CN105695802A - 一种磁相变合金的制备方法 - Google Patents

一种磁相变合金的制备方法 Download PDF

Info

Publication number
CN105695802A
CN105695802A CN201610145645.3A CN201610145645A CN105695802A CN 105695802 A CN105695802 A CN 105695802A CN 201610145645 A CN201610145645 A CN 201610145645A CN 105695802 A CN105695802 A CN 105695802A
Authority
CN
China
Prior art keywords
alloy
magnetic
rate
crystal
magnetic phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610145645.3A
Other languages
English (en)
Inventor
李秋燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610145645.3A priority Critical patent/CN105695802A/zh
Publication of CN105695802A publication Critical patent/CN105695802A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/36Single-crystal growth by pulling from a melt, e.g. Czochralski method characterised by the seed, e.g. its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • H01F1/015Metals or alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种磁相变合金的制备方法,该磁相变合金由以下原子配比的合金制成:(Ni1-xNbx1-a-b-c-d(Mn1-yByaCobTicHfd,其中x=0.06-0.08,y=0.13-0.16,a=0.06-0.10,b=0.1-0.15,c=0.01-0.02,d=0.01-0.015。本发明制备的(Ni1-xNbx1-a-b-c-d(Mn1-yByaCobTicHfd磁相变材料具有高强韧性、高变形率、强磁性和磁场驱动马氏体相变特性。

