CN105692978B - 一种混凝电解复合法处理高浓度有机废水的设备及其处理方法 - Google Patents

一种混凝电解复合法处理高浓度有机废水的设备及其处理方法 Download PDF

Info

Publication number
CN105692978B
CN105692978B CN201610243609.0A CN201610243609A CN105692978B CN 105692978 B CN105692978 B CN 105692978B CN 201610243609 A CN201610243609 A CN 201610243609A CN 105692978 B CN105692978 B CN 105692978B
Authority
CN
China
Prior art keywords
control system
water
coagulation
water purification
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610243609.0A
Other languages
English (en)
Other versions
CN105692978A (zh
Inventor
梁峙
梁骁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuzhou Tengrui Intelligent Equipment Co Ltd
Original Assignee
Xuzhou Tengrui Intelligent Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuzhou Tengrui Intelligent Equipment Co Ltd filed Critical Xuzhou Tengrui Intelligent Equipment Co Ltd
Priority to CN201610243609.0A priority Critical patent/CN105692978B/zh
Publication of CN105692978A publication Critical patent/CN105692978A/zh
Application granted granted Critical
Publication of CN105692978B publication Critical patent/CN105692978B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5281Installations for water purification using chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/003Downstream control, i.e. outlet monitoring, e.g. to check the treating agents, such as halogens or ozone, leaving the process

Abstract

本发明公开了一种混凝电解复合法处理高浓度有机废水的设备及其处理方法,由废水池,泵水装置,净水罐,混凝剂添加管,清水管,排污管,储污池,清水池,净水罐支架,控制系统组成;控制系统启动泵水装置将高浓度有机废水从上部输入净水罐内,同时混凝剂添加管向净水罐内添加混凝剂,经净水罐处理后的清水通过清水管排进清水池中,混凝沉淀物经排污管排进储污池中。本发明所述的一种混凝电解复合法处理高浓度有机废水的设备及其处理方法结构新颖合理,有机物去除率高,适用范围广阔。

