CN105712718A - 一种层状C/ZrC复合材料及其制备方法 - Google Patents

一种层状C/ZrC复合材料及其制备方法 Download PDF

Info

Publication number
CN105712718A
CN105712718A CN201610047230.2A CN201610047230A CN105712718A CN 105712718 A CN105712718 A CN 105712718A CN 201610047230 A CN201610047230 A CN 201610047230A CN 105712718 A CN105712718 A CN 105712718A
Authority
CN
China
Prior art keywords
filter paper
zirconium oxide
preparation
stratiform
mixed slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610047230.2A
Other languages
English (en)
Other versions
CN105712718B (zh
Inventor
李庆刚
王志
吴超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Hangyin New Material Technology Co ltd
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201610047230.2A priority Critical patent/CN105712718B/zh
Publication of CN105712718A publication Critical patent/CN105712718A/zh
Application granted granted Critical
Publication of CN105712718B publication Critical patent/CN105712718B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种层状C/ZrC复合材料及其制备方法,属于层状材料制备技术领域。本发明通过对原料中各相组分含量配比进行限定,对烧结温度、压力和保温时间进行限定,从而制备出成分可控的层状C/ZrC复合材料。该制备方法采用成本低廉的氧化锆及滤纸作为锆源和碳源,具有广阔的应用前景;所述复合材料的制备方法简单,制备周期短,易于规模化实施,具有较好的实用价值。

