CN105688859B - 一种改性超顺磁Fe3O4纳米微粒的制备方法及应用 - Google Patents

一种改性超顺磁Fe3O4纳米微粒的制备方法及应用 Download PDF

Info

Publication number
CN105688859B
CN105688859B CN201610036238.9A CN201610036238A CN105688859B CN 105688859 B CN105688859 B CN 105688859B CN 201610036238 A CN201610036238 A CN 201610036238A CN 105688859 B CN105688859 B CN 105688859B
Authority
CN
China
Prior art keywords
nanoparticle
suspension
sio
ratio
superparamagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610036238.9A
Other languages
English (en)
Other versions
CN105688859A (zh
Inventor
汤立红
金旭
李凯
孙鑫
宁平
包双友
郭惠斌
朱婷婷
张秀英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201610036238.9A priority Critical patent/CN105688859B/zh
Publication of CN105688859A publication Critical patent/CN105688859A/zh
Application granted granted Critical
Publication of CN105688859B publication Critical patent/CN105688859B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/44Materials comprising a mixture of organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开了一种改性超顺磁Fe3O4纳米微粒的制备方法及应用,属于工业废水处理领域;本发明方法采用共沉淀法制备超顺磁四氧化三铁纳米微粒,以超顺磁四氧化三铁为核,采用水解在四氧化三铁表面包覆上一层或多层二氧化硅壳,运用偶联反应的原理,对包覆上的二氧化硅进行改性,以亚氨基二乙酸为改性试剂,通过亲核反应进行改性制得改性超顺磁Fe3O4纳米微粒,之后用于重金属铬的吸附,常温下选择性的吸附了Cr6+,此改性超顺磁四氧化三铁纳米微粒具有吸附效率高的优点。

