CN105684291B - 谐振型高频电源装置以及谐振型高频电源装置用开关电路 - Google Patents

谐振型高频电源装置以及谐振型高频电源装置用开关电路 Download PDF

Info

Publication number
CN105684291B
CN105684291B CN201380080599.8A CN201380080599A CN105684291B CN 105684291 B CN105684291 B CN 105684291B CN 201380080599 A CN201380080599 A CN 201380080599A CN 105684291 B CN105684291 B CN 105684291B
Authority
CN
China
Prior art keywords
resonance
mode
light source
intensity light
high intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201380080599.8A
Other languages
English (en)
Other versions
CN105684291A (zh
Inventor
阿久泽好幸
酒井清秀
江副俊裕
伊藤有基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Engineering Co Ltd
Original Assignee
Mitsubishi Electric Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Engineering Co Ltd filed Critical Mitsubishi Electric Engineering Co Ltd
Publication of CN105684291A publication Critical patent/CN105684291A/zh
Application granted granted Critical
Publication of CN105684291B publication Critical patent/CN105684291B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/533Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using discharge tubes only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5383Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a self-oscillating arrangement
    • H02M7/53832Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a self-oscillating arrangement in a push-pull arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • H02M7/4818Resonant converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Led Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

本发明涉及一种谐振型高频电源装置,具有进行开关动作的功率元件,该谐振型高频电源装置具有高频脉冲驱动电路(1),该高频脉冲驱动电路(1)向功率元件发送超过2MHz的高频脉冲状的电压信号,驱动该功率元件,并且利用来自高频脉冲驱动电路(1)的电压信号的信号线的阻抗和功率元件的寄生电容,使该电压信号进行部分谐振。