Description

一种层状C/ZrC复合材料及其制备方法
技术领域
本发明涉及一种层状耐超高温复合材料及其制备方法,具体涉及一种层状C/ZrC复合材料及其制备方法,属于复合材料技术领域。
背景技术
层状复合结构设计已经成为当前国际上陶瓷增韧技术研究的热点,是陶瓷增韧的方法之一。目前,Ti/Al2O3,ZrC/SiC,ZrB2/SiC,HfC/SiC,ZrO-Zr2CN/Si3N4,SiCw/SiC,Ni/Cu,Ti-TiBw/Ti,TiB2-SiC/graphiteflake和HfC-SiC/BN等层状复合材料被报道。但是,从原材料来看(比如HfC,ZrC和ZrB2)价格都比较昂贵。这大大限制了层状复合材料的发展。因此,许多研究集中在优化制备工艺和制备条件来降低成本。
目前常用的耐高温材料体系主要包括:C/C复合材料、SiC陶瓷基复合材料(C/SiC、SiC/SiC)、难熔金属、耐超高温陶瓷等。C/ZrC复合材料具有高熔点、耐超高温、耐烧蚀性能和抗氧化性能好、尺寸稳定性优良等特点,是目前最有潜力的一种耐超高温材料。结合层状材料及耐高温材料体系的优点,在优化复合材料性能的前提下,最大限度地降低制备成本是亟需解决的问题。
发明内容
为了解决以上技术问题,本发明提供了一种层状C/ZrC复合材料,同时提供了其制备方法。本发明制备成本低,制备成的复合材料具有良好的微观结构、力学性能和致密性。
本发明中的层状C/ZrC复合材料,由以下步骤制备而成:
1)将粒径为20-30nm纳米氧化锆粉体和无水乙醇按照1:20质量比进行混合,在常温下进行磁力搅拌加超声分散1h得到混合料浆;之后将混合料浆放入聚四氟乙烯罐中球磨24h,球磨介质为氧化锆球,分散剂为0.5-1wt%聚乙二醇;将混好的浆料倒入真空浸渍设备备用;将滤纸或吸水率大的废纸裁剪成直径为45mm的圆片;对滤纸进行表面处理之后放入真空浸渍设备进行真空浸渍;将浸渍后的滤纸圆片在真空干燥箱中100℃条件下干燥24h制备成氧化锆/滤纸预制体;
2)氧化锆/滤纸预制体叠层之后放入石墨磨中并在真空热解烧结炉中进行高温烧结,得到层状C/ZrC复合材料;高温烧结条件为1650-1700℃、20-30MPa条件下烧结2-4h,其升温速度为0-1200℃升温速率为5℃/分钟,1200-1700℃为3℃/分钟;加压工艺为初始压力至目标压力的时间为20-30min。
制备成的复合材料的相对密度为1.89-1.97g/m3,弯曲强度为109.6-224.3MPa。
本发明是采用滤纸薄片在氧化锆浆料中真空浸渍法制备得到坯体,然后经过叠层在真空热压烧结条件下得到致密的层状碳/碳化锆超高温陶瓷,其工艺流程如图1所示。
本发明相比现有技术的优越性在于:
本发明相较于其他烧结工艺制备的层状复合材料制备成本更低,并有较好的力学综合性能;本发明中采用原位反应生成纳米碳化锆,层与层之间有良好的结合性,不引入其他杂质相;另外,原料获得容易,产品性能优异,有较高的成本性价比。
附图说明
图1为层状碳/碳化锆超高温复合材料的制备工艺流程图;
图2为层状碳/碳化锆超高温陶瓷的平面低倍金相图;
图3为层状碳/碳化锆超高温陶瓷的断面图。
具体实施方式
实施例1
将纳米氧化锆粉体(粒径为20-30nm)和无水乙醇按照1:20质量比进行混合,在常温下进行磁力搅拌加超声分散1h得到混合料浆;之后将混合料浆放入聚四氟乙烯罐中球磨24h,球磨介质为氧化锆球,分散剂为0.5-1wt%聚乙二醇;将混好的浆料倒入真空浸渍设备备用;将滤纸(或吸水率大的废纸)裁剪成直径为45mm的圆片;对滤纸进行表面处理之后放入真空浸渍设备进行真空浸渍;将浸渍后的滤纸圆片在真空干燥箱中100℃条件下干燥24h制备成氧化锆/滤纸预制体;氧化锆/滤纸预制体经过45层叠片后放入石墨磨中并在真空热压烧结炉中进行高温处理。其制备工艺流程图如图1所示。高温处理条件为:1700℃、30MPa条件下烧结4h,得到层状C/ZrC复合材料;升温速度为0-1200℃升温速率为5℃/分钟,1200-1700℃为3℃/分钟;加压工艺为初始压力至目标压力的时间为20-30min;如图2所示,层状C/ZrC复合材料被成功制备。样品呈现明显的层状。图3为层状碳/碳化锆超高温陶瓷的断面图。从图中可以观察到样品中颗粒生长良好,颗粒尺寸均匀,且可观察到明显的界面结合。层状样品相组成主要为C、ZrC,层厚约为100μm,层间分布均匀。对样品进行断裂实验,观察其断裂过程,可以明显观察到裂纹偏转现象。证明层状陶瓷可以改变裂纹传播路径,从而增加断裂韧性。其相对密度为1.89g/m3,弯曲强度为127MPa。
实施例2
将纳米氧化锆粉体(粒径为20-30nm)和无水乙醇按照1:20质量比进行混合,在常温下进行磁力搅拌加超声分散1h得到混合料浆;之后将混合料浆放入聚四氟乙烯罐中球磨24h,球磨介质为氧化锆球,分散剂为0.5-1wt%聚乙二醇;将混好的浆料倒入真空浸渍设备备用;将滤纸(或吸水率大的废纸)裁剪成直径为45mm的圆片;对滤纸进行表面处理之后放入真空浸渍设备进行真空浸渍;将浸渍后的滤纸圆片在真空干燥箱中100℃条件下干燥24h制备成氧化锆/滤纸预制体;氧化锆/滤纸预制体经过56层叠片后放入石墨磨中并在真空热压烧结炉中进行高温处理。高温处理条件为:1700℃、30MPa条件下烧结4h,得到层状C/ZrC复合材料;升温速度为0-1200℃升温速率为5℃/分钟,1200-1700℃为3℃/分钟;加压工艺为初始压力至目标压力的时间为20-30min;样品中颗粒生长良好,颗粒尺寸均匀,且可观察到明显的界面结合。层状样品相组成主要为C、ZrC,层厚约为100μm,层间分布均匀。对样品进行断裂实验,观察其断裂过程,可以明显观察到裂纹偏转现象。证明层状陶瓷可以改变裂纹传播路径,从而增加断裂韧性。其相对密度为1.95g/m3,弯曲强度为218MPa。

