CN105694882A - 一种增强稀土掺杂钨酸钪上转换发光强度的方法 - Google Patents
一种增强稀土掺杂钨酸钪上转换发光强度的方法 Download PDFInfo
- Publication number
- CN105694882A CN105694882A CN201610149141.9A CN201610149141A CN105694882A CN 105694882 A CN105694882 A CN 105694882A CN 201610149141 A CN201610149141 A CN 201610149141A CN 105694882 A CN105694882 A CN 105694882A
- Authority
- CN
- China
- Prior art keywords
- rare earth
- earth doped
- conversion
- earth
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims abstract description 17
- 229910052706 scandium Inorganic materials 0.000 title claims abstract description 15
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 title claims abstract description 15
- 238000004020 luminiscence type Methods 0.000 title abstract description 14
- 229910052761 rare earth metal Inorganic materials 0.000 title abstract description 6
- 150000002910 rare earth metals Chemical class 0.000 title abstract description 5
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 title abstract 3
- 230000002708 enhancing effect Effects 0.000 title abstract 2
- 239000000463 material Substances 0.000 claims abstract description 18
- 229910052691 Erbium Inorganic materials 0.000 claims abstract 2
- 229910052689 Holmium Inorganic materials 0.000 claims abstract 2
- 229910052775 Thulium Inorganic materials 0.000 claims abstract 2
- 239000002253 acid Substances 0.000 claims description 11
- 239000000843 powder Substances 0.000 claims description 8
- 238000005728 strengthening Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims 1
- 150000002500 ions Chemical class 0.000 abstract description 11
- 230000005684 electric field Effects 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 5
- 238000000053 physical method Methods 0.000 abstract description 3
- 238000005090 crystal field Methods 0.000 abstract 1
- 239000007850 fluorescent dye Substances 0.000 abstract 1
- 238000001215 fluorescent labelling Methods 0.000 abstract 1
- 239000008204 material by function Substances 0.000 abstract 1
- 238000013508 migration Methods 0.000 abstract 1
- 230000005012 migration Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 5
- 230000005284 excitation Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 230000005281 excited state Effects 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- -1 rare earth ions Chemical class 0.000 description 1
- 238000002165 resonance energy transfer Methods 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7776—Vanadates; Chromates; Molybdates; Tungstates
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Luminescent Compositions (AREA)
Abstract