Description

一种混凝电解复合法处理高浓度有机废水的设备及其处理 方法
技术领域
本发明属于工业污水装置净化领域,具体涉及一种混凝电解复合法处理高浓度有机废水的设备及其处理方法。
背景技术
水环境的污染治理是全球性可持续发展的重要战略问题之一。特别是我国人口众多、水资源十分匾乏,污水处理尤其重要。随着我国城镇数量以及人口总量的不断增加,城市污水处理厂作为重要的基础设施之一,必将随着城市化的进程得到迅猛发展,因此我国将成为世界范围内使用水处理设备的大国。
污水处理设备在我国的广泛应用与发展是从20世纪90年代初开始的,随着我国经济的高速发展,环境污染程度也日益严重,特别是水污染的范围与程度不断扩大,已严重影响到我国国民经济的发展。污水治理已经成为刻不容缓的紧迫课题,主要城市污水处理厂的兴建初步缓解了环境污染,而污水处理设备的应用也随着污水处理规模的扩大而不断扩大。然而由于各种原因,我国污水处理行业所用设备中70%以上为国外进口。这不但浪费了我国大量资金,而且很大程度上不利于污水处理设备的国产化发展。由于我国水处理设备的起步较晚,目前,我国污水处理设备的技术水平与国际先进设备相比,尚有差距。随着我国污水处理规模的不断扩大,我国对污水处理的相关设备的需求也会日益增加,而且污水治理将是未来发展中必不可少的环节。因而,我国对污水处理设备的需求将会不断增加,而且也是持久的。污水处理设备有着广阔的发展空间,而污水处理设备的国产化有着巨大的经济价值与社会意义。
污水处理设备的发展同污水处理技术的发展是分不开的,社会资源的短缺必然使得污水处理向着经济、实用、节约、有效的方向发展,而对设备的要求则也会随之变化,购买成本低、使用方便、处理与使用效果好、节约能源的产品才能适应污水处理工业发展变化需求。因而,掌握先进技术、预见未来污水处理工业发展走向,在此基础上开发出经济、实效、节能、简洁的产品是发展的趋势;设备的机械化、自动化程度要求也会越来越高,这样会节约人力与物力成本,符合未来社会总体发展趋势;由于污水处理工艺多样性的需求,污水处理设备的多元化也是发展趋势。
污水处理过程是一个变量繁多,具有大时变、大时滞特点的动态非线性生化反应过程,对污水进行有效处理已成为当今世界为解决水环境问题的重要议题。为了提高污水处理装置运行效率、保证出水质量、降低运行费用,研究新型的智能优化控制方法来实现节能达标的目标,是当前污水处理行业的发展趋势。
现有的常用污水处理设备有:曝气系统设备、拦污设备、排泥排渣设备、分离设备、搅拌设备、过滤设备、提升设备、消毒设备、各式污泥浓缩机、污泥螺杆泵、污泥脱水机、污泥烘干机、污泥离心分离机、污泥堆肥机械、污泥焚烧机械、污泥厌氧消化气储存设备、发电设备、污水厂供电设备、溶药设备、水质水量监测设备、控制设备等。
在现有技术条件下,处理生活污水的设备建设成本和运行成本的增加将成为必然,现有的传统工艺、处理方法具有工艺流程长,控制复杂,占地大,处理成本高等缺点。
发明内容
为了解决上述技术问题,本发明提供一种混凝电解复合法处理高浓度有机废水的设备,包括:
废水池1,泵水装置2,净水罐3,混凝剂添加管4,清水管5,排污管6,储污池7,清水池8,净水罐支架9,控制系统10;所述净水罐支架9表面设有控制系统10及净水罐3,所述废水池1与净水罐3之间设有泵水装置2,所述混凝剂添加管4由上方伸入净水罐3内,所述净水罐3底部设有排污管6,所述排污管6底部设有储污池7,所述净水罐3与清水池8之间设有清水管5;
所述泵水装置2中的水泵、水体流量计、电磁阀与控制系统10导线控制连接;
所述混凝剂添加管4上的电磁阀与控制系统10导线控制连接;
所述清水管5上的电磁阀与控制系统10导线控制连接;
所述排污管6上的电磁阀与控制系统10导线控制连接。
进一步的,所述净水罐3包括:电解环3-1,搅拌混凝处理罐3-2,液位传感器3-3,有机物电解能力检测计3-4;所述电解环3-1水平均匀排列在净水罐3内部,电解环3-1与净水罐3中心轴线重合,电解环3-1不少于5排,相邻电解环3-1间距5cm~20cm,电解环3-1截面为标准圆状的环形结构,其截面圆直径为2cm~10cm,电解环3-1环形外圈直径小于净水罐3内径5cm~20cm,电解环3-1环形外圈直径为0.5m~2m,电解环3-1中正负电极与控制系统10导线控制连接;所述搅拌混凝处理罐3-2位于净水罐3内部正中心位置,搅拌混凝处理罐3-2与净水罐3中心轴线重合,搅拌混凝处理罐3-2上端檐口距净水罐3上端檐口30cm~50cm;所述液位传感器3-3距处理罐3-2上端檐口3cm~10cm,液位传感器3-3与控制系统10导线控制连接;所述有机物电解能力检测计3-4位于电解环3-1层中,有机物电解能力检测计3-4与控制系统10导线控制连接。
进一步的,所述搅拌混凝处理罐3-2包括:混凝物沉淀斗3-2-1,搅拌混凝区3-2-2,搅拌装置3-2-3,混凝效果检测计3-2-4;所述混凝物沉淀斗3-2-1位于搅拌混凝处理罐3-2最低端,混凝物沉淀斗3-2-1为锥状结构,截面为标准圆形,混凝物沉淀斗3-2-1内部中空,混凝物沉淀斗3-2-1下口与排污管6相贯通;所述搅拌混凝区3-2-2位于混凝物沉淀斗3-2-1正上方并与混凝物沉淀斗3-2-1上端口相贯通,搅拌混凝区3-2-2与混凝物沉淀斗3-2-1无缝焊接,搅拌混凝区3-2-2为标准圆柱状结构;所述搅拌装置3-2-3位于搅拌混凝区3-2-2内部正中间位置,搅拌装置3-2-3与控制系统10导线控制连接;所述混凝效果检测计3-2-4位于搅拌混凝区3-2-2内部,混凝效果检测计3-2-4与控制系统10导线控制连接。