Description

一种改性超顺磁Fe3O4纳米微粒的制备方法及应用
技术领域
本发明涉及一种改性超顺磁Fe3O4纳米微粒的制备方法及应用,属于工业废水处理领域。
背景技术
许多工业废水中大量存在铬,这些铬的化合物的存在不仅会造成环境污染,对人类健康产生威胁,还会造成大量的铬金属损失。由于含铬废水中铬存在形式较多,很难用一般的方法进行去除。目前电解法是工业上除铬的主要手段,其原理主要是利用铁板作阳极电解生成亚铁离子将六价铬离子还原成三价铬离子,使三价铬离子以氢氧化物沉淀析出。但此过程的缺点是铁板耗量较多,污泥中混有大量的氢氧化铁,利用价值低。
发明内容
本发明的目的在于提供一种改性超顺磁Fe3O4纳米微粒的制备方法,以超顺磁四氧化三铁为核,以二氧化硅为壳,以亚氨基二乙酸为改性试剂,通过亲核反应在核壳结构上进行改性嫁接上亚氨基;具体包括以下步骤:
(1)按0.57~0.67g/100mL的比例将纳米Fe3O4分散到的去离子水中,超声波分散30~60min后,在N2保护下,边搅拌边加热至60℃~80℃得到悬浮液,将浓度1~1.5mol/L的Na2SiO3溶液逐滴滴加到悬浮液中并搅拌,其中,Na2SiO3溶液与悬浮液的体积比为1:3~9:29,然后缓慢加入浓度1.5~2mol/L的HCl溶液调节pH值到5.5~6.5;将混合物在60℃~80℃下陈化2~3小时,然后用去离子水洗涤至中性后得到Fe3O4@SiO2纳米粒子;
(2)按1.2~1.5g/100mL的比例将步骤(1)合成的Fe3O4@SiO2纳米粒子放入浓度1~1.5mol/L的HCl溶液中静置8~12h,然后用纯水洗涤至中性,再用乙醇冲洗,按1.1~1.4g/100mL的比例将洗涤后的Fe3O4@SiO2粒子分散到乙醇中得到悬浮液,将悬浮液超声波分散30~60min,按悬浮液与二氯甲烷体积比为1:11~1:12的比例加入二氯甲烷,并按每100mL悬浮液添加1~1.2g NaOH的比例在常温下将加入NaOH的悬浮液反应2h,所得到的Fe3O4@SiO2-CH2-Cl的纳米颗粒用磁铁进行分离,并用乙醇和去离子水依次洗涤得到改性超顺磁Fe3O4纳米微粒Fe3O4@SiO2-CH2-Cl;
(3)按2~2.5g/50ml的比例将步骤(2)改性超顺磁Fe3O4纳米微粒Fe3O4@SiO2-CH2-Cl分散到去离子水中得到悬浮液,随后按每50mL悬浮液添加1~1.2g NaOH的比例将氢氧化钠加入悬浮液中,将悬浮液超声波分散30~60min,按Fe3O4@SiO2-CH2-Cl与亚氨基二乙酸摩尔比为1:1.1~1:1.2的比例加入亚氨基二乙酸,反应20h,用去离子水洗涤反应得到的改性超顺磁Fe3O4纳米微粒至pH为中性,再将之在140~160℃下干燥2h,得到改性超顺磁Fe3O4纳米微粒(NFCC)。
本发明所述纳米Fe3O4通过常规共沉淀法制备得到。
本发明另一目的是将上述改性超顺磁Fe3O4纳米微粒的制备方法制得的改性超顺磁Fe3O4纳米微粒应用在含铬废水处理中,调节含铬废水的pH值为3~8,按100mL废水添加5~10mg改性超顺磁Fe3O4纳米微粒的比例,在废水中加入改性超顺磁Fe3O4纳米微粒,反应2~4h,即得处理后废水。
发明的有益效果:
(1)本发明所述吸附剂具有超顺磁性,易磁分离,比表面积大等优点;
(2)本发明所述吸附剂可以用于处理含铬废水中的铬,其吸附率高,可重复使用;
(3)本发明所制备的用于处理含铬废水中的铬的吸附剂制备成本低,制备过程简单,制备条件要求低。
具体实施方式
下面结合具体实施例对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容,实施例中方法如无特殊说明均为常规方法。
实施例1:本改性超顺磁Fe3O4纳米微粒NFCC的制备方法如下:
(1)将0.57g纳米Fe3O4分散到100mL去离子水中,超声波分散30min后,在N2保护下,边搅拌边加热至80℃得到悬浮液,将1mol/L的Na2SiO3溶液逐滴滴加到悬浮液中并搅拌,其中,Na2SiO3溶液与悬浮液的体积比为1:3,然后缓慢加入1.5mol/L的HCl溶液调节pH值到5.5;将混合物在80℃下陈化2小时,然后用去离子水洗涤至中性后得到Fe3O4@SiO2纳米粒子;