Description

一种磁相变合金的制备方法
所属技术领域
本发明涉及磁性材料制造领域,具体涉及一种磁相变合金的制备方法。
背景技术
传统的形状记忆合金,如NiTi等,是没有磁性的。磁性形状记忆合金,如Ni2MnGa,FePt,MnNiGe合金等,具有以往的形状记忆材料所不具备的新性质,即它们不仅具有基于马氏体相变的形状记忆特性,而且具有强磁性。这些材料被称为磁性形状记忆合金或磁相变材料,其中以Heusler型磁性形状记忆合金,如Ni2MnGa,最为典型。这类材料的主要特点是马氏体型的结构相变与磁结构相变同时发生(结构和磁性两种相变的耦合)。这类材料中,一些经过性能优化后,具备了外加人工磁场可以驱动其马氏体相变的特性。也就是说,它们不仅具有通常形状记忆材料相变的性质:由温度变化(热能)或外应力(机械能)来驱动马氏体相变,还具有磁场驱动马氏体相变的特性。由于这一磁场可控相变的新性质,这种磁性形状记忆合金与以往的传统形状记忆合金相比,具有更多样的可控性,应用范围更加广泛。其用途不仅在驱动器,温度敏感元件、高弹性材料方面,而且延伸到磁传感,电传感,磁驱动,以及磁制冷等更多方面。
然而,在以往的磁相变材料中,存在着诸多不足之处。其中最大的缺陷是在那些磁相变效应最好的材料中,由于含有主族元素(如Ga,Sn和Ge等),使得材料的力学性能,如强韧性和变形率变差。比如Heusler型磁相变材料的抗压强度为350MPa左右,变形率和韧性为零。这些问题,阻碍了现有磁相变材料在上述各方面的应用。
发明内容
本发明提供一种磁相变合金的制备方法,该磁相变合金,具有高强韧性、高变形率、强磁性和磁场驱动马氏体相变特性。
实现上述目的,本发明提供了一种磁相变合金的制备方法,该磁相变合金由以下原子配比的合金制成:(Ni1-xNbx1-a-b-c-d(Mn1-yByaCobTicHfd,其中x=0.06-0.08,y=0.13-0.16,a=0.06-0.10,b=0.1-0.15,c=0.01-0.02,d=0.01-0.015;
该方法包括如下步骤:
(1)按照上述分子式称取各元素进行配料;
(2)将步骤(1)配制的原料装入熔炼炉中,在惰性气氛保护下进行熔炼,冷却后得到成分均匀的母合金铸锭;
(3)采用常规的提拉法生长(Ni1-xNbx1-a-b-c-d(Mn1-yByaCobTicHfd单晶体:将步骤(2)获得的锭子在上述磁悬浮冷坩埚中加热至1250-1350℃保持30-45分钟,从步骤(2)获得的熔炼锭子上切取2×2×7mm尺寸的(Ni1-xNbx1-a-b-c-d(Mn1-yByaCobTicHfd小单晶颗粒作为籽晶,采用30-45转/分钟的籽晶旋转速率,使籽晶下端接触熔融原料的液面,然后以30-35mm/小时的均匀速率提升籽晶杆,将凝固结晶的晶体向上提拉,提拉过程中调整熔体温度使生长的晶体直径从籽晶的2mm变大到10mm,然后保持不变,直到获得直径为10mm,长度为100mm的高质量(Ni1-xNbx1-a-b-c-d(Mn1-yByaCobTicHfd单晶棒;
(4)将步骤(3)所得到的(Ni1-xNbx1-a-b-c-d(Mn1-yByaCobTicHfd单晶棒提拉脱离熔融的原料表面,以10-20℃/分钟的降温速率缓慢冷却至室温,最后取出;
(5)将步骤(4)所得到的样品在1000℃热处理36-96小时,降温至500℃再热处理40-56小时,然后再以10-15℃/秒的降温速率冷却,以使获得的(Ni1-xNbx1-a-b-c-d(Mn1-yByaCobTicHfd合金材料具有更高的成分均匀性和原子有序性。
优选的,所述的步骤(1)中,原材料的纯度均不低于99wt.%,所述的步骤(2)中,熔炼温度为1500-1800℃,熔炼时间为20-40分钟。
本发明制备的(Ni1-xNbx1-a-b-c-d(Mn1-yByaCobTicHfd磁相变材料具有高强韧性、高变形率、强磁性和磁场驱动马氏体相变特性。其抗压强度、变形率、马氏体和母相两相各自的磁导率和饱和磁化强度、相变温度和逆相变温度等基本物理参数可通过改变Ni,Co,Mn,Ti,Nb,B,Hf等组元的成分组成,即变化x,y,a,b,c和d的数值而改变或根据用途加以调整。
具体实施方式
实施例一
本实施例的磁相变合金由以下原子配比的合金制成:(Ni0.94Nb0.060.82(Mn0.87B0.130.06Co0.1Ti0.01Hf0.01
按照上述分子式称取各元素进行配料,原材料的纯度均不低于99wt.%。
将配制的原料装入熔炼炉中,在惰性气氛保护下进行熔炼,冷却后得到成分均匀的母合金铸锭,熔炼温度为1500℃,熔炼时间为20分钟。
采用常规的提拉法生长(Ni0.94Nb0.060.82(Mn0.87B0.130.06Co0.1Ti0.01Hf0.01单晶体:将获得的锭子在上述磁悬浮冷坩埚中加热至1250-1350℃保持30分钟,从获得的熔炼锭子上切取2×2×7mm尺寸的(Ni1-xNbx1-a-b-c-d(Mn1-yByaCobTicHfd小单晶颗粒作为籽晶,采用30转/分钟的籽晶旋转速率,使籽晶下端接触熔融原料的液面,然后以30mm/小时的均匀速率提升籽晶杆,将凝固结晶的晶体向上提拉,提拉过程中调整熔体温度使生长的晶体直径从籽晶的2mm变大到10mm,然后保持不变,直到获得直径为10mm,长度为100mm的高质量(Ni0.94Nb0.060.82(Mn0.87B0.130.06Co0.1Ti0.01Hf0.01单晶棒。
将所得到的(Ni0.94Nb0.060.82(Mn0.87B0.130.06Co0.1Ti0.01Hf0.01单晶棒提拉脱离熔融的原料表面,以10℃/分钟的降温速率缓慢冷却至室温,最后取出。
将所得到的样品在1000℃热处理36-小时,降温至500℃再热处理40小时,然后再以10℃/秒的降温速率冷却,以使获得的(Ni0.94Nb0.060.82(Mn0.87B0.130.06Co0.1Ti0.01Hf0.01合金材料具有更高的成分均匀性和原子有序性。
实施例二
本实施例的磁相变合金由以下原子配比的合金制成:(Ni0.92Nb0.081-a-b-c-d(Mn0.84B0.160.1Co0.15Ti0.02Hf0.015
按照上述分子式称取各元素进行配料,原材料的纯度均不低于99wt.%。
将配制的原料装入熔炼炉中,在惰性气氛保护下进行熔炼,冷却后得到成分均匀的母合金铸锭,熔炼温度为1800℃,熔炼时间为40分钟。
采用常规的提拉法生长(Ni0.92Nb0.081-a-b-c-d(Mn0.84B0.160.1Co0.15Ti0.02Hf0.015单晶体:将获得的锭子在上述磁悬浮冷坩埚中加热至1350℃保持45分钟,从获得的熔炼锭子上切取2×2×7mm尺寸的(Ni0.92Nb0.081-a-b-c-d(Mn0.84B0.160.1Co0.15Ti0.02Hf0.015小单晶颗粒作为籽晶,采用45转/分钟的籽晶旋转速率,使籽晶下端接触熔融原料的液面,然后以35mm/小时的均匀速率提升籽晶杆,将凝固结晶的晶体向上提拉,提拉过程中调整熔体温度使生长的晶体直径从籽晶的2mm变大到10mm,然后保持不变,直到获得直径为10mm,长度为100mm的高质量(Ni0.92Nb0.081-a-b-c-d(Mn0.84B0.160.1Co0.15Ti0.02Hf0.015单晶棒。
将所得到的(Ni0.92Nb0.081-a-b-c-d(Mn0.84B0.160.1Co0.15Ti0.02Hf0.015单晶棒提拉脱离熔融的原料表面,以10-20℃/分钟的降温速率缓慢冷却至室温,最后取出。
将所得到的样品在1000℃热处理96小时,降温至500℃再热处理56小时,然后再以15℃/秒的降温速率冷却,以使获得的(Ni0.92Nb0.081-a-b-c-d(Mn0.84B0.160.1Co0.15Ti0.02Hf0.015合金材料具有更高的成分均匀性和原子有序性。
比较例
比较例给出Heusler型磁相变材料Ni2MnGa的各种性能。Ni2MnGa合金是目前公认的一种重要的磁相变材料。按照Ni2MnGa的分子式,类比实施例1的制备方法,制备Ni2MnGa材料。
采用美国QD公司的PPMS型综合物性测量系统对实施例和比较例的合金材料的抗压强度、变形率、韧性、磁场驱动效率dT/dH、磁应变(magnetostrain)λ、磁电阻MR和磁熵变ΔS的相应数值。实施例一和实施例二的合金材料相对比较例,抗压强度、变形率、韧性、磁场驱动效率dT/dH、磁应变(magnetostrain)λ、磁电阻MR和磁熵变ΔS分别改善10%以上、8%以上、15%以上、12%以上、18%以上、10%以上和11%以上。