本发明属于光电功能材料领域,其公开了一种增强稀土掺杂钨酸钪上转换发光强度的方法,该稀土掺杂钨酸钪发光材料的结构式为:Sc2-a-b(WO4)3∶Yba/Mb,其中,M为Er,Tm,Ho中的至少一种组成;且0.005<a≤0.2,0<b≤0.08。在300~900℃温度下,采用0.1~20V的电源通电1h以上,使得Sc2-a-b(WO4)3∶Yba/Mb中的Sc3+离子迁移,导致M3+离子晶体场的对称性变差。因此,材料自然冷却至室温并断电后,在980nm波长的红外光激发下M3+离子的发光强度增强。此发明不仅解决了化学法增强上转换发光容易产生杂相的问题,而且解决了物理法增强上转换发光存在电场依赖的问题。本发明方法得到的稀土掺杂钨酸钪发光材料可广泛用于光电器件、防伪、生物分子荧光标记和三围立体显示等领域中。
Description
技术领域
本发明涉及光电功能材料技术领域,具体为一种增强稀土掺杂钨酸钪上转换发光强度的方法。
背景技术
上转换发光遵循反斯托克斯Stokes定律,在连续吸收两个或两个以上的低能激发光子发射高能光子。与在紫外光激发下的下转换发光相比,上转换发光是在近红外光激发下产生可见光。因此,吸收低能激发光子的上转换发光具有低荧光背景和较高的生物组织穿透深度,已被广泛用于生物成像领域。为了取得有效的上转换发光,基质材料、敏化剂和激活剂的选择显得格外重要。通常把Er3+,Tm3+,Ho3+离子作为980nm近红外激发上转换发光的激活剂,因为Yb3+离子在980nm近红外激发下具有较大的吸收截面,而Yb3+离子激发态能级与Er3+,Tm3+,Ho3+离子能级相匹配并通过有效共振能量转移给Er3+,Tm3+,Ho3+离子,所以Yb3+离子特别适合作为Er3+,Tm3+,Ho3+离子的敏化剂。
Sc2(WO4)3具有化学稳定性好、平均折射率高和量子产率高等优点,是一种有效的上转换稀土掺杂荧光材料基质。同时,Sc2(WO4)3也是一种高温固体电解质材料,在高温通电的条件下Sc3+离子很容易发生迁移。
为了提高上转换发光强度,通常在基质材料中掺杂一些非稀土离子(如:Bi3+,Li+,Na+,Ba2+,Sr2+或Ca2+),但采用化学掺杂的方法容易影响样品的纯度。
综上所述,通过简单高效的物理方法增强稀土掺杂钨酸钪上转换发光具有重要意义。
如2011年(J.Hao,Y.Zhang,X.Wei,Angew.Chem.Int.Ed.,2011,123,7008-7012.)首次采用外加电场增强BaTiO3:Yb/Er上转换发光,但其发光强度存在电场依赖的缺点。
发明内容
本发明的目的是提供一种增强稀土掺杂钨酸钪上转换发光强度的方法。该方法是增强上转换发光的物理方法,且发光强度不存在电场依赖性。
本发明提供增强稀土掺杂钨酸钪上转换发光强度的方法,技术方案如下:
步骤1:制备Sc2-a-b(WO4)3:Yba/Mb粉体;
步骤2:将Sc2-a-b(WO4)3:Yba/Mb粉体冷压成片状;
步骤2:将片状Sc2-a-b(WO4)3:Yba/Mb在温度为300~900C下,采用0.1~20V的电源通电1h以上,待材料自然冷却至室温并断电,得到样品。
本发明采用高温下通电这种物理法提高Sc2-a-b(WO4)3:Yba/Mb发光强度,与其它化学法相比,其操作简单,控制变量少,热稳定性和化学稳定性好,且不存在电场依赖性,可大规模制备,有较高的商业使用价值。
附图说明
图1为本发明实施例1和对比例1所制备样品的上转换荧光发射光谱图(980nm激发)。
图2为本发明实施例1和对比例1所制备样品的上转换发光数码照片图(980nm激发)。
具体实施方式
实施例1:
将Sc2(WO4)3:Yb/Er(18/2%)粉末冷压成片状,在温度为850℃下,采用0.2V直流电源通电5h,待片状材料自然冷却至室温并断电得到样品。
实施例2:
将Sc2(WO4)3:Yb/Er(10/2%)粉末冷压成片状,在温度为500℃下,采用1.5V直流电源通电5h,待片状材料自然冷却至室温并断电得到样品。
实施例3:
将Sc2(WO4)3:Yb/Ho(18/5%)粉末冷压成片状,在温度为600℃下,采用3V直流电源通电2h,待片状材料自然冷却至室温并断电得到样品。
实施例4:
将Sc2(WO4)3:Yb/Ho(10/2%)粉末冷压成片状,在温度为800℃下,采用1.5V直流电源通电2h,待片状材料自然冷却至室温并断电得到样品。
实施例5:
将Sc2(WO4)3:Yb/Tm(18/2%)粉末冷压成片状,在温度为500℃下,采用3V直流电源通电3h,待片状材料自然冷却至室温并断电得到样品。
实施例6:
将Sc2(WO4)3:Yb/Er(18/2%)粉末冷压成片状,在温度为500℃下,采用9V直流电源通电5h,待片状材料自然冷却至室温并断电得到样品。
对比例1:
将Sc2(WO4)3:Yb/Er(18/2%)粉末冷压成片状,在温度为850℃下,加热5h,待片状材料自然冷却至室温得到样品。
实施例1和对比例1所制备稀土掺杂钨酸钪上转换发光强度测试结果如表1所示(980nm激发)。
表1稀土掺杂钨酸钪上转换发光强度测试结果(980nm激发)
发射峰面积的积分值 | 发射峰峰值 | |
实施例1 | 129817.058 | 4060 |
对比例1 | 28460.883 | 800.6 |
申请人申明,以上所述的实施例仅用于说明本发明的详细特征以及详细方法,即不意味着本发明必须依赖上述详细特征及详细方法才能实施。本领域技术人员对本发明作任何等效的变化、修饰、替代、组合、简化,所有的这些等价形式都包含在本发明的保护范围之内。
Claims (4)
1.一种增强稀土掺杂钨酸钪上转换发光强度的方法,其特征在于:将Sc2-a-b(WO4)3:Yba,Mb(M为Er,Tm,Ho中的至少一种组成;a和b为摩尔系数,范围为0.005<a≤0.2,0<b≤0.08)粉末冷压成片后在300~900℃温度下,采用0.1~20V的电源通电1h以上,待材料自然冷却至室温并断电,在980nm波长的红外光激发下M3+离子的发光强度增强。
2.根据权利要求1所述的一种增强稀土掺杂钨酸钪上转换发光强度的方法,其特征在于:在300~900℃温度下,采用0.1~20V的直流或交流电源通电。
3.根据权利要求1所述的一种增强稀土掺杂钨酸钪上转换发光强度的方法,其特征在于:通电时间为1~10h。