进一步的,所述搅拌装置3-2-3包括:混凝搅拌电机3-2-3-1,主动转轴3-2-3-2,搅拌叶轮3-2-3-3,主动转轴温度检测计3-2-3-4;所述混凝搅拌电机3-2-3-1与控制系统10导线控制连接,混凝搅拌电机3-2-3-1输出端连接有主动转轴3-2-3-2,所述主动转轴3-2-3-2的外径表面周向均匀排布着搅拌叶轮3-2-3-3,所述搅拌叶轮3-2-3-3形状为半月牙形,搅拌叶轮3-2-3-3两端分别拟合呈剑状,所述搅拌叶轮3-2-3-3不少于5组,每组搅拌叶轮3-2-3-3平行均匀排列,相邻二组搅拌叶轮3-2-3-3间距5cm~30cm,相邻搅拌叶轮3-2-3-3水平旋转45°~60°,所述主动转轴3-2-3-2、搅拌叶轮3-2-3-3均由混凝搅拌电机3-2-3-1带动作圆周运动;所述主动转轴温度检测计3-2-3-4位于混凝搅拌电机3-2-3-1与主动转轴3-2-3-2之间,主动转轴温度检测计3-2-3-4中的感温触头与主动转轴3-2-3-2紧密碰触,主动转轴温度检测计3-2-3-4与控制系统10导线控制连接。
进一步的,所述搅拌叶轮3-2-3-3包括:叶轮内沿3-2-3-3-1,叶轮外沿3-2-3-3-2;所述叶轮内沿3-2-3-3-1的弧半径为R1,所述R1范围值为200mm~500mm,叶轮内沿3-2-3-3-1的弧长为L1,所述L1的范围值为500mm~800mm;所述叶轮外沿3-2-3-3-2的弧半径为R2,所述R2范围值为400mm~800mm,叶轮外沿3-2-3-3-2的弧长为L2,所述L2的范围值为700mm~1000mm;所述搅拌叶轮3-2-3-3的叶齿为3~4个,相邻叶齿夹角示为α,所述α值为90°~120°。
进一步的,所述搅拌叶轮3-2-3-3由高分子材料压模成型,搅拌叶轮3-2-3-3的组成成分和制造过程如下:
一、搅拌叶轮3-2-3-3组成成分:
按重量份数计,4-正丙基苯甲酸-3-氟-4-氰基苯酯5~15份,3,5-二叔丁基-4-羟基苯甲酸正丁酯20~35份,(D-)-α-氨基-对羟基苯乙酸60~105份,二-正-丁基邻苯二甲酸酯10~35份,4-氨基-3-硝基苯胺-N,N-二乙醇盐酸盐50~90份,[α-(乙酰氨基)-β-羟基乙基]对硝基苯基酮20~40份,浓度为15ppm~75ppm的N-(对二甲氨基苯基)水杨醛亚胺30~70份,对三氟甲氧基苯甲醇45~135份,3-[苯基氨基甲酰氧基]苯基氨在甲酸乙醇80~160份,交联剂20~65份,2,4,6-三甲基苯甲酸甲酯5~40份,邻氨基对苯二甲醚90~170份,对氨基苯甲醚45~85份,聚(2,5-二甲基)对苯硫醚35~60份;
所述交联剂为二异丙基硅二醇、亚异丙基丙二酸二乙酯、1,3-二异丙基丙酮中的任意一种;
二、搅拌叶轮3-2-3-3的制造过程,包含以下步骤:
第1步:在反应釜中加入电导率为0.5μS/cm~0.83μS/cm的超纯水600~900份,启动反应釜内搅拌器,转速为155rpm~220rpm,启动加热泵,使反应釜内温度上升至65℃~95℃;依次加入4-正丙基苯甲酸-3-氟-4-氰基苯酯、3,5-二叔丁基-4-羟基苯甲酸正丁酯、(D-)-α-氨基-对羟基苯乙酸,搅拌至完全溶解,调节pH值为2.0~7.5,将搅拌器转速调至180rpm~295rpm,温度为85℃~140℃,酯化反应15~40小时;
第2步:取二-正-丁基邻苯二甲酸酯、4-氨基-3-硝基苯胺-N,N-二乙醇盐酸盐进行粉碎,粉末粒径为800~1400目;加入[α-(乙酰氨基)-β-羟基乙基]对硝基苯基酮混合均匀,平铺于托盘内,平铺厚度为35mm~70mm,采用剂量为6.0kGy~11.5kGy、能量为9.0MeV~15MeV的α射线辐照70~130分钟,以及同等剂量的β射线辐照85~175分钟;
第3步:经第2步处理的混合粉末溶于N-(对二甲氨基苯基)水杨醛亚胺中,加入反应釜,搅拌器转速为90rpm~165rpm,温度为90℃~125℃,启动真空泵使反应釜的真空度达到-0.30MPa~-0.65MPa,保持此状态反应16~30小时;泄压并通入氮气,使反应釜内压力为0.60MPa~0.90MPa,保温静置10~26小时;搅拌器转速提升至130rpm~280rpm,同时反应釜泄压至0MPa;依次加入对三氟甲氧基苯甲醇、3-[苯基氨基甲酰氧基]苯基氨在甲酸乙醇完全溶解后,加入交联剂搅拌混合,使得反应釜溶液的亲水亲油平衡值为8.0~9.8,保温静置6~13小时;
第4步:在搅拌器转速为160rpm~240rpm时,依次加入2,4,6-三甲基苯甲酸甲酯、邻氨基对苯二甲醚、对氨基苯甲醚和聚(2,5-二甲基)对苯硫醚,提升反应釜压力,使其达到0.75MPa~1.25MPa,温度为190℃~290℃,聚合反应8~19小时;反应完成后将反应釜内压力降至0MPa,降温至23℃~44℃,出料,入压模机即可制得搅拌叶轮3-2-3-3。
进一步的,本发明还公开了一种混凝电解复合法处理高浓度有机废水的方法,该方法包括以下几个步骤:
第1步:控制系统10通过液位传感器3-3检测到净水罐3中水位下降到最低水位时,启动泵水装置2中的水泵,将储存在废水池1中的高浓度有机废水输入净水罐3内部的搅拌混凝处理罐3-2中,泵水装置2上的电磁水阀使出水量控制在25m3/h~55m3/h;与此同时,混凝剂添加管4向混凝处理罐3-2内投放混凝剂,混凝剂添加管4上的电磁阀将混凝剂投加量控制在2m3/min~10m3/min,同时控制系统10启动搅拌装置3-2-3对混凝剂及高浓度有机废水混合液进行搅拌,在搅拌过程中,混凝效果检测计3-2-4对混凝是否达标进行实时监控,当混凝效果检测计3-2-4检测到搅拌混凝处理罐3-2内混凝未达标时,向控制系统10发出信号,控制系统10增大搅拌装置3-2-3转速,促进混凝剂与有机物互溶,加快废水中有机物的沉淀;当混凝效果检测计3-2-4检测到搅拌混凝处理罐3-2内混凝效果完全达标时,向控制系统10发出信号,控制系统10降低搅拌装置3-2-3转速,减少设备不必要的能耗;
第2步:搅拌混凝处理罐3-2内混凝沉淀物向下堆积在混凝物沉淀斗3-2-1中,控制系统10启动排污管6上的电磁阀将混凝沉淀物排到储污池7中,混凝处理后的废水通过搅拌混凝处理罐3-2上檐口进入到净水罐3的电解区;控制系统10启动电解环3-1对废水中残留的有机物进行电解,在电解过程中,有机物电解能力检测计3-4对电解是否达标进行实时监控,当有机物电解能力检测计3-4检测到净水罐3的电解区内电解未达标时,向控制系统10发出信号,控制系统10增大电解环3-1两端的输入电压,加快有机物的分解;当有机物电解能力检测计3-4检测到净水罐3的电解区内电解完全达标时,向控制系统10发出信号,控制系统10减小电解环3-1两端的输入电压,减少设备不必要的能耗;