Claims (2)

1.一种磁相变合金的制备方法,该磁相变合金由以下原子配比的合金制成:(Ni1-xNbx1-a-b-c-d(Mn1-yByaCobTicHfd,其中x=0.06-0.08,y=0.13-0.16,a=0.06-0.10,b=0.1-0.15,c=0.01-0.02,d=0.01-0.015;
该方法包括如下步骤:
(1)按照上述分子式称取各元素进行配料;
(2)将步骤(1)配制的原料装入熔炼炉中,在惰性气氛保护下进行熔炼,冷却后得到成分均匀的母合金铸锭;
(3)采用常规的提拉法生长(Ni1-xNbx1-a-b-c-d(Mn1-yByaCobTicHfd单晶体:将步骤(2)获得的锭子在上述磁悬浮冷坩埚中加热至1250-1350℃保持30-45分钟,从步骤(2)获得的熔炼锭子上切取2×2×7mm尺寸的(Ni1-xNbx1-a-b-c-d(Mn1-yByaCobTicHfd小单晶颗粒作为籽晶,采用30-45转/分钟的籽晶旋转速率,使籽晶下端接触熔融原料的液面,然后以30-35mm/小时的均匀速率提升籽晶杆,将凝固结晶的晶体向上提拉,提拉过程中调整熔体温度使生长的晶体直径从籽晶的2mm变大到10mm,然后保持不变,直到获得直径为10mm,长度为100mm的高质量(Ni1-xNbx1-a-b-c-d(Mn1-yByaCobTicHfd单晶棒;
(4)将步骤(3)所得到的(Ni1-xNbx1-a-b-c-d(Mn1-yByaCobTicHfd单晶棒提拉脱离熔融的原料表面,以10-20℃/分钟的降温速率缓慢冷却至室温,最后取出;
(5)将步骤(4)所得到的样品在1000℃热处理36-96小时,降温至500℃再热处理40-56小时,然后再以10-15℃/秒的降温速率冷却,以使获得的(Ni1-xNbx1-a-b-c-d(Mn1-yByaCobTicHfd合金材料具有更高的成分均匀性和原子有序性。
2.如权利要求1所述的方法,其特征在于,所述的步骤(1)中,原材料的纯度均不低于99wt.%,所述的步骤(2)中,熔炼温度为1500-1800℃,熔炼时间为20-40分钟。
CN201610145645.3A 2016-03-15 2016-03-15 一种磁相变合金的制备方法 Pending CN105695802A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610145645.3A CN105695802A (zh) 2016-03-15 2016-03-15 一种磁相变合金的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610145645.3A CN105695802A (zh) 2016-03-15 2016-03-15 一种磁相变合金的制备方法