4.根据权利要求1所述的一种增强稀土掺杂钨酸钪上转换发光强度的方法,其特征在于:材料自然冷却至室温并断电后,在980nm波长的红外光激发下发光强度增强,其发光强度不因断电而减弱。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610149141.9A CN105694882A (zh) | 2016-03-14 | 2016-03-14 | 一种增强稀土掺杂钨酸钪上转换发光强度的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610149141.9A CN105694882A (zh) | 2016-03-14 | 2016-03-14 | 一种增强稀土掺杂钨酸钪上转换发光强度的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105694882A true CN105694882A (zh) | 2016-06-22 |
Family
ID=56221757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610149141.9A Pending CN105694882A (zh) | 2016-03-14 | 2016-03-14 | 一种增强稀土掺杂钨酸钪上转换发光强度的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105694882A (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109735337A (zh) * | 2019-01-21 | 2019-05-10 | 南京工业大学 | 一种钪基稀土发光材料及其制备方法 |
CN110591706A (zh) * | 2019-09-12 | 2019-12-20 | 天津大学 | 一种稀土离子掺杂立方相钨酸锆上转换纳米晶体及其制备方法 |
CN110846033A (zh) * | 2019-11-20 | 2020-02-28 | 江苏理工学院 | 一种防潮性能优良的稀土掺杂上转换发光材料及其制备方法 |
CN111117617A (zh) * | 2019-12-31 | 2020-05-08 | 同济大学 | 一种钨酸盐基上转换发光温度传感材料及其制备方法 |
CN111778025A (zh) * | 2020-07-27 | 2020-10-16 | 江西理工大学 | 铒镱共掺钼酸钪热增强上下转换发光材料及其制备方法 |
CN116023944A (zh) * | 2021-10-26 | 2023-04-28 | 中国科学院福建物质结构研究所 | 一种h+离子掺杂增强发光的稀土无机纳米发光材料及其制备方法和应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103409140A (zh) * | 2013-07-29 | 2013-11-27 | 华中科技大学 | 一种用磁场增强稀土发光材料发光效率的方法 |
-
2016
- 2016-03-14 CN CN201610149141.9A patent/CN105694882A/zh active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103409140A (zh) * | 2013-07-29 | 2013-11-27 | 华中科技大学 | 一种用磁场增强稀土发光材料发光效率的方法 |
Non-Patent Citations (1)
Title |
---|
J. HAO ET AL.,: ""Electric-Induced Enhancement and Modulation of Upconversion Photoluminescence in Epitaxial BaTiO3:Yb/Er Thin Films"", 《ANGEW. CHEM.》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109735337A (zh) * | 2019-01-21 | 2019-05-10 | 南京工业大学 | 一种钪基稀土发光材料及其制备方法 |
CN110591706A (zh) * | 2019-09-12 | 2019-12-20 | 天津大学 | 一种稀土离子掺杂立方相钨酸锆上转换纳米晶体及其制备方法 |
CN110846033A (zh) * | 2019-11-20 | 2020-02-28 | 江苏理工学院 | 一种防潮性能优良的稀土掺杂上转换发光材料及其制备方法 |
CN111117617A (zh) * | 2019-12-31 | 2020-05-08 | 同济大学 | 一种钨酸盐基上转换发光温度传感材料及其制备方法 |
CN111778025A (zh) * | 2020-07-27 | 2020-10-16 | 江西理工大学 | 铒镱共掺钼酸钪热增强上下转换发光材料及其制备方法 |
CN111778025B (zh) * | 2020-07-27 | 2022-07-08 | 江西理工大学 | 铒镱共掺钼酸钪热增强上下转换发光材料及其制备方法 |
CN116023944A (zh) * | 2021-10-26 | 2023-04-28 | 中国科学院福建物质结构研究所 | 一种h+离子掺杂增强发光的稀土无机纳米发光材料及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105694882A (zh) | 一种增强稀土掺杂钨酸钪上转换发光强度的方法 | |
Du et al. | Upconversion emission, cathodoluminescence and temperature sensing behaviors of Yb3+ ions sensitized NaY (WO4) 2: Er3+ phosphors | |
Kore et al. | Energy transfer mechanisms and optical thermometry of BaMgF4: Yb3+, Er3+ phosphor | |
