变化。
11.根据权利要求1所述的方法,其中半导体材料具有大于2eV且小于10eV的带隙。
12.一种半导体器件,包括:
半导体材料;以及
金属氮化物层,与半导体材料接触,金属氮化物具有大于金属氮化物中氮的溶解度限制的氮含量。
13.根据权利要求12所述的半导体器件,其中金属氮化物包括选自由以下组成的组的金属:钼、钛、钽、和钨。
14.根据权利要求12所述的半导体器件,其中非欧姆接触形成在半导体材料和金属氮化物层之间。
15.根据权利要求12所述的半导体器件,其中肖特基接触形成在半导体材料和金属氮化物层之间。
16.根据权利要求12所述的半导体器件,其中金属氮化物层的氮含量大于50at-%。
17.根据权利要求12所述的半导体器件,其中半导体材料具有大于2eV且小于10eV的带隙。
18.根据权利要求12所述的半导体器件,其中金属层包括邻近于半导体材料的表面的第一部分的第一层部分以及邻近于半导体材料的表面的第二部分的第二层部分,第一和第二层部分均包括金属氮化物,第一层部分的氮含量不同于第二层部分的氮含量。
19.根据权利要求12所述的半导体器件,其中半导体材料包括在主表面处的第一导电类型的第一区,金属层邻近于所述主表面。
20.根据权利要求19所述的半导体器件,其中半导体材料还包括在主表面处的第二导电类型的第二区,第二导电类型不同于第一导电类型。
21.根据权利要求20所述的半导体器件,其中金属层包括邻近于第一区的第一层部分以及邻近于第二区的第二层部分,第一和第二层部分均包括金属氮化物,第一层部分的氮含量不同于第二层部分的氮含量。
22.一种包括权利要求12所述的半导体器件的电部件,其中电部件选自由以下组成的组:肖特基二极管、合并肖特基二极管、结势垒肖特基二极管、JFET、MESFET、集成回扫二极管、整流器、逆变器以及电源。
CN201510947758.0A 2014-12-17 2015-12-17 制造包括金属氮化物层的半导体器件的方法和半导体器件 Pending CN105719967A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/572872 2014-12-17
US14/572,872 US10014383B2 (en) 2014-12-17 2014-12-17 Method for manufacturing a semiconductor device comprising a metal nitride layer and semiconductor device

Publications (1)

Publication Number Publication Date
CN105719967A true CN105719967A (zh) 2016-06-29

Family

ID=56099838

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510947758.0A Pending CN105719967A (zh) 2014-12-17 2015-12-17 制造包括金属氮化物层的半导体器件的方法和半导体器件

Country Status (3)

Country Link
US (1) US10014383B2 (zh)
CN (1) CN105719967A (zh)
DE (1) DE102015122020A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108062001A (zh) * 2018-01-02 2018-05-22 京东方科技集团股份有限公司 膜层的图案化方法、金属线栅偏振结构及其制作方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022113729A1 (de) 2022-01-21 2023-07-27 Infineon Technologies Ag Halbleitervorrichtung mit metallnitridschicht und ein verfahren zum herstellen von dieser

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5010032A (en) * 1985-05-01 1991-04-23 Texas Instruments Incorporated Process for making CMOS device with both P+ and N+ gates including refractory metal silicide and nitride interconnects
US5801097A (en) * 1997-03-10 1998-09-01 Vanguard International Semiconductor Corporation Thermal annealing method employing activated nitrogen for forming nitride layers
US20010015463A1 (en) * 2000-01-21 2001-08-23 Nec Corporation Semiconductor device and method of manufacturing the same
US20050085004A1 (en) * 2003-10-17 2005-04-21 Joey Lai Method of forming a semi-insulating region
US20130292790A1 (en) * 2011-01-17 2013-11-07 Fujitsu Limited Semiconductor device and manufacturing method thereof