第3步:装置运行10min~20min后,控制系统10开启清水管5上的电磁阀将处理好的清水通过清水管5排入清水池8中;
第4步:液位传感器3-3对净水罐3内运行水位进行安全实时监测,当运行水位位于净水罐3上檐5cm~10cm时,液位传感器3-3向控制系统10发出反馈信号,控制系统10将关闭系统电源,使得整个系统停止工作,并发出音频报警25s;当运行水位恢复正常值时,液位传感器3-3向控制系统10发出反馈信号,控制系统10将开启系统电源,使得整个系统恢复正常工作;
第5步:在搅拌装置3-2-3工作中,主动转轴温度检测计3-2-3-4实时对搅拌装置3-2-3转动情况进行安全监控,当长时间运转轴温上升超出安全设定值时,主动转轴温度检测计3-2-3-4向控制系统10发出反馈信号,控制系统10关闭整个系统电源,使得整个系统停止工作,同时产生音频报警30s;待设备恢复正常后,主动转轴温度检测计3-2-3-4监测到轴温在安全设定值内,则向控制系统10发出反馈信号,控制系统10开启系统电源,使得整个系统恢复正常工作。
本发明专利公开的一种混凝电解复合法处理高浓度有机废水的设备及其处理方法,其优点在于:
(1)该装置采用搅拌装置增加混凝剂的混合程度,混凝效果高;
(2)该装置结构设计合理紧凑,集成度高;
(3)该装置搅拌叶轮采用高分子材料制备,有机物净化率提升显著。
本发明所述的一种混凝电解复合法处理高浓度有机废水的设备及其处理方法结构新颖合理,有机物去除率高,适用范围广阔。
附图说明
图1是本发明中所述的一种混凝电解复合法处理高浓度有机废水的设备示意图。
图2是本发明中所述的净水罐内部结构示意图。
图3是本发明中所述的搅拌混凝处理罐内部结构示意图。
图4是本发明中所述的搅拌装置示意图。
图5是本发明中所述的搅拌叶轮示意图。
图6是本发明所述的搅拌叶轮材料与有机污染物总混凝率关系图。
以上图1~图5中,废水池1,泵水装置2,净水罐3,电解环3-1,搅拌混凝处理罐3-2,混凝物沉淀斗3-2-1,搅拌混凝区3-2-2,搅拌装置3-2-3,混凝搅拌电机3-2-3-1,主动转轴3-2-3-2,搅拌叶轮3-2-3-3,叶轮内沿3-2-3-3-1,叶轮外沿3-2-3-3-2,主动转轴温度检测计3-2-3-4,混凝效果检测计3-2-4,液位传感器3-3,有机物电解能力检测计3-4,混凝剂添加管4,清水管5,排污管6,储污池7,清水池8,净水罐支架9,控制系统10。
具体实施方式
下面结合附图和实施例对本发明提供的一种混凝电解复合法处理高浓度有机废水的设备进行进一步说明。
如图1所示,是本发明提供的一种混凝电解复合法处理高浓度有机废水的设备的示意图。图中看出,包括废水池1,泵水装置2,净水罐3,混凝剂添加管4,清水管5,排污管6,储污池7,清水池8,净水罐支架9,控制系统10;所述净水罐支架9表面设有控制系统10及净水罐3,所述废水池1与净水罐3之间设有泵水装置2,所述混凝剂添加管4由上方伸入净水罐3内,所述净水罐3底部设有排污管6,所述排污管6底部设有储污池7,所述净水罐3与清水池8之间设有清水管5;
所述泵水装置2中的水泵、水体流量计、电磁阀与控制系统10导线控制连接;
所述混凝剂添加管4上的电磁阀与控制系统10导线控制连接;
所述清水管5上的电磁阀与控制系统10导线控制连接;
所述排污管6上的电磁阀与控制系统10导线控制连接。
如图2所示,是本发明中所述的净水罐内部结构示意图。从图2或图1中看出,所述净水罐3包括:电解环3-1,搅拌混凝处理罐3-2,液位传感器3-3,有机物电解能力检测计3-4;所述电解环3-1水平均匀排列在净水罐3内部,电解环3-1与净水罐3中心轴线重合,电解环3-1不少于5排,相邻电解环3-1间距5cm~20cm,电解环3-1截面为标准圆状的环形结构,其截面圆直径为2cm~10cm,电解环3-1环形外圈直径小于净水罐3内径5cm~20cm,电解环3-1环形外圈直径为0.5m~2m,电解环3-1中正负电极与控制系统10导线控制连接;所述搅拌混凝处理罐3-2位于净水罐3内部正中心位置,搅拌混凝处理罐3-2与净水罐3中心轴线重合,搅拌混凝处理罐3-2上端檐口距净水罐3上端檐口30cm~50cm;所述液位传感器3-3距处理罐3-2上端檐口3cm~10cm,液位传感器3-3与控制系统10导线控制连接;所述有机物电解能力检测计3-4位于电解环3-1层中,有机物电解能力检测计3-4与控制系统10导线控制连接。
如图3所示,是本发明中所述的搅拌混凝处理罐内部结构示意图。从图3或图1看出,所述搅拌混凝处理罐3-2包括:混凝物沉淀斗3-2-1,搅拌混凝区3-2-2,搅拌装置3-2-3,混凝效果检测计3-2-4;所述混凝物沉淀斗3-2-1位于搅拌混凝处理罐3-2最低端,混凝物沉淀斗3-2-1为锥状结构,截面为标准圆形,混凝物沉淀斗3-2-1内部中空,混凝物沉淀斗3-2-1下口与排污管6相贯通;所述搅拌混凝区3-2-2位于混凝物沉淀斗3-2-1正上方并与混凝物沉淀斗3-2-1上端口相贯通,搅拌混凝区3-2-2与混凝物沉淀斗3-2-1无缝焊接,搅拌混凝区3-2-2为标准圆柱状结构;所述搅拌装置3-2-3位于搅拌混凝区3-2-2内部正中间位置,搅拌装置3-2-3与控制系统10导线控制连接;所述混凝效果检测计3-2-4位于搅拌混凝区3-2-2内部,混凝效果检测计3-2-4与控制系统10导线控制连接。