(2)将步骤(1)合成的Fe3O4@SiO2纳米粒子1.2g放入1mol/L 100mL HCl溶液中静置8h,然后用纯水洗涤至中性,再用乙醇冲洗,将洗涤后的1.1g Fe3O4@ SiO2分散到100mL乙醇中得到悬浮液,将悬浮液超声波分散30min,按悬浮液与二氯甲烷体积比为1:11的比例加入二氯甲烷,并在常温下加入1g NaOH至悬浮液中反应2h,所得到的Fe3O4@SiO2-CH2-Cl的纳米颗粒用磁铁进行分离,并用乙醇和去离子水依次洗涤得到改性超顺磁Fe3O4纳米微粒Fe3O4@SiO2-CH2-Cl;
(3)将步骤(2)合成的2g改性超顺磁Fe3O4纳米微粒Fe3O4@SiO2-CH2-Cl分散到50mL去离子水中得到悬浮液,随后将1g的氢氧化钠加入悬浮液中,将悬浮液超声波分散30min,按Fe3O4@SiO2-CH2-Cl与亚氨基二乙酸摩尔比为1:1.1的比例加入亚氨基二乙酸,反应20h,用去离子水洗涤反应得到改性超顺磁Fe3O4纳米微粒至pH为中性,再将之在140℃下干燥2h,得到改性超顺磁Fe3O4纳米微粒NFCC;
其中所述纳米Fe3O4通过共沉淀法制备得到,具体方法如下:将2.2 mol的FeCl3·6H2O和1 mol的FeCl2·4H2O溶解于50 ml 的去离子水中,然后逐滴加入200mL 0.50 mol/L的 NH4OH溶液,在60℃~80℃下机械搅拌;获得的Fe3O4纳米微粒用磁选分离并用去离子水重复洗涤后得到纳米Fe3O4
本实施例以镀铬废水为处理对象,废水中铬含量为100mg/L,处理方法具体包括以下步骤:
(1)调节含铬废水的PH值为3,备用;
(2)按5mg/100ml的比例在步骤(1)得到的废水中加入改性超顺磁Fe3O4纳米微粒NFCC,反应2h后,铬的吸附效率达到85%。
实施例2:本改性超顺磁Fe3O4纳米微粒NFCC的制备方法如下:
(1)将0.6g纳米Fe3O4分散到100mL的去离子水中,超声波分散40min后,在N2保护下,边搅拌边加热至75℃得到悬浮液,将1.2mol/L的Na2SiO3溶液逐滴滴加到悬浮液中并搅拌,其中,Na2SiO3溶液与悬浮液的体积比为9:29,然后缓慢加入1.6mol /L的HCl溶液调节PH值到6.0;将混合物在75℃下陈化2.3小时,然后用去离子水洗涤至中性后得到Fe3O4@SiO2纳米粒子;
(2)将步骤(1)合成的Fe3O4@SiO2纳米粒子1.3g放入1.2mol/L 100mL的HCl溶液中静置10h,然后用纯水洗涤至中性,再用乙醇冲洗,将洗涤后的1.2g Fe3O4@ SiO2分散到100mL乙醇中得到悬浮液,将悬浮液超声波分散40min,按悬浮液与二氯甲烷体积比为1:11的比例加入二氯甲烷,并在常温下加入1.1g NaOH至悬浮液中反应2h,所得到的Fe3O4@SiO2-CH2-Cl的纳米颗粒用磁铁进行分离,并用乙醇和去离子水依次洗涤得到改性超顺磁Fe3O4纳米微粒Fe3O4@SiO2-CH2-Cl;
(3)将步骤(2)合成的2.2g改性超顺磁Fe3O4纳米微粒Fe3O4@SiO2-CH2-Cl分散到50mL去离子水中得到悬浮液,随后将1.1g的氢氧化钠加入悬浮液中,将悬浮液超声波分散40min,按Fe3O4@SiO2-CH2-Cl与亚氨基二乙酸摩尔比为1:1.1的比例加入亚氨基二乙酸,反应20h,用去离子水洗涤得到改性超顺磁Fe3O4纳米微粒至pH为中性,再将之在150℃下干燥2h,得到改性超顺磁Fe3O4纳米微粒NFCC。
所述纳米Fe3O4通过共沉淀法制备得到,具体方法如下:将2.2 mol的FeCl3·6H2O和1 mol的FeCl2· H2O溶解于50 ml 的去离子水中,然后逐滴200ml 0.50 mol/L的NH4OH溶液,在60℃~80℃下机械搅拌;获得的Fe3O4纳米微粒用磁选分离并用去离子水重复洗涤后得到纳米Fe3O4
本实施例以镀铬废水为处理对象,废水中铬含量为100mg/L, 处理方法具体包括以下步骤:
(1)调节含铬废水的PH值为5,备用;
(2)按7mg/100ml的比例在步骤(1)得到的废水中加入改性超顺磁Fe3O4纳米微粒NFCC,反应3h后,铬的吸附效率达到90%。
实施例3:本改性超顺磁Fe3O4纳米微粒NFCC的制备方法如下:
(1)将0.65g纳米Fe3O4分散到的100mL去离子水中,超声波分散50min后,在N2保护下,边搅拌边加热至60℃得到悬浮液,将1.3mol/L的Na2SiO3溶液逐滴滴加到悬浮液中并搅拌,其中,Na2SiO3溶液与悬浮液的体积比为1:20,然后缓慢加入1.8mol/L的HCl溶液调节pH值到6.5;将混合物在60℃下陈化2.5小时,然后用去离子水洗涤至中性后得到Fe3O4@SiO2纳米粒子;