Claims (4)

1.一种层状C/ZrC复合材料,其特征在于,由以下步骤制备而成:
1)将粒径为20-30nm纳米氧化锆粉体和无水乙醇按照1:20质量比进行混合,在常温下进行磁力搅拌加超声分散1h得到混合料浆;之后将混合料浆放入聚四氟乙烯罐中球磨24h,球磨介质为氧化锆球,分散剂为0.5-1wt%聚乙二醇;将混好的浆料倒入真空浸渍设备备用;将滤纸或吸水率大的废纸裁剪成直径为45mm的圆片;对滤纸进行表面处理之后放入真空浸渍设备进行真空浸渍;将浸渍后的滤纸圆片在真空干燥箱中100℃条件下干燥24h制备成氧化锆/滤纸预制体;
2)氧化锆/滤纸预制体叠层之后放入石墨磨中并在真空热解烧结炉中进行高温烧结,得到层状C/ZrC复合材料。
2.根据权利要求1所述的层状C/ZrC复合材料,其特征在于,所述的高温烧结的条件为1650-1700℃、20-30MPa条件下烧结2-4h,其升温速度为0-1200℃升温速率为5℃/分钟,1200-1700℃为3℃/分钟;加压工艺为初始压力至目标压力的时间为20-30min。
3.一种权利要求1或2任一项所述的层状C/ZrC复合材料的制备方法,其特征在于,包括如下步骤:
1)将粒径为20-30nm纳米氧化锆粉体和无水乙醇按照1:20质量比进行混合,在常温下进行磁力搅拌加超声分散1h得到混合料浆;之后将混合料浆放入聚四氟乙烯罐中球磨24h,球磨介质为氧化锆球,分散剂为0.5-1wt%聚乙二醇;将混好的浆料倒入真空浸渍设备备用;将滤纸或吸水率大的废纸裁剪成直径为45mm的圆片;对滤纸进行表面处理之后放入真空浸渍设备进行真空浸渍;将浸渍后的滤纸圆片在真空干燥箱中100℃条件下干燥24h制备成氧化锆/滤纸预制体;
2)氧化锆/滤纸预制体叠层之后放入石墨磨中并在真空热解烧结炉中进行高温烧结,得到层状C/ZrC复合材料。
4.根据权利要求3所述的制备方法,其特征在于,所述的高温烧结的条件为1650-1700℃、20-30MPa条件下烧结2-4h,其升温速度为0-1200℃升温速率为5℃/分钟,1200-1700℃为3℃/分钟;加压工艺为初始压力至目标压力的时间为20-30min。
CN201610047230.2A 2016-01-25 2016-01-25 一种层状C/ZrC复合材料及其制备方法 Active CN105712718B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610047230.2A CN105712718B (zh) 2016-01-25 2016-01-25 一种层状C/ZrC复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610047230.2A CN105712718B (zh) 2016-01-25 2016-01-25 一种层状C/ZrC复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105712718A true CN105712718A (zh) 2016-06-29
CN105712718B CN105712718B (zh) 2018-01-30

Family

ID=56153953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610047230.2A Active CN105712718B (zh) 2016-01-25 2016-01-25 一种层状C/ZrC复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105712718B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101708999A (zh) * 2009-12-11 2010-05-19 中国人民解放军国防科学技术大学 C/ZrC陶瓷基复合材料及其制备方法
CN103342561A (zh) * 2013-06-26 2013-10-09 中国人民解放军国防科学技术大学 基于气相浸渗反应制备的C/ZrC复合材料及其制备方法和工艺用设备
CN104163626A (zh) * 2014-08-04 2014-11-26 余姚市巧迪电器厂 一种氧化锆与碳化锆复合增强氧化钛基多元纳米复合陶瓷模具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101708999A (zh) * 2009-12-11 2010-05-19 中国人民解放军国防科学技术大学 C/ZrC陶瓷基复合材料及其制备方法
CN103342561A (zh) * 2013-06-26 2013-10-09 中国人民解放军国防科学技术大学 基于气相浸渗反应制备的C/ZrC复合材料及其制备方法和工艺用设备
CN104163626A (zh) * 2014-08-04 2014-11-26 余姚市巧迪电器厂 一种氧化锆与碳化锆复合增强氧化钛基多元纳米复合陶瓷模具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王东 等: "碳化锆陶瓷复合材料的制备、显微组织与性能", 《无机材料学报》 *