如图4所示,是本发明中所述的搅拌装置示意图。从图4或图1看出,所述搅拌装置3-2-3包括:混凝搅拌电机3-2-3-1,主动转轴3-2-3-2,搅拌叶轮3-2-3-3,主动转轴温度检测计3-2-3-4;所述混凝搅拌电机3-2-3-1与控制系统10导线控制连接,混凝搅拌电机3-2-3-1输出端连接有主动转轴3-2-3-2,所述主动转轴3-2-3-2的外径表面周向均匀排布着搅拌叶轮3-2-3-3,所述搅拌叶轮3-2-3-3形状为半月牙形,搅拌叶轮3-2-3-3两端分别拟合呈剑状,所述搅拌叶轮3-2-3-3不少于5组,每组搅拌叶轮3-2-3-3平行均匀排列,相邻二组搅拌叶轮3-2-3-3间距5cm~30cm,相邻搅拌叶轮3-2-3-3水平旋转45°~60°,所述主动转轴3-2-3-2、搅拌叶轮3-2-3-3均由混凝搅拌电机3-2-3-1带动作圆周运动;所述主动转轴温度检测计3-2-3-4位于混凝搅拌电机3-2-3-1与主动转轴3-2-3-2之间,主动转轴温度检测计3-2-3-4中的感温触头与主动转轴3-2-3-2紧密碰触,主动转轴温度检测计3-2-3-4与控制系统10导线控制连接。
如图5所示,是本发明中所述的搅拌叶轮示意图。图中看出,所述搅拌叶轮3-2-3-3包括:叶轮内沿3-2-3-3-1,叶轮外沿3-2-3-3-2;所述叶轮内沿3-2-3-3-1的弧半径为R1,所述R1范围值为200mm~500mm,叶轮内沿3-2-3-3-1的弧长为L1,所述L1的范围值为500mm~800mm;所述叶轮外沿3-2-3-3-2的弧半径为R2,所述R2范围值为400mm~800mm,叶轮外沿3-2-3-3-2的弧长为L2,所述L2的范围值为700mm~1000mm;所述搅拌叶轮3-2-3-3的叶齿为3~4个,相邻叶齿夹角示为α,所述α值为90°~120°
本发明所述的一种混凝电解复合法处理高浓度有机废水的设备的工作过程是:
第1步:控制系统10通过液位传感器3-3检测到净水罐3中水位下降到最低水位时,启动泵水装置2中的水泵,将储存在废水池1中的高浓度有机废水输入净水罐3内部的搅拌混凝处理罐3-2中,泵水装置2上的电磁水阀使出水量控制在25m3/h~55m3/h;与此同时,混凝剂添加管4向混凝处理罐3-2内投放混凝剂,混凝剂添加管4上的电磁阀将混凝剂投加量控制在2m3/min~10m3/min,同时控制系统10启动搅拌装置3-2-3对混凝剂及高浓度有机废水混合液进行搅拌,在搅拌过程中,混凝效果检测计3-2-4对混凝是否达标进行实时监控,当混凝效果检测计3-2-4检测到搅拌混凝处理罐3-2内混凝未达标时,向控制系统10发出信号,控制系统10增大搅拌装置3-2-3转速,促进混凝剂与有机物互溶,加快废水中有机物的沉淀;当混凝效果检测计3-2-4检测到搅拌混凝处理罐3-2内混凝效果完全达标时,向控制系统10发出信号,控制系统10降低搅拌装置3-2-3转速,减少设备不必要的能耗;
第2步:搅拌混凝处理罐3-2内混凝沉淀物向下堆积在混凝物沉淀斗3-2-1中,控制系统10启动排污管6上的电磁阀将混凝沉淀物排到储污池7中,混凝处理后的废水通过搅拌混凝处理罐3-2上檐口进入到净水罐3的电解区;控制系统10启动电解环3-1对废水中残留的有机物进行电解,在电解过程中,有机物电解能力检测计3-4对电解是否达标进行实时监控,当有机物电解能力检测计3-4检测到净水罐3的电解区内电解未达标时,向控制系统10发出信号,控制系统10增大电解环3-1两端的输入电压,加快有机物的分解;当有机物电解能力检测计3-4检测到净水罐3的电解区内电解完全达标时,向控制系统10发出信号,控制系统10减小电解环3-1两端的输入电压,减少设备不必要的能耗;
第3步:装置运行10min~20min后,控制系统10开启清水管5上的电磁阀将处理好的清水通过清水管5排入清水池8中;
第4步:液位传感器3-3对净水罐3内运行水位进行安全实时监测,当运行水位位于净水罐3上檐5cm~10cm时,液位传感器3-3向控制系统10发出反馈信号,控制系统10将关闭系统电源,使得整个系统停止工作,并发出音频报警25s;当运行水位恢复正常值时,液位传感器3-3向控制系统10发出反馈信号,控制系统10将开启系统电源,使得整个系统恢复正常工作;
第5步:在搅拌装置3-2-3工作中,主动转轴温度检测计3-2-3-4实时对搅拌装置3-2-3转动情况进行安全监控,当长时间运转轴温上升超出安全设定值时,主动转轴温度检测计3-2-3-4向控制系统10发出反馈信号,控制系统10关闭整个系统电源,使得整个系统停止工作,同时产生音频报警30s;待设备恢复正常后,主动转轴温度检测计3-2-3-4监测到轴温在安全设定值内,则向控制系统10发出反馈信号,控制系统10开启系统电源,使得整个系统恢复正常工作。
本发明所述的一种混凝电解复合法处理高浓度有机废水的设备及其处理方法结构新颖合理,有机物去除率高,适用范围广阔。
以下是本发明所述搅拌叶轮3-2-3-3的制造过程的实施例,实施例是为了进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。
若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。
实施例1
按照以下步骤制造本发明所述搅拌叶轮3-2-3-3,并按重量分数计:
第1步:在反应釜中加入电导率为0.5μS/cm的超纯水600份,启动反应釜内搅拌器,转速为155rpm,启动加热泵,使反应釜内温度上升至65℃;依次加入4-正丙基苯甲酸-3-氟-4-氰基苯酯5份,3,5-二叔丁基-4-羟基苯甲酸正丁酯20份,(D-)-α-氨基-对羟基苯乙酸60份,搅拌至完全溶解,调节pH值为2.0,将搅拌器转速调至180rpm,温度为85℃,酯化反应15小时;
第2步:取二-正-丁基邻苯二甲酸酯10份,4-氨基-3-硝基苯胺-N,N-二乙醇盐酸盐50份进行粉碎,粉末粒径为800目;加入[α-(乙酰氨基)-β-羟基乙基]对硝基苯基酮20份混合均匀,平铺于托盘内,平铺厚度为35mm,采用剂量为6.0kGy、能量为9.0MeV的α射线辐照70分钟,以及同等剂量的β射线辐照85分钟;