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2631873C2 (de) * 1976-07-15 1986-07-31 Siemens AG, 1000 Berlin und 8000 München Verfahren zur Herstellung eines Halbleiterbauelements mit einem Schottky-Kontakt auf einem zu einem anderen Bereich justierten Gatebereich und mit kleinem Serienwiderstand
US4545826A (en) * 1984-06-29 1985-10-08 Allegheny Ludlum Steel Corporation Method for producing a weldable austenitic stainless steel in heavy sections
US5508212A (en) * 1995-04-27 1996-04-16 Taiwan Semiconductor Manufacturing Co. Salicide process for a MOS semiconductor device using nitrogen implant of titanium
US7253109B2 (en) * 1997-11-26 2007-08-07 Applied Materials, Inc. Method of depositing a tantalum nitride/tantalum diffusion barrier layer system
US6337151B1 (en) * 1999-08-18 2002-01-08 International Business Machines Corporation Graded composition diffusion barriers for chip wiring applications
BR0109069A (pt) * 2000-03-08 2004-12-07 Ntu Ventures Pte Ltd Processo para fabricar um circuito integrado fotÈnico
JP2002009173A (ja) * 2000-06-26 2002-01-11 Toshiba Corp 半導体装置の製造方法
TW580730B (en) * 2001-03-09 2004-03-21 Macronix Int Co Ltd Method of forming a silicon oxide layer with different thickness using pulsed nitrogen plasma implantation
KR100476926B1 (ko) * 2002-07-02 2005-03-17 삼성전자주식회사 반도체 소자의 듀얼 게이트 형성방법
JP4373085B2 (ja) * 2002-12-27 2009-11-25 株式会社半導体エネルギー研究所 半導体装置の作製方法、剥離方法及び転写方法
JP2004319964A (ja) * 2003-03-28 2004-11-11 Mitsubishi Electric Corp 半導体装置及びその製造方法
WO2004111288A2 (en) * 2003-06-12 2004-12-23 Sunel Technologies, Llc Fabrication of titanium and titanium alloy anode for dielectric and insulated films
JP4396816B2 (ja) * 2003-10-17 2010-01-13 日立電線株式会社 Iii族窒化物半導体基板およびその製造方法
JP4610207B2 (ja) * 2004-02-24 2011-01-12 三洋電機株式会社 半導体装置およびその製造方法
KR100689586B1 (ko) * 2005-04-26 2007-03-02 매그나칩 반도체 유한회사 알에프 소자의 저항 및 이를 구비한 알에프 소자의제조방법
US8026568B2 (en) * 2005-11-15 2011-09-27 Velox Semiconductor Corporation Second Schottky contact metal layer to improve GaN Schottky diode performance
JP5358893B2 (ja) * 2007-04-03 2013-12-04 三菱電機株式会社 トランジスタ
US7727882B1 (en) * 2007-12-17 2010-06-01 Novellus Systems, Inc. Compositionally graded titanium nitride film for diffusion barrier applications
US20090179297A1 (en) * 2008-01-16 2009-07-16 Northrop Grumman Systems Corporation Junction barrier schottky diode with highly-doped channel region and methods
JP2010165950A (ja) * 2009-01-16 2010-07-29 Toshiba Corp 不揮発性半導体メモリ及びその製造方法
KR20130056608A (ko) * 2011-11-22 2013-05-30 에스케이하이닉스 주식회사 상변화 메모리 장치 및 그의 제조방법
EP2905806B1 (en) * 2013-10-08 2016-08-24 Shindengen Electric Manufacturing Co., Ltd. Method for manufacturing a silicon carbide semiconductor device.
EP2942805B1 (en) * 2014-05-08 2017-11-01 Nexperia B.V. Semiconductor device and manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5010032A (en) * 1985-05-01 1991-04-23 Texas Instruments Incorporated Process for making CMOS device with both P+ and N+ gates including refractory metal silicide and nitride interconnects
US5801097A (en) * 1997-03-10 1998-09-01 Vanguard International Semiconductor Corporation Thermal annealing method employing activated nitrogen for forming nitride layers
US20010015463A1 (en) * 2000-01-21 2001-08-23 Nec Corporation Semiconductor device and method of manufacturing the same
US20050085004A1 (en) * 2003-10-17 2005-04-21 Joey Lai Method of forming a semi-insulating region
US20130292790A1 (en) * 2011-01-17 2013-11-07 Fujitsu Limited Semiconductor device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108062001A (zh) * 2018-01-02 2018-05-22 京东方科技集团股份有限公司 膜层的图案化方法、金属线栅偏振结构及其制作方法

Also Published As

Publication number Publication date
US20160181388A1 (en) 2016-06-23
US10014383B2 (en) 2018-07-03
DE102015122020A1 (de) 2016-06-23

Similar Documents

Publication Publication Date Title
US11837629B2 (en) Power semiconductor devices having gate trenches and buried edge terminations and related methods
US9029944B2 (en) Super junction semiconductor device comprising implanted zones
US20150200247A1 (en) Bipolar Semiconductor Device and Method of Manufacturing Thereof
US9054151B2 (en) Semiconductor device with laterally varying doping concentrations
US8164154B1 (en) Low profile Schottky barrier diode for solar cells and solar panels and method of fabrication thereof
US9859378B2 (en) Semiconductor device with reduced emitter efficiency
US9865717B2 (en) Semiconductor device
JPH09107098A (ja) 半導体デバイス
US11094779B2 (en) Semiconductor device having an edge termination region comprising a first edge termination region of a second conductivity type adjacent to a second edge termination region of a first conductivity type
US9911610B2 (en) Semiconductor device having a metal-semiconductor junction and manufacturing therefor
US8592903B2 (en) Bipolar semiconductor device and manufacturing method
US10991832B2 (en) Power diode
CN109326654B (zh) 快速恢复反向二极管
US10164043B2 (en) Semiconductor diode and method for forming a semiconductor diode
US9384983B2 (en) Method of manufacturing a vertical semiconductor device
US20230307554A1 (en) Power Diode and Method of Manufacturing a Power Diode
CN105719967A (zh) 制造包括金属氮化物层的半导体器件的方法和半导体器件
US20230307529A1 (en) Support shield structures for trenched semiconductor devices
US10431698B2 (en) Semiconductor device with non-ohmic contact between SiC and a contact layer containing metal nitride
US20200259022A1 (en) Schottky rectifier with surge-current ruggedness
US20240113235A1 (en) Silicon carbide device with single metallization process for ohmic and schottky contacts

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160629

RJ01 Rejection of invention patent application after publication