Description

谐振型高频电源装置以及谐振型高频电源装置用开关电路
技术领域
本发明涉及一种以高频进行电力传输的谐振型高频电源装置以及谐振型高频电源装置用开关电路。
背景技术
图15所示的以往的谐振型高频电源装置中,作为功率元件Q1,使用了用于RF(Radio Frequency,射频)的高频FET(Field Effect Transistor,场效应晶体管)。而且,为了驱动该高频FET,使用了变压器型驱动电路101和RF功率放大器电路102,并且为了驱动RF功率放大器电路102,使用了多输出型电源电路103(例如参照非专利文献1)。
【现有技术文献】
【非专利文献】
非专利文献1:晶体管技术2005年2月号13章
发明内容
发明所要解决的技术问题
但是,非专利文献1中公开的以往结构中,为了驱动功率元件Q1,使用了变压器型驱动电路101,并且作为功率元件Q1的Vgs驱动信号,施加了交流的正弦波电压。因此,在使功率元件Q1断开的期间内,会对Vgs施加负电压,因此会在功率元件Q1的寄生电容即Cgs和Cgd中积蓄与该负电压相当的电荷(Q=CV)。而且,为了在下一个期间内使功率元件Q1导通,必须将该积蓄的电荷放一次电,然后再用正电压进行充电。而且,由于要通过重复这种动作来开关功率元件Q1,所以会存在需要较大的电力来驱动功率元件Q1的课题。
此外,上述驱动动作还是使延迟功率元件Q1的开关速度变慢的主要原因。因此,其会导致功率元件Q1的开关损耗的增加。因此,存在以下课题:即作为高频电源装置的功耗大,其成为功率转换效率降低的原因。
本发明是为了解决上述课题而完成的,其目的在于提供一种谐振型高频电源装置以及谐振型高频电源装置用开关电路,其通过不使用变压器型驱动电路而驱动功率元件,从而以低功耗来实现高效率化,并且能够进行超过2MHz的高频动作。
解决技术问题所采用的技术方案
本发明所涉及的谐振型高频电源装置具有进行开关动作的功率元件,该谐振型高频电源装置具有高频脉冲驱动电路,该高频脉冲驱动电路向功率元件发送超过2MHz的高频脉冲状的电压信号,驱动该功率元件,并且利用来自高频脉冲驱动电路的电压信号的信号线的阻抗和功率元件的寄生电容,使该电压信号进行部分谐振。
发明效果
根据本发明,由于采用如上结构,因此可通过不使用变压器型驱动电路而驱动功率元件,从而以低功耗来实现高效率化,并且能够进行超过2MHz的高频动作。
附图说明
图1是表示本发明的实施方式1所涉及的谐振型高频电源装置的结构的图(功率元件为单一结构时)。
图2是表示本发明的实施方式1所涉及的谐振型高频电源装置的V1波形与Vg波形的关系的图。
图3是表示本发明的实施方式1所涉及的谐振型高频电源装置的其他结构的图(使用混合化的元件时)。
图4是表示本发明的实施方式1所涉及的谐振型高频电源装置的其他结构的图(使用混合化的元件时)。
图5是表示本发明的实施方式1所涉及的谐振型高频电源装置的其他结构的图(使用混合化的元件时)。
图6是表示本发明的实施方式1所涉及的谐振型高频电源装置的其他结构的图(使用混合化的元件时)。
图7是表示本发明的实施方式1所涉及的谐振型高频电源装置的其他结构的图(使用混合化的元件时)。
图8是表示本发明的实施方式1所涉及的谐振型高频电源装置的其他结构的图(使用混合化的元件时)。
图9是表示本发明的实施方式1所涉及的谐振型高频电源装置的其他结构的图(使用混合化的元件时)。
图10是表示本发明的实施方式1所涉及的谐振型高频电源装置的其他结构的图(使用混合化的元件时)。
图11是表示本发明的实施方式1所涉及的谐振型高频电源装置的其他结构的图(使用混合化的元件时)。
图12是表示本发明的实施方式1所涉及的谐振型高频电源装置的其他结构的图(功率元件为推挽式结构时)。
图13是表示本发明的实施方式1所涉及的谐振型高频电源装置的其他结构的图(设有谐振条件可变型LC电路时)。
图14是表示本发明的实施方式1所涉及的谐振型高频电源装置的其他结构的图(设有谐振条件可变电路时)。
图15是表示以往的谐振型高频电源装置的结构的图。
具体实施方式
以下参照附图,详细说明本发明的实施方式。
实施方式1
图1是表示本发明的实施方式1所涉及的谐振型高频电源装置的结构的图。另外,图1中示出功率元件Q1为单一结构时的电路。
谐振型高频电源装置如图1所示,由功率元件Q1、谐振电路元件(电容器C1、C2以及电感器L2)、电感器L1、高频脉冲驱动电路1、可变型脉冲信号产生电路2以及偏置用电源电路3构成。此外,Cgs和Cgd是功率元件Q1的寄生电容,Z1是高频脉冲驱动电路1与功率元件Q1的G端子间的信号线(线、基板上图案等)的阻抗。
另外,谐振型发送天线(电力传输用发送天线)10是具有LC谐振特性的电力传输用谐振型天线(并不仅限定于非接触型)。该谐振型发送天线10可以是磁场共振型、电场共振型以及电磁感应型中的任一种。
功率元件Q1是进行开关动作以将输入的直流电压Vin转换为交流的开关元件。作为该功率元件Q1,不仅限于用于RF的FET,例如可使用Si-MOSFET、SiC-MOSFET、GaN-FET等元件。
谐振电路元件(电容器C1、C2以及电感器L2)是用于使功率元件Q1的开关动作进行谐振开关的元件。利用由该电容器C1、C2以及电感器L2构成的谐振电路元件,能够与谐振型发送天线10之间使谐振条件一致。
电感器L1的作用是,在每次功率元件Q1的开关动作时暂时保持输入的直流电压Vin的能量。
高频脉冲驱动电路1是向功率元件Q1的G端子发送超过2MHz的高频脉冲状的电压信号并驱动功率元件Q1的电路。此时,利用来自高频脉冲驱动电路1的电压信号的信号线的阻抗Z1和功率元件Q1的寄生电容(Cgs+Cgd),使该电压信号部分谐振,然后输入至功率元件Q1的G端子。该高频脉冲驱动电路1是通过FET元件等将输出部构成为推挽式电路且能够高速地进行ON/OFF输出的电路。
可变型脉冲信号产生电路2是向高频脉冲驱动电路1发送逻辑信号等超过2MHz的高频脉冲状电压信号并驱动高频脉冲驱动电路1的电路。该可变型脉冲信号产生电路2由用来设定频率的振荡器和触发器、反相器等逻辑IC构成,具有变更脉冲幅度、输出反转脉冲等功能。
偏置电源电路3向可变型脉冲信号产生电路2和高频脉冲驱动电路1供给驱动电力。
接着,说明如上构成的谐振型高频电源装置的动作。
首先,输入的直流电压Vin通过电感器L1施加至功率元件Q1的D端子。然后,功率元件Q1通过ON/OFF的开关动作将该电压转换为正电压的交流状电压。实施该转换动作时,电感器L1起到暂时保持能量的作用,帮助其将直流电转换为交流电。
此处,功率元件Q1的开关动作中,通过由电容器C1、C2以及电感器L2构成的谐振电路元件来设定谐振开关条件以使ZVS(零电压开关)成立,使得Ids电流与Vds电压积所引起的开关损耗为最小。通过该谐振开关动作,以RTN电压为轴的交流电压输出至输出电压Vout。
通过将接收到来自可变型脉冲信号产生电路2的任意脉冲状的电压信号后的高频脉冲驱动电路1输出的脉冲状的电压信号输入至功率元件Q1的G端子,从而驱动功率元件Q1。
此时,功率元件Q1的G端子的电压Vg会因阻抗Z1与寄生电容(Cgs+Cgd)的瞬态响应,形成图2所示的部分谐振波形,其峰值电压为高于V1电压的电压,并施加至功率元件Q1的G端子。由此,能够以高速且低ON电阻的方式驱动功率元件Q1。
此外,功率元件Q1的驱动频率为谐振型高频电源装置的动作频率,根据可变型脉冲信号产生电路2内部的振荡器电路的设定来决定。
如上所述,根据本实施方式1,其构成为,具有高频脉冲驱动电路1,该高频脉冲驱动电路1将超过2MHz的高频脉冲状的电压信号发送至功率元件Q1,驱动该功率元件,并且利用来自高频脉冲驱动电路1的电压信号的信号线的阻抗Z1和功率元件Q1的寄生电容(Cgs+Cgd),使该电压信号部分谐振,因此能够通过部分谐振使功率元件Q1的G端子的电压Vg高于电压V1,并且能够使该电压Vg形成为半波正弦波状,所以在不使用现有技术的变压器型驱动电路101且进行超过2MHz的高频动作的谐振型高频电源装置中,能够获得低功耗且高达90%以上的功率转换效率特性。此外,还能够实现装置的简易化、小型化以及低成本化。
另外,图1中,还可使用将各部分混合化的元件(谐振型高频电源装置用开关电路)4。图3表示将功率元件Q1、阻抗Z1以及高频脉冲驱动电路1混合化后的元件4,图4表示将功率元件Q1、阻抗Z1以及电容器C1混合化后的元件4,图5表示将功率元件Q1、阻抗Z1、电容器C1以及高频脉冲驱动电路1混合化后的元件4,图6表示将功率元件Q1、阻抗Z1、电容器C1、高频脉冲驱动电路1以及可变型脉冲信号产生电路2混合化后的元件4,图7表示将功率元件Q1、阻抗Z1以及电容器C2混合化后的元件4,图8表示将功率元件Q1、阻抗Z1、电容器C2以及高频脉冲驱动电路1混合化后的元件4,图9表示将功率元件Q1、阻抗Z1以及电容器C1、C2混合化后的元件4,图10表示将功率元件Q1、阻抗Z1、电容器C1、C2以及高频脉冲驱动电路1混合化后的元件4,图11表示将功率元件Q1、阻抗Z1、电容器C1、C2、高频脉冲驱动电路1以及可变型脉冲信号产生电路2混合化后的元件4。
此外,图1中示出了功率元件Q1为单一结构时的电路,但并不限定于此,例如图12所示,功率元件Q1为推挽式结构时,也同样可使用本发明。
此外,图1的说明中谐振电路元件(电容器C1、C2以及电感器L2)的常数是固定的,并将谐振条件设为固定,但并不限定于此,例如图13所示,也可使用谐振条件为可变的谐振条件可变型LC电路5。此外,例如图14所示,还可另行设置使上述谐振电路元件(电容器C1、C2以及电感器L2)的谐振条件为可变的谐振条件可变电路6。
此外,本申请发明可在其发明范围内,对实施方式的任意的构成要素进行变形或省略。
【工业上的实用性】
本发明所涉及的谐振型高频电源装置以及谐振型高频电源装置用开关电路通过不使用变压器型驱动电路而驱动功率元件从而以低功耗来实现高效率化,能够进行超过2MHz的高频动作,适用于以高频进行电力传输的谐振型高频电源装置以及谐振型高频电源装置用开关电路等。
(标号说明)
1 高频脉冲驱动电路
2 可变型脉冲信号产生电路
3 偏置用电源电路
4 混合化元件(谐振型高频电源装置用开关电路)
5 谐振条件可变型LC电路
6 谐振条件可变电路
10 谐振型发送天线(电力传输用发送天线)

Claims (14)

1.一种谐振型高频电源装置,具有进行开关动作的功率元件,其特征在于,该谐振型高频电源装置包括:
功率元件,该功率元件具备栅极端子及寄生电容;以及
高频脉冲驱动电路,该高频脉冲驱动电路向所述功率元件发送超过2MHz的高频脉冲状的电压信号,生成驱动该功率元件的所述栅极端子的脉冲信号,
利用所述高频脉冲驱动电路与所述栅极端子之间的阻抗和所述功率元件的寄生电容,使施加至所述栅极端子的电压信号的峰值的振幅比所述脉冲状的电压信号的振幅要大。
2.如权利要求1所述的谐振型高频电源装置,其特征在于,
所述功率元件为用于RF(射频)的FET(场效应晶体管)以外的FET。
3.如权利要求1所述的谐振型高频电源装置,其特征在于,
所述功率元件构成推挽式电路或单一式电路。
4.如权利要求1所述的谐振型高频电源装置,其特征在于,
具有由电容器和电感器构成的谐振电路元件,在该谐振电路元件与利用磁场共振的电力传输用发送天线之间使谐振条件一致。
5.如权利要求1所述的谐振型高频电源装置,其特征在于,
具有由电容器和电感器构成的谐振电路元件,在该谐振电路元件与利用电场共振的电力传输用发送天线之间使谐振条件一致。
6.如权利要求1所述的谐振型高频电源装置,其特征在于,
具有由电容器和电感器构成的谐振电路元件,在该谐振电路元件与利用电磁感应的电力传输用发送天线之间使谐振条件一致。
7.如权利要求4所述的谐振型高频电源装置,其特征在于,
所述谐振电路元件可改变谐振条件。
8.如权利要求5所述的谐振型高频电源装置,其特征在于,
所述谐振电路元件可改变谐振条件。
9.如权利要求6所述的谐振型高频电源装置,其特征在于,
所述谐振电路元件可改变谐振条件。
10.如权利要求4所述的谐振型高频电源装置,其特征在于,
具有可改变所述谐振电路元件的谐振条件的谐振条件可变电路。
11.如权利要求5所述的谐振型高频电源装置,其特征在于,
具有可改变所述谐振电路元件的谐振条件的谐振条件可变电路。
12.如权利要求6所述的谐振型高频电源装置,其特征在于,
具有可改变所述谐振电路元件的谐振条件的谐振条件可变电路。
13.一种谐振型高频电源装置用开关电路,用于具有进行开关动作的功率元件的谐振型高频电源装置,其特征在于,具有:
具备栅极端子及寄生电容的所述功率元件;以及
高频脉冲驱动电路,该高频脉冲驱动电路向所述功率元件发送超过2MHz的高频脉冲状的电压信号,生成驱动该功率元件的所述栅极端子的脉冲信号,
利用所述高频脉冲驱动电路与所述栅极端子之间的阻抗和所述功率元件的寄生电容,使施加至所述栅极端子的电压信号的峰值的振幅比所述脉冲状的电压信号的振幅要大。
14.如权利要求13所述的谐振型高频电源装置用开关电路,其特征在于,
具有电容器,该电容器用于与电力传输用发送天线之间使谐振条件一致。
CN201380080599.8A 2013-10-31 2013-10-31 谐振型高频电源装置以及谐振型高频电源装置用开关电路 Expired - Fee Related CN105684291B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/079544 WO2015063916A1 (ja) 2013-10-31 2013-10-31 共振型高周波電源装置及び共振型高周波電源装置用スイッチング回路

Publications (2)

Publication Number Publication Date
CN105684291A CN105684291A (zh) 2016-06-15
CN105684291B true CN105684291B (zh) 2018-09-04

Family

ID=53003560

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380080599.8A Expired - Fee Related CN105684291B (zh) 2013-10-31 2013-10-31 谐振型高频电源装置以及谐振型高频电源装置用开关电路

Country Status (6)

Country Link
US (1) US9882509B2 (zh)
JP (1) JP5791833B1 (zh)
KR (1) KR20160077195A (zh)
CN (1) CN105684291B (zh)
DE (1) DE112013007562T5 (zh)
WO (1) WO2015063916A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105684292B (zh) * 2013-10-31 2018-07-17 三菱电机工程技术株式会社 谐振型高频电源装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1423418A (zh) * 2001-12-06 2003-06-11 Eni技术公司 半正弦波谐振激励电路
JP2006353049A (ja) * 2005-06-20 2006-12-28 Toshiba Corp 電源装置及び無電極放電ランプ装置
CN102150340A (zh) * 2008-09-17 2011-08-10 高通股份有限公司 用于无线功率发射的发射器
JP2013027129A (ja) * 2011-07-20 2013-02-04 Toyota Industries Corp 給電側設備及び共鳴型非接触給電システム
WO2013080285A1 (ja) * 2011-11-28 2013-06-06 富士通株式会社 非接触型充電装置および非接触型充電方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3570374B1 (en) * 2004-06-23 2022-04-20 pSemi Corporation Integrated rf front end
KR101107823B1 (ko) * 2004-11-23 2012-02-08 센소매틱 일렉트로닉스, 엘엘씨 통합된 eas/rfid 장치 및 이를 비활성화하는 장치
US7660094B2 (en) * 2004-12-14 2010-02-09 Mitsubishi Denki Kabushiki Kaisha Inverter circuit
CN102013736B (zh) 2009-09-03 2013-10-16 Tdk株式会社 无线馈电装置和无线电力传输系统
JP5609317B2 (ja) * 2009-09-03 2014-10-22 Tdk株式会社 ワイヤレス給電装置およびワイヤレス電力伝送システム
US9787364B2 (en) * 2011-01-20 2017-10-10 Triune Ip, Llc Multi-use wireless power and data system
JP6074745B2 (ja) * 2012-01-25 2017-02-08 パナソニックIpマネジメント株式会社 無線電力伝送システムおよび送電装置
CN104247206B (zh) 2012-03-06 2017-03-01 株式会社村田制作所 电力传输系统
US9504842B2 (en) * 2013-07-23 2016-11-29 Ado Holding Sa Electronic medical system with implantable medical device, having wireless power supply transfer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1423418A (zh) * 2001-12-06 2003-06-11 Eni技术公司 半正弦波谐振激励电路
JP2006353049A (ja) * 2005-06-20 2006-12-28 Toshiba Corp 電源装置及び無電極放電ランプ装置
CN102150340A (zh) * 2008-09-17 2011-08-10 高通股份有限公司 用于无线功率发射的发射器
JP2013027129A (ja) * 2011-07-20 2013-02-04 Toyota Industries Corp 給電側設備及び共鳴型非接触給電システム
WO2013080285A1 (ja) * 2011-11-28 2013-06-06 富士通株式会社 非接触型充電装置および非接触型充電方法

Also Published As

Publication number Publication date
DE112013007562T5 (de) 2016-07-21
JPWO2015063916A1 (ja) 2017-03-09
US9882509B2 (en) 2018-01-30
WO2015063916A1 (ja) 2015-05-07
US20160241160A1 (en) 2016-08-18
JP5791833B1 (ja) 2015-10-07
KR20160077195A (ko) 2016-07-01
CN105684291A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5866506B2 (ja) ゲート駆動回路
CN105659494A (zh) 功率放大设备和方法
CN108572276B (zh) 无线谐振功率发射器及其中的峰峰值电压检测的方法
US9871416B2 (en) Resonant type high frequency power supply device
US9634655B2 (en) Drive device having first and second switching devices with different gate widths
US20150137777A1 (en) Electronic system, voltage conversion circuit and method thereof
CN113517764B (zh) 发射端谐振频率实时校准的无线充电系统
CN106165284B (zh) 谐振型高频电源装置及谐振型高频电源装置用开关电路
CN105684291B (zh) 谐振型高频电源装置以及谐振型高频电源装置用开关电路
TW201325058A (zh) 直流交流轉換器及直流交流轉換電路
CN105684292B (zh) 谐振型高频电源装置
CN204669210U (zh) 一种电弧喷涂电源的脉冲驱动电路
JP6091643B2 (ja) 共振型高周波電源装置及び共振型高周波電源装置用スイッチング回路
Sekiya et al. MOSFET parasitic capacitance effects to class-DE power amplifier
JP2013106490A (ja) ワイヤレス給電装置およびワイヤレス給電システムならびに電力信号の送信方法
CN218829618U (zh) 一种大功率pin管射频开关驱动电源
KR101181470B1 (ko) 무선 에너지 전송을 위한 송신단 구조
Zhang Analysis of class e push-pull power amplifier for low power wireless energy transmission
Saat et al. Development of Wireless Power Transfer using Capacitive Method for Mouse Charging Application
Murakami et al. Characteristics of high frequency gate driver by the use of LC self-excitation oscillator
Shalaby et al. Integrated Inductor Class-D Audio Amplifier Modeling & Simulation
CN104660087A (zh) 光纤航姿设备后备电源逆变器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180904