Publications (1)

Publication Number Publication Date
CN105695802A true CN105695802A (zh) 2016-06-22

Family

ID=56221751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610145645.3A Pending CN105695802A (zh) 2016-03-15 2016-03-15 一种磁相变合金的制备方法

Country Status (1)

Country Link
CN (1) CN105695802A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1105710A (zh) * 1993-07-30 1995-07-26 财团法人电气材料研究所 耐磨的高磁导率合金及其制备方法
CN1149891A (zh) * 1995-04-03 1997-05-14 三德金属工业株式会社 稀土类金属-镍吸氢合金及其制造方法以及镍氢二次电池用负极
CN102732762A (zh) * 2012-07-20 2012-10-17 河北师范大学 一种具有大的交换偏置效应的磁性形状记忆合金材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1105710A (zh) * 1993-07-30 1995-07-26 财团法人电气材料研究所 耐磨的高磁导率合金及其制备方法
CN1149891A (zh) * 1995-04-03 1997-05-14 三德金属工业株式会社 稀土类金属-镍吸氢合金及其制造方法以及镍氢二次电池用负极
CN102732762A (zh) * 2012-07-20 2012-10-17 河北师范大学 一种具有大的交换偏置效应的磁性形状记忆合金材料及其制备方法

Similar Documents

Publication Publication Date Title
JP6293803B2 (ja) 磁気相変態材料、磁気相変態材料の製造方法及び磁気相変態材料の使用
CN102851545B (zh) 一种Ni-Mn-Ge系磁性形状记忆合金及其制备方法
KR101827928B1 (ko) SiC 단결정의 제조 방법
CN101826385A (zh) 一种具有交换偏置效应的磁性材料及其制备方法
CN102094145B (zh) 调节Ni-Co-Mn-In合金的马氏相变和磁电阻效应的方法
CN101308718B (zh) 一种稀土-铁超磁致伸缩材料
US7520944B2 (en) Method of making in-situ composites comprising amorphous alloys
WO2009069564A1 (ja) 炭化珪素単結晶の成長法
CN100463083C (zh) 一种FeGa-RE系磁致伸缩材料及其制造工艺
CN109112349B (zh) 一种CuAlMn形状记忆合金及其制备方法
RU2010130676A (ru) Способ и устройство для получения монокристалла сапфира
CN108286075A (zh) SiC单晶的制造方法
Huang et al. Banded-like morphology and martensitic transformation of dual-phase Ni–Mn–In magnetic shape memory alloy with enhanced ductility
JP2011251881A (ja) SiC単結晶の製造方法
CN102011038B (zh) Mn50Ni50-xAlx高温铁磁形状记忆合金材料及其制备方法
CN102115914B (zh) Mn50CoxNiySnz高温铁磁形状记忆合金材料及其制备方法
CN107923000A (zh) 铜合金及其制造方法
CN100465314C (zh) 一种具有磁场驱动马氏体相变效应的磁性材料及其制备方法
Zhao et al. Two-way shape memory effect and magnetic-field-induced twin boundary motion in Ni-Mn-Ga microwire
CN106957986B (zh) 一种高塑性磁致伸缩材料及其制备方法
CN105695802A (zh) 一种磁相变合金的制备方法
KR102098303B1 (ko) 금속 합금 조성물, 그 제조 방법, 및 이를 포함하는 성형품
JP2005112718A5 (zh)
Rekik et al. Structural and martensitic transformation of MnNiSn shape memory alloys
Kletowski et al. Single crystal growth of (rare earth) Me3 compounds where Me≡ Sn, In and Pb

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160622