Also Published As

Publication number Publication date
CN105712718B (zh) 2018-01-30

Similar Documents

Publication Publication Date Title
Fattahi et al. Strengthening of TiC ceramics sintered by spark plasma via nano-graphite addition
CN109053206B (zh) 一种短纤维增强取向max相陶瓷基复合材料及制备方法
Ye et al. Densification and mechanical properties of spark plasma sintered B4C with Si as a sintering aid
Wen et al. High toughness and electrical discharge machinable B4C-TiB2-SiC composites fabricated at low sintering temperature
CN105272260B (zh) 一种无粘结相碳化钨复合材料及其制备方法
Song et al. Microstructure and mechanical properties of TiB2–TiC–WC composite ceramic tool materials
Zhang et al. Characterization and mechanical properties of Cf/ZrB2-SiC composites fabricated by a hybrid technique based on slurry impregnation, polymer infiltration and pyrolysis and low-temperature hot pressing
CN107573074B (zh) 一种RMI法低温制备层状SiC基抗冲击复合陶瓷材料的方法
CN107043261A (zh) 一种Ti增强B4C/SiC复相陶瓷
Yan et al. Microstructures and mechanical properties of ZrB2–SiC–Ni ceramic composites prepared by spark plasma sintering
CN107857592A (zh) 一种高致密度超高温Ta4HfC5陶瓷块材的制备方法
Hu et al. Mechanical and dielectric properties of SiCf/SiC composites fabricated by PIP combined with CIP process
CN106735249A (zh) 一种铌基复合材料及制备方法
Wu et al. Microstructure and A nisotropic P roperties of T extured Z r B 2 and Z r B 2–M o S i2 C eramics P repared by S trong M agnetic F ield A lignment
CN102976760A (zh) 添加稀土氧化物的硼化锆-碳化硅复相陶瓷材料及其制备方法
Guo et al. Low‐temperature hot pressing of ZrB2‐based ceramics with ZrSi2 additives
Song et al. Influences of the pre-oxidation time on the microstructure and flexural strength of monolithic B4C ceramic and TiB2-SiC/B4C composite ceramic
Zhang et al. Mechanical and thermal shock properties of laminated ZrB2-SiC/SiCw ceramics
Chen et al. Microstructure and mechanical properties of TiB2–B4C ceramics fabricated by hot-pressing
Chen et al. High‐strength TiB2‐B4C composite ceramics sintered by spark plasma sintering
Wang et al. Preparation and characterization of ZrB 2-SiC ultra-high temperature ceramics by microwave sintering
Guo et al. Effect of carbon impurities on hot‐pressed ZrB2–SiC ceramics
CN109354504B (zh) 一种碳化硼基复合陶瓷烧结助剂及烧结工艺
Sharma et al. Development and investigation of densification behavior of ZrB2–SiC composites through microwave sintering
Lin et al. Spark plasma sintering of ZrO2 fiber toughened ZrB2-based ultra-high temperature ceramics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211213

Address after: 314000 west of first floor, building 1, No. 368, Zhongshan Road, Chongfu Town, Tongxiang City, Jiaxing City, Zhejiang Province

Patentee after: Jiaxingrui innovative materials Co.,Ltd.

Address before: 250022 No. 336, South Xin Zhuang West Road, Shizhong District, Ji'nan, Shandong

Patentee before: University of Jinan

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231219

Address after: 314511 West of the first floor of Building 1, No. 368 Zhongshan Road, Chongfu Town, Tongxiang City, Jiaxing City, Zhejiang Province

Patentee after: Zhejiang Hangyin New Material Technology Co.,Ltd.

Address before: 314000 west of first floor, building 1, No. 368, Zhongshan Road, Chongfu Town, Tongxiang City, Jiaxing City, Zhejiang Province

Patentee before: Jiaxingrui innovative materials Co.,Ltd.