(2)将步骤(1)合成的Fe3O4@SiO2纳米粒子1.4g放入1.4mol/L 100ml HCl溶液中静置11h,然后用纯水洗涤至中性,再用乙醇冲洗,将洗涤后的1.3g Fe3O4@ SiO2分散到100ml乙醇中得到悬浮液,将悬浮液超声波分散50min,按悬浮液与二氯甲烷体积比为1:12的比例加入二氯甲烷,并在常温下加入1.2g NaOH至悬浮液中反应2h,所得到的Fe3O4@SiO2-CH2-Cl的纳米颗粒用磁铁进行分离,并用乙醇和去离子水依次洗涤得到改性超顺磁Fe3O4纳米微粒Fe3O4@SiO2-CH2-Cl;
(3)将步骤(2)合成的2.4g改性超顺磁Fe3O4纳米微粒Fe3O4@SiO2-CH2-Cl分散到50ml去离子水中得到悬浮液,随后将1.2g的氢氧化钠加入悬浮液中,将悬浮液超声波分散50min,按Fe3O4@SiO2-CH2-Cl与亚氨基二乙酸摩尔比为1:1.2的比例加入亚氨基二乙酸,反应20h,用去离子水洗涤得到改性超顺磁Fe3O4纳米微粒至pH为中性,再将之在160℃下干燥2h,得到改性超顺磁Fe3O4纳米微粒NFCC。
所述纳米Fe3O4通过共沉淀法制备得到,具体方法如下:将2.2 mol的FeCl3·6H2O和1 mol的FeCl2·4H2O溶解于50 ml 的去离子水中,然后逐滴200ml 0.50 mol/L的NH4OH溶液,在60℃~80℃下机械搅拌;获得的Fe3O4纳米微粒用磁选分离并用去离子水重复洗涤后得到纳米Fe3O4
本实施例以镀铬废水为处理对象,废水中铬含量为100mg/L,处理方法具体包括以下步骤:
(1)调节含铬废水的PH值为7,备用;
(2)按7mg/100ml的比例在步骤(1)得到的废水中加入改性超顺磁Fe3O4纳米微粒NFCC,反应3.5h后,铬的吸附效率达到92%。
实施例4:本改性超顺磁Fe3O4纳米微粒NFCC的制备方法如下:
(1)按0.67g/100ml的比例将纳米Fe3O4分散到的去离子水中,超声波分散60min后,在N2保护下,边搅拌边加热至65℃得到悬浮液,将1.5mol/L的Na2SiO3溶液逐滴滴加到悬浮液中并搅拌,其中,Na2SiO3溶液与悬浮液的体积比为3:10,然后缓慢加入2mol / L的HCl溶液调节PH值到6.2;将混合物在65℃下陈化3小时,然后用去离子水洗涤至中性后得到Fe3O4@SiO2纳米粒子;
(2)将步骤(1)合成的Fe3O4@SiO2纳米粒子1.5g放入1.5mol/L 100ml的HCl溶液中静置12h,然后用纯水洗涤至中性,再用乙醇冲洗,将洗涤后的1.4g Fe3O4@ SiO2分散到100ml乙醇中得到悬浮液,将悬浮液超声波分散60min,按悬浮液与二氯甲烷体积比为1:12的比例加入二氯甲烷,并在常温下加入1.2g NaOH至悬浮液中反应2h,所得到的Fe3O4@SiO2-CH2-Cl的纳米颗粒用磁铁进行分离,并用乙醇和去离子水依次洗涤得到改性超顺磁Fe3O4纳米微粒Fe3O4@SiO2-CH2-Cl;
(3)将步骤(2)合成的2.5g改性超顺磁Fe3O4纳米微粒Fe3O4@SiO2-CH2-Cl分散到50ml去离子水中得到悬浮液,随后将1.2g的氢氧化钠加入悬浮液中,将悬浮液超声波分散60min,按Fe3O4@SiO2-CH2-Cl与亚氨基二乙酸摩尔比为1:1.2的比例加入亚氨基二乙酸,反应20h,用去离子水洗涤得到改性超顺磁Fe3O4纳米微粒至pH为中性,再将之在160℃下干燥2h,得到改性超顺磁Fe3O4纳米微粒NFCC。
所述纳米Fe3O4通过共沉淀法制备得到,具体方法如下:将2.2 mol的FeCl3·6H2O和1 mol的FeCl2·4H2O溶解于50 ml 的去离子水中,然后逐滴200ml 0.50 mol/L的NH4OH溶液,在60℃~80℃下机械搅拌;获得的Fe3O4纳米微粒用磁选分离并用去离子水重复洗涤后得到纳米Fe3O4
本实施例以镀铬废水为处理对象,废水中铬含量为100mg/L,处理方法具体包括以下步骤:
(1)调节含铬废水的PH值为8,备用;
(2)按10mg/100ml的比例在步骤(1)得到的废水中加入改性超顺磁Fe3O4纳米微粒NFCC,反应3.5h后,铬的吸附效率达到95%。