第3步:经第2步处理的混合粉末溶于浓度为15ppm的N-(对二甲氨基苯基)水杨醛亚胺30份中,加入反应釜,搅拌器转速为90rpm,温度为90℃,启动真空泵使反应釜的真空度达到-0.30MPa,保持此状态反应16小时;泄压并通入氮气,使反应釜内压力为0.60MPa,保温静置10小时;搅拌器转速提升至130rpm,同时反应釜泄压至0MPa;依次加入对三氟甲氧基苯甲醇45份,3-[苯基氨基甲酰氧基]苯基氨在甲酸乙醇80份完全溶解后,加入交联剂20份搅拌混合,使得反应釜溶液的亲水亲油平衡值为8.0,保温静置6小时;
第4步:在搅拌器转速为160rpm时,依次加入2,4,6-三甲基苯甲酸甲酯5份,邻氨基对苯二甲醚90份,对氨基苯甲醚45份,聚(2,5-二甲基)对苯硫醚35份,提升反应釜压力,使其达到0.75MPa,温度为190℃,聚合反应8小时;反应完成后将反应釜内压力降至0MPa,降温至23℃,出料,入压模机即可制得搅拌叶轮3-2-3-3。
所述交联剂为二异丙基硅二醇。
实施例2
按照以下步骤制造本发明所述搅拌叶轮3-2-3-3,并按重量分数计:
第1步:在反应釜中加入电导率为0.83μS/cm的超纯水900份,启动反应釜内搅拌器,转速为220rpm,启动加热泵,使反应釜内温度上升至95℃;依次加入4-正丙基苯甲酸-3-氟-4-氰基苯酯15份,3,5-二叔丁基-4-羟基苯甲酸正丁酯35份,(D-)-α-氨基-对羟基苯乙酸105份,搅拌至完全溶解,调节pH值为7.5,将搅拌器转速调至295rpm,温度为140℃,酯化反应40小时;
第2步:取二-正-丁基邻苯二甲酸酯35份,4-氨基-3-硝基苯胺-N,N-二乙醇盐酸盐90份进行粉碎,粉末粒径为1400目;加入[α-(乙酰氨基)-β-羟基乙基]对硝基苯基酮40份混合均匀,平铺于托盘内,平铺厚度为70mm,采用剂量为11.5kGy、能量为15MeV的α射线辐照130分钟,以及同等剂量的β射线辐照175分钟;
第3步:经第2步处理的混合粉末溶于浓度为75ppm的N-(对二甲氨基苯基)水杨醛亚胺70份中,加入反应釜,搅拌器转速为165rpm,温度为125℃,启动真空泵使反应釜的真空度达到-0.65MPa,保持此状态反应30小时;泄压并通入氮气,使反应釜内压力为0.90MPa,保温静置26小时;搅拌器转速提升至280rpm,同时反应釜泄压至0MPa;依次加入对三氟甲氧基苯甲醇135份,3-[苯基氨基甲酰氧基]苯基氨在甲酸乙醇160份完全溶解后,加入交联剂65份搅拌混合,使得反应釜溶液的亲水亲油平衡值为9.8,保温静置13小时;
第4步:在搅拌器转速为240rpm时,依次加入2,4,6-三甲基苯甲酸甲酯40份,邻氨基对苯二甲醚170份,对氨基苯甲醚85份,聚(2,5-二甲基)对苯硫醚60份,提升反应釜压力,使其达到1.25MPa,温度为290℃,聚合反应19小时;反应完成后将反应釜内压力降至0MPa,降温至44℃,出料,入压模机即可制得搅拌叶轮3-2-3-3。
所述交联剂为1,3-二异丙基丙酮。
实施例3
按照以下步骤制造本发明所述搅拌叶轮3-2-3-3,并按重量分数计:
第1步:在反应釜中加入电导率为0.583μS/cm的超纯水690份,启动反应釜内搅拌器,转速为159rpm,启动加热泵,使反应釜内温度上升至69℃;依次加入4-正丙基苯甲酸-3-氟-4-氰基苯酯12份,3,5-二叔丁基-4-羟基苯甲酸正丁酯22份,(D-)-α-氨基-对羟基苯乙酸65份,搅拌至完全溶解,调节pH值为2.75,将搅拌器转速调至189rpm,温度为89℃,酯化反应19小时;
第2步:取二-正-丁基邻苯二甲酸酯15份,4-氨基-3-硝基苯胺-N,N-二乙醇盐酸盐59份进行粉碎,粉末粒径为840目;加入[α-(乙酰氨基)-β-羟基乙基]对硝基苯基酮24份混合均匀,平铺于托盘内,平铺厚度为37mm,采用剂量为6.115kGy、能量为9.15MeV的α射线辐照73分钟,以及同等剂量的β射线辐照85.175分钟;
第3步:经第2步处理的混合粉末溶于浓度为15.75ppm的N-(对二甲氨基苯基)水杨醛亚胺37份中,加入反应釜,搅拌器转速为96rpm,温度为95℃,启动真空泵使反应釜的真空度达到-0.365MPa,保持此状态反应19小时;泄压并通入氮气,使反应釜内压力为0.69MPa,保温静置10.26小时;搅拌器转速提升至138rpm,同时反应釜泄压至0MPa;依次加入对三氟甲氧基苯甲醇45.135份,3-[苯基氨基甲酰氧基]苯基氨在甲酸乙醇80.160份完全溶解后,加入交联剂20.65份搅拌混合,使得反应釜溶液的亲水亲油平衡值为8.8,保温静置6.13小时;
第4步:在搅拌器转速为160rpm时,依次加入2,4,6-三甲基苯甲酸甲酯5.40份,邻氨基对苯二甲醚90.170份,对氨基苯甲醚45.85份,聚(2,5-二甲基)对苯硫醚35.60份,提升反应釜压力,使其达到0.75125MPa,温度为190.290℃,聚合反应8.19小时;反应完成后将反应釜内压力降至0MPa,降温至23.44℃,出料,入压模机即可制得搅拌叶轮3-2-3-3。
所述交联剂为亚异丙基丙二酸二乙酯。
对照例
对照例为市售某品牌的搅拌叶轮用于高浓度有机废水的处理过程。
实施例4
将实施例1~3制备获得的搅拌叶轮3-2-3-3和对照例所述的搅拌叶轮用于高浓度有机废水的处理对比。处理结束后分别对高浓度有机废水的性质,及其对高浓度有机废水各项参数的影响做检测,结果如表1所示。
表1为实施例1~3和对照例所述的搅拌叶轮用于高浓度有机废水的处理过程中的性能参数的影响,从表1可见,本发明所述的搅拌叶轮3-2-3-3,其混凝聚合度、混凝强度提升率、混凝产量提升率、混凝沉降率均高于现有技术生产的产品。
此外,如图6所示,是本发明所述的搅拌叶轮3-2-3-3对高浓度有机废水总混凝率的试验研究。图中看出,由高分子材料制造的搅拌叶轮3-2-3-3材质分布均匀,材质表面积与体积比较大,表面分散性好,连续相中游离的分散载体的浓度相对对照例高;使用本发明的搅拌叶轮3-2-3-3,使有机污染物易于聚集成团,形成聚合结构的沉淀体;使用本发明所述搅拌叶轮3-2-3-3,其对高浓度有机废水总混凝率均优于现有产品。

Claims (3)

1.一种混凝电解复合法处理高浓度有机废水的设备,包括:废水池(1),泵水装置(2),净水罐(3),混凝剂添加管(4),清水管(5),排污管(6),储污池(7),清水池(8),净水罐支架(9),控制系统(10);其特征在于,所述净水罐支架(9)表面设有控制系统(10)及净水罐(3),所述废水池(1)与净水罐(3)之间设有泵水装置(2),所述混凝剂添加管(4)由上方伸入净水罐(3)内,所述净水罐(3)底部设有排污管(6),所述排污管(6)底部设有储污池(7),所述净水罐(3)与清水池(8)之间设有清水管(5);
所述泵水装置(2)中的水泵、水体流量计、电磁阀与控制系统(10)导线控制连接;
所述混凝剂添加管(4)上的电磁阀与控制系统(10)导线控制连接;
所述清水管(5)上的电磁阀与控制系统(10)导线控制连接;
所述排污管(6)上的电磁阀与控制系统(10)导线控制连接;
所述净水罐(3)包括:电解环(3-1),搅拌混凝处理罐(3-2),液位传感器(3-3),有机物电解能力检测计(3-4);所述电解环(3-1)水平均匀排列在净水罐(3)内部,电解环(3-1)与净水罐(3)中心轴线重合,电解环(3-1)不少于5排,相邻电解环(3-1)间距5 cm~20 cm,电解环(3-1)截面为标准圆状的环形结构,其截面圆直径为2 cm~10 cm,电解环(3-1)环形外圈直径小于净水罐(3)内径5 cm~20 cm,电解环(3-1)环形外圈直径为0.5 m~2 m,电解环(3-1)中正负电极与控制系统(10)导线控制连接;所述搅拌混凝处理罐(3-2)位于净水罐(3)内部正中心位置,搅拌混凝处理罐(3-2)与净水罐(3)中心轴线重合,搅拌混凝处理罐(3-2)上端檐口距净水罐(3)上端檐口30 cm~50 cm;所述液位传感器(3-3)距处理罐(3-2)上端檐口3 cm~10 cm,液位传感器(3-3)与控制系统(10)导线控制连接;所述有机物电解能力检测计(3-4)位于电解环(3-1)层中,有机物电解能力检测计(3-4)与控制系统(10)导线控制连接;
所述搅拌混凝处理罐(3-2)包括:混凝物沉淀斗(3-2-1),搅拌混凝区(3-2-2),搅拌装置(3-2-3),混凝效果检测计(3-2-4);所述混凝物沉淀斗(3-2-1)位于搅拌混凝处理罐(3-2)最低端,混凝物沉淀斗(3-2-1)为锥状结构,截面为标准圆形,混凝物沉淀斗(3-2-1)内部中空,混凝物沉淀斗(3-2-1)下口与排污管(6)相贯通;所述搅拌混凝区(3-2-2)位于混凝物沉淀斗(3-2-1)正上方并与混凝物沉淀斗(3-2-1)上端口相贯通,搅拌混凝区(3-2-2)与混凝物沉淀斗(3-2-1)无缝焊接,搅拌混凝区(3-2-2)为标准圆柱状结构;所述搅拌装置(3-2-3)位于搅拌混凝区(3-2-2)内部正中间位置,搅拌装置(3-2-3)与控制系统(10)导线控制连接;所述混凝效果检测计(3-2-4)位于搅拌混凝区(3-2-2)内部,混凝效果检测计(3-2-4)与控制系统(10)导线控制连接;
所述搅拌装置(3-2-3)包括:混凝搅拌电机(3-2-3-1),主动转轴(3-2-3-2),搅拌叶轮(3-2-3-3),主动转轴温度检测计(3-2-3-4);所述混凝搅拌电机(3-2-3-1)与控制系统(10)导线控制连接,混凝搅拌电机(3-2-3-1)输出端连接有主动转轴(3-2-3-2),所述主动转轴(3-2-3-2)的外径表面周向均匀排布着搅拌叶轮(3-2-3-3),所述搅拌叶轮(3-2-3-3)形状为半月牙形,搅拌叶轮(3-2-3-3)两端分别拟合呈剑状,所述搅拌叶轮(3-2-3-3)不少于5组,每组搅拌叶轮(3-2-3-3)平行均匀排列,相邻二组搅拌叶轮(3-2-3-3)间距5 cm~30cm,相邻搅拌叶轮(3-2-3-3)水平旋转45 °~60 °,所述主动转轴(3-2-3-2)、搅拌叶轮(3-2-3-3)均由混凝搅拌电机(3-2-3-1)带动作圆周运动;所述主动转轴温度检测计(3-2-3-4)位于混凝搅拌电机(3-2-3-1)与主动转轴(3-2-3-2)之间,主动转轴温度检测计(3-2-3-4)中的感温触头与主动转轴(3-2-3-2)紧密碰触,主动转轴温度检测计(3-2-3-4)与控制系统(10)导线控制连接;
所述搅拌叶轮(3-2-3-3)包括:叶轮内沿(3-2-3-3-1),叶轮外沿(3-2-3-3-2);所述叶轮内沿(3-2-3-3-1)的弧半径为R1,所述R1范围值为200 mm~500mm,叶轮内沿(3-2-3-3-1)的弧长为L1,所述L1的范围值为500 mm~800 mm;所述叶轮外沿(3-2-3-3-2)的弧半径为R2,所述R2范围值为400 mm~800mm,叶轮外沿(3-2-3-3-2)的弧长为L2,所述L2的范围值为700 mm~1000 mm;所述搅拌叶轮(3-2-3-3)的叶齿为3~4个,相邻叶齿夹角示为α,所述α值为90 °~120 °。
2.根据权利要求1所述的一种混凝电解复合法处理高浓度有机废水的设备,其特征在于,所述搅拌叶轮(3-2-3-3)由高分子材料压模成型,搅拌叶轮(3-2-3-3)的组成成分和制造过程如下:
一、搅拌叶轮(3-2-3-3)组成成分:
按重量份数计,4-正丙基苯甲酸-3-氟-4-氰基苯酯5~15份,3,5-二叔丁基-4-羟基苯甲酸正丁酯20~35份,(D-)-α-氨基-对羟基苯乙酸60~105份,二-正-丁基邻苯二甲酸酯10~35份,4-氨基-3-硝基苯胺-N,N-二乙醇盐酸盐50~90份,[α-(乙酰氨基)-β-羟基乙基]对硝基苯基酮20~40份,浓度为15 ppm~75 ppm的N-(对二甲氨基苯基)水杨醛亚胺30~70份,对三氟甲氧基苯甲醇45~135份,3-[苯基氨基甲酰氧基]苯基氨在甲酸乙醇80~160份,交联剂20~65份,2,4,6-三甲基苯甲酸甲酯5~40份,邻氨基对苯二甲醚90~170份,对氨基苯甲醚45~85份,聚(2,5-二甲基)对苯硫醚35~60份;
所述交联剂为二异丙基硅二醇、亚异丙基丙二酸二乙酯、1,3-二异丙基丙酮中的任意一种;
二、搅拌叶轮(3-2-3-3)的制造过程,包含以下步骤:
第1步:在反应釜中加入电导率为0.5 μS/cm~0.83 μS/cm的超纯水600~900份,启动反应釜内搅拌器,转速为155rpm~220rpm,启动加热泵,使反应釜内温度上升至65 ℃~95℃;依次加入4-正丙基苯甲酸-3-氟-4-氰基苯酯、3,5-二叔丁基-4-羟基苯甲酸正丁酯、(D-)-α-氨基-对羟基苯乙酸,搅拌至完全溶解,调节pH值为2.0~7.5,将搅拌器转速调至180rpm~295rpm,温度为85 ℃~140 ℃,酯化反应15~40小时;
第2步:取二-正-丁基邻苯二甲酸酯、4-氨基-3-硝基苯胺-N,N-二乙醇盐酸盐进行粉碎,粉末粒径为800~1400目;加入[α-(乙酰氨基)-β-羟基乙基]对硝基苯基酮混合均匀,平铺于托盘内,平铺厚度为35 mm~70 mm,采用剂量为6.0 kGy~11.5 kGy、能量为9.0MeV~15 MeV的α射线辐照70~130分钟,以及同等剂量的β射线辐照85~175分钟;
第3步:经第2步处理的混合粉末溶于N-(对二甲氨基苯基)水杨醛亚胺中,加入反应釜,搅拌器转速为90 rpm~165 rpm,温度为90 ℃~125 ℃,启动真空泵使反应釜的真空度达到-0.30MPa~-0.65MPa,保持此状态反应16~30小时;泄压并通入氮气,使反应釜内压力为0.60MPa~0.90MPa,保温静置10~26小时;搅拌器转速提升至130rpm~280rpm,同时反应釜泄压至0MPa;依次加入对三氟甲氧基苯甲醇、3-[苯基氨基甲酰氧基]苯基氨在甲酸乙醇完全溶解后,加入交联剂搅拌混合,使得反应釜溶液的亲水亲油平衡值为8.0~9.8,保温静置6~13小时;
第4步:在搅拌器转速为160rpm~240rpm时,依次加入2,4,6-三甲基苯甲酸甲酯、邻氨基对苯二甲醚、对氨基苯甲醚和聚(2,5-二甲基)对苯硫醚,提升反应釜压力,使其达到0.75MPa~1.25MPa,温度为190℃~290℃,聚合反应8~19小时;反应完成后将反应釜内压力降至0MPa,降温至23 ℃~44 ℃,出料,入压模机即可制得搅拌叶轮(3-2-3-3)。
3.一种根据权利要求1所述的设备处理高浓度有机废水的方法,其特征在于,该方法包括以下几个步骤:
第1步:控制系统(10)通过液位传感器(3-3)检测到净水罐(3)中水位下降到最低水位时,启动泵水装置(2)中的水泵,将储存在废水池(1)中的高浓度有机废水输入净水罐(3)内部的搅拌混凝处理罐(3-2)中,泵水装置(2)上的电磁水阀使出水量控制在25 m3/h~55 m3/h;与此同时,混凝剂添加管(4)向混凝处理罐(3-2)内投放混凝剂,混凝剂添加管(4)上的电磁阀将混凝剂投加量控制在2 m3/min~10 m3/min,同时控制系统(10)启动搅拌装置(3-2-3)对混凝剂及高浓度有机废水混合液进行搅拌,在搅拌过程中,混凝效果检测计(3-2-4)对混凝是否达标进行实时监控,当混凝效果检测计(3-2-4)检测到搅拌混凝处理罐(3-2)内混凝未达标时,向控制系统(10)发出信号,控制系统(10)增大搅拌装置(3-2-3)转速,促进混凝剂与有机物互溶,加快废水中有机物的沉淀;当混凝效果检测计(3-2-4)检测到搅拌混凝处理罐(3-2)内混凝效果完全达标时,向控制系统(10)发出信号,控制系统(10)降低搅拌装置(3-2-3)转速,减少设备不必要的能耗;
第2步:搅拌混凝处理罐(3-2)内混凝沉淀物向下堆积在混凝物沉淀斗(3-2-1)中,控制系统(10)启动排污管(6)上的电磁阀将混凝沉淀物排到储污池(7)中,混凝处理后的废水通过搅拌混凝处理罐(3-2)上檐口进入到净水罐(3)的电解区;控制系统(10)启动电解环(3-1)对废水中残留的有机物进行电解,在电解过程中,有机物电解能力检测计(3-4)对电解是否达标进行实时监控,当有机物电解能力检测计(3-4)检测到净水罐(3)的电解区内电解未达标时,向控制系统(10)发出信号,控制系统(10)增大电解环(3-1)两端的输入电压,加快有机物的分解;当有机物电解能力检测计(3-4)检测到净水罐(3)的电解区内电解完全达标时,向控制系统(10)发出信号,控制系统(10)减小电解环(3-1)两端的输入电压,减少设备不必要的能耗;
第3步:装置运行10 min~20 min后,控制系统(10)开启清水管(5)上的电磁阀将处理好的清水通过清水管(5)排入清水池(8)中;
第4步:液位传感器(3-3)对净水罐(3)内运行水位进行安全实时监测,当运行水位位于净水罐(3)上檐5 cm~10 cm时,液位传感器(3-3)向控制系统(10)发出反馈信号,控制系统(10)将关闭系统电源,使得整个系统停止工作,并发出音频报警25s;当运行水位恢复正常值时,液位传感器(3-3)向控制系统(10)发出反馈信号,控制系统(10)将开启系统电源,使得整个系统恢复正常工作;
第5步:在搅拌装置(3-2-3)工作中,主动转轴温度检测计(3-2-3-4)实时对搅拌装置(3-2-3)转动情况进行安全监控,当长时间运转轴温上升超出安全设定值时,主动转轴温度检测计(3-2-3-4)向控制系统(10)发出反馈信号,控制系统(10)关闭整个系统电源,使得整个系统停止工作,同时产生音频报警30 s;待设备恢复正常后,主动转轴温度检测计(3-2-3-4)监测到轴温在安全设定值内,则向控制系统(10)发出反馈信号,控制系统(10)开启系统电源,使得整个系统恢复正常工作。
CN201610243609.0A 2016-04-19 2016-04-19 一种混凝电解复合法处理高浓度有机废水的设备及其处理方法 Expired - Fee Related CN105692978B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610243609.0A CN105692978B (zh) 2016-04-19 2016-04-19 一种混凝电解复合法处理高浓度有机废水的设备及其处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610243609.0A CN105692978B (zh) 2016-04-19 2016-04-19 一种混凝电解复合法处理高浓度有机废水的设备及其处理方法

Publications (2)

Publication Number Publication Date
CN105692978A CN105692978A (zh) 2016-06-22
CN105692978B true CN105692978B (zh) 2018-06-15

Family

ID=56216998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610243609.0A Expired - Fee Related CN105692978B (zh) 2016-04-19 2016-04-19 一种混凝电解复合法处理高浓度有机废水的设备及其处理方法

Country Status (1)

Country Link
CN (1) CN105692978B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107118741A (zh) * 2017-05-11 2017-09-01 徐州工程学院 一种沉砂池放空管材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1749186A (zh) * 2005-08-05 2006-03-22 鞍山市同辉科技发展有限公司 以混凝、吸附、电解脱色处理焦化污水预处理工艺及装置
KR20150002977A (ko) * 2013-06-28 2015-01-08 전주대학교 산학협력단 전기응집을 통한 숙면제조 공정용수의 처리 시스템
CN104609663A (zh) * 2015-01-19 2015-05-13 徐州工程学院 紫外辐照-生物膜氧化联合处理市政污水的装置和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2657343C (en) * 2006-03-31 2014-10-14 Jorge Miller Process for sewage water purification

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1749186A (zh) * 2005-08-05 2006-03-22 鞍山市同辉科技发展有限公司 以混凝、吸附、电解脱色处理焦化污水预处理工艺及装置
KR20150002977A (ko) * 2013-06-28 2015-01-08 전주대학교 산학협력단 전기응집을 통한 숙면제조 공정용수의 처리 시스템
CN104609663A (zh) * 2015-01-19 2015-05-13 徐州工程学院 紫外辐照-生物膜氧化联合处理市政污水的装置和方法

Also Published As

Publication number Publication date
CN105692978A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
CN105819618B (zh) 一种絮凝曝气复合法处理污水中悬浮物设备及其去除方法
CN105692770B (zh) 一种半自动换料式处理废水中无机非金属污染物的装置及其工作方法
CN105668838B (zh) 一种搅拌振动净水装置及其工作方法
CN105645678A (zh) 一种工业园区重金属废水深度处理的装置及方法
CN105152508B (zh) 增强污泥厌氧发酵装置
CN206289131U (zh) 一种基于plc的污水处理控制系统
CN106430806A (zh) 一种餐厨垃圾滤出液的模块化集成工艺方法
CN106365351A (zh) 一种基于化学中和法及纳米过滤技术的污水净化设备及其净化方法
CN207684971U (zh) 好氧内循环生物分离反应器
CN105800769B (zh) 一种生物轮盘式处理有毒有机物污水的装置及其处理方法
CN105692978B (zh) 一种混凝电解复合法处理高浓度有机废水的设备及其处理方法
CN106186488A (zh) 一种集成法处理污水中有害物质的设备及其处理方法
CN105693045B (zh) 智能分布式污水资源化系统
CN206624752U (zh) 一种厂站建设专用废水处理设备
CN207608474U (zh) 一种空化射流处理剩余污泥的反应器
CN106082466B (zh) 一种大型多级复合净水控制系统及其净水方法
CN205662433U (zh) 有机废水水处理装置
CN105923898B (zh) 一种蜂窝膜柱霉菌氧化法处理污水中有机物设备及其工作方法
CN217432571U (zh) 一种厌氧消化罐
CN103951117B (zh) 一种可去除屠宰废水中高浓度氨氮的处理装置
CN103641284B (zh) 污泥破解离心过滤一体机
CN106946410A (zh) 一种基于WinCC控制程序的石英砂滤池净水设备及净水方法
CN106045150B (zh) 一种超滤净化法处理生活污水的设备及其处理方法
CN204803191U (zh) 废水净化处理系统
CN209144000U (zh) 一种污泥无害化、减量化、资源化综合利用系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20180518

Address after: 221000 Jiangsu Xuzhou hi tech Industrial Development Zone Subdistrict Office -119 31

Applicant after: Xuzhou Tengrui Intelligent Equipment Co., Ltd.

Address before: 221018 Lishui Road, new town, Xuzhou, Jiangsu, two, Xuzhou Institute of technology. School of Environmental Engineering

Applicant before: Xuzhou Institute of Technology

TA01 Transfer of patent application right
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180615

Termination date: 20190419

CF01 Termination of patent right due to non-payment of annual fee