Rodrigues et al. | Discovery of the persistent luminescence mechanism of CdSiO3: Tb3+ | |
Du et al. | Infrared-to-visible upconversion emission of Er3+/Yb3+-codoped SrMoO4 phosphors as wide-range temperature sensor | |
Pandey et al. | Colour emission tunability in Ho 3+–Tm 3+–Yb 3+ co-doped Y 2 O 3 upconverted phosphor | |
Chung et al. | Effect of Yb3+ and Tm3+ concentrations on blue and NIR upconversion luminescence in Yb3+, Tm3+ co-doped CaMoO4 | |
Liu et al. | Temperature and concentration effects on upconversion photoluminescence properties of Ho3+ and Yb3+ codoped 0.67 Pb (Mg1/3Nb2/3) O3–0.33 PbTiO3 multifunctional ceramics | |
Lv et al. | Visible to NIR down-shifting and NIR to visible upconversion luminescence in Ca14Zn6Ga10O35: Mn4+, Ln3+ (Ln= Nd, Yb, Er) | |
Kim et al. | Li doping effects on the upconversion luminescence of Yb3+/Er3+-doped ABO4 (A= Ca, Sr; B= W, Mo) phosphors | |
Lin et al. | Near-infrared-to-near-infrared down-shifting and upconversion luminescence of KY3F10 with single dopant of Nd3+ ion | |
Dorenbos et al. | Electron transfer processes in double lanthanide activated YPO4 | |
Chung et al. | Visible green upconversion luminescence of Er3+/Yb3+/Li+ co-doped CaWO4 particles | |
Avram et al. | Down-/up-conversion emission enhancement by Li addition: improved crystallization or local structure distortion? | |
Tang et al. | Yellow–green upconversion photoluminescence in Yb3+, Ho3+ co-doped NaLa (MoO4) 2 phosphor | |
CN104449731A (zh) | 一种基于稀土上转换发光材料的复合纳米结构及其制备方法和应用 | |
Carrasco et al. | Competition between energy transfer and energy migration processes in neat and Eu3+-Doped TbPO4 | |
Rakov et al. | Comparative study of Er3+ and Tm3+ co-doped YOF and Y2O3 powders as red spectrally pure upconverters | |
Kumari et al. | Photoluminescence study in Ho3+/Tm3+/Yb3+/Li+: Gd2 (MoO4) 3 nanophosphors for near white light emitting diode and security ink applications | |
Chen et al. | Enhanced Luminescence of NaY0. 6–x Ce0. 1Gd0. 3Eu x F4 Nanorods by Energy Transfers between Ce3+, Gd3+, and Eu3+ | |
CN102585828B (zh) | 一种掺杂Yb3+的钒酸盐上转换荧光材料及其制备方法 | |
Zhang et al. | Investigations on luminescence of CaLa4Si3O13-based phosphors for multifunctional applications | |
Wang et al. | Near-infrared quantum cutting in Tb 3+, Yb 3+ co-doped calcium tungstate via second-order downconversion | |
Zhao et al. | Effects of Y3+/Er3+ ratio on the 2.7 μm emission of Er3+ ions in oxyfluoride glass-ceramics | |
Khan et al. | Energy Transfer and Spectroscopic Investigation of Dy 2 O 3 Doped Li 2 O–BaO–GdF 3–SiO 2 for White Light LED |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160622 |