Claims (3)

1.一种改性超顺磁Fe3O4纳米微粒的制备方法,具体包括以下步骤:
(1)按每100mL去离子水添加0.57~0.67g纳米Fe3O4的比例,将纳米Fe3O4分散到去离子水中,超声波分散30~60min后,在N2保护下,边搅拌边加热至60℃~80℃得到悬浮液,将浓度1~1.5mol/L的Na2SiO3溶液逐滴滴加到悬浮液中并搅拌,其中,Na2SiO3溶液与悬浮液的体积比为1:3~9:29,然后缓慢加入浓度1.5~2mol/L的HCl溶液调节pH值到5.5~6.5;将混合物在60℃~80℃下陈化2~3小时,然后用去离子水洗涤至中性后得到Fe3O4@SiO2纳米粒子;
(2)按每100mL HCl溶液添加1.2~1.5gFe3O4@SiO2纳米粒子的比例,将步骤(1)合成的Fe3O4@SiO2纳米粒子放入浓度1~1.5mol/L 的HCl溶液中静置8~12h,然后用纯水洗涤至中性,再用乙醇冲洗,按每100mL乙醇添加1.1~1.4g洗涤后的Fe3O4@SiO2粒子的比例,将洗涤后的Fe3O4@SiO2粒子分散到乙醇中得到悬浮液,将悬浮液超声波分散30~60min,按悬浮液与二氯甲烷体积比为1:11~1:12的比例加入二氯甲烷,并按每100mL悬浮液添加1~1.2g NaOH的比例在常温下将加入NaOH的悬浮液反应2h,所得到的Fe3O4@SiO2-CH2-Cl的纳米颗粒用磁铁进行分离,并用乙醇和去离子水依次洗涤得到改性超顺磁Fe3O4纳米微粒Fe3O4@SiO2-CH2-Cl;
(3)按每50mL 去离子水添加2~2.5g改性超顺磁Fe3O4纳米微粒的比例,将步骤(2)改性超顺磁Fe3O4纳米微粒Fe3O4@SiO2-CH2-Cl分散到去离子水中得到悬浮液,随后按每50mL悬浮液添加1~1.2g NaOH的比例将氢氧化钠加入悬浮液中,将悬浮液超声波分散30~60min,按Fe3O4@SiO2-CH2-Cl与亚氨基二乙酸摩尔比为1:1.1~1:1.2的比例加入亚氨基二乙酸,反应20h,用去离子水洗涤反应得到的改性超顺磁Fe3O4纳米微粒至pH为中性,再在140~160℃下干燥2h,得到改性超顺磁Fe3O4纳米微粒
2.权利要求1所述的改性超顺磁Fe3O4纳米微粒的制备方法制得的改性超顺磁Fe3O4纳米微粒在含铬废水处理中的应用,其特征在于:调节含铬废水的pH值为3~8,按100mL废水添加5~10mg改性超顺磁Fe3O4纳米微粒的比例,在废水中加入改性超顺磁Fe3O4纳米微粒,反应2~4h,即得处理后废水。
3.根据权利要求2所述的改性超顺磁Fe3O4纳米微粒在含铬废水处理中的应用,其特征在于:纳米Fe3O4通过常规共沉淀法制备得到。
CN201610036238.9A 2016-01-20 2016-01-20 一种改性超顺磁Fe3O4纳米微粒的制备方法及应用 Active CN105688859B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610036238.9A CN105688859B (zh) 2016-01-20 2016-01-20 一种改性超顺磁Fe3O4纳米微粒的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610036238.9A CN105688859B (zh) 2016-01-20 2016-01-20 一种改性超顺磁Fe3O4纳米微粒的制备方法及应用

Publications (2)

Publication Number Publication Date
CN105688859A CN105688859A (zh) 2016-06-22
CN105688859B true CN105688859B (zh) 2018-01-12

Family

ID=56226722

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610036238.9A Active CN105688859B (zh) 2016-01-20 2016-01-20 一种改性超顺磁Fe3O4纳米微粒的制备方法及应用

Country Status (1)

Country Link
CN (1) CN105688859B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108057427B (zh) * 2017-12-14 2020-05-26 湖南科技大学 一种固体磁性重金属离子分离材料及其制备方法
CN110694590A (zh) * 2019-11-18 2020-01-17 云南大学 一种污水中重金属铬的处理方法
CN111167424A (zh) * 2020-01-10 2020-05-19 云南大学 以餐厨废弃油脂为原料制成的磁性重金属吸附剂及其应用
CN111908571A (zh) * 2020-09-01 2020-11-10 北京航天新风机械设备有限责任公司 一种用于将含铬废水中纳米颗粒和铬分离的磁分离设备
CN113087216A (zh) * 2021-04-24 2021-07-09 中城园林工程有限公司 一种园林污水处理工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101053827A (zh) * 2007-05-10 2007-10-17 复旦大学 一种表面固定金属离子的磁性微球及其制备方法和应用
EP2429946A4 (en) * 2009-05-14 2013-09-25 Univ Columbia METHODS AND SYSTEMS FOR SYNTHESIZING IRON-BASED MATERIALS AND CARBON DIOXIDE SEQUESTRATION

Also Published As

Publication number Publication date
CN105688859A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
CN105688859B (zh) 一种改性超顺磁Fe3O4纳米微粒的制备方法及应用
CN102807272B (zh) 磁场强化零价铁去除水中Se(IV)/Se(VI)的方法
Zhu et al. Efficient degradation of rhodamine B by magnetically separable ZnS–ZnFe2O4 composite with the synergistic effect from persulfate
CN105381780B (zh) 一种吸附‑超导磁分离除砷锑的磁性吸附剂及其制备方法
Fu et al. Application of a novel strategy—Advanced Fenton-chemical precipitation to the treatment of strong stability chelated heavy metal containing wastewater
CN110694590A (zh) 一种污水中重金属铬的处理方法
CN101348297B (zh) 一种含重金属离子废水的处理方法
CN103464091A (zh) 一种改性膨润土负载纳米铁材料及其制备方法
CN105399176B (zh) 一种磺酸基改性超顺磁纳米材料的制备方法及其应用
CN106334518B (zh) 一种可回收的磁性磷吸附剂及其制备方法
CN105688821B (zh) 一种改性超顺磁四氧化三铁纳米微粒的制备方法及应用
CN105016418B (zh) 一种镀锌废酸的处理方法
CN107930551A (zh) 一种生产二氧化碳阴离子自由基的方法、一种处理含六价铬废水的方法
CN112607785B (zh) 一种MnFe2O4/C纳米复合微球及其制备方法
CN107876000A (zh) 一种纳米除磷剂、制备方法及应用
CN105439272B (zh) 铁氧体MFe2O4磁性纳米颗粒用于去除含碲废水的方法及其用途
CN104971688B (zh) 一种纳米磁性颗粒吸附剂的制备方法
Song et al. Sulfur-zinc modified kaolin/steel slag: A particle electrode that efficiently degrades norfloxacin in a neutral/alkaline environment
CN112158932B (zh) 一种磁性零价铁聚合氯化铝复合絮凝剂及其制备方法和应用
CN102728299B (zh) 一种掺杂二氧化钛的复合磁纳米吸附剂及其制备方法、应用
CN106044999B (zh) 一种芬顿组合工艺处理废水的方法
CN110342628A (zh) 一种络合铜废水的处理方法
WO2019214065A1 (zh) 二价锰强化高铁酸盐去除水中多种重金属污染物的方法
Klas et al. Chemical stability and extent of isomorphous substitution in ferrites precipitated under ambient temperatures
CN105293783A (zh) 一种污水中重金属的处理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant