CN105682775B - 独立微管、制备其的方法与其用途、电极与膜电极组合件 - Google Patents

独立微管、制备其的方法与其用途、电极与膜电极组合件 Download PDF

Info

Publication number
CN105682775B
CN105682775B CN201480050600.7A CN201480050600A CN105682775B CN 105682775 B CN105682775 B CN 105682775B CN 201480050600 A CN201480050600 A CN 201480050600A CN 105682775 B CN105682775 B CN 105682775B
Authority
CN
China
Prior art keywords
carbon nanotube
pipe
micro
independent micro
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480050600.7A
Other languages
English (en)
Other versions
CN105682775A (zh
Inventor
伍里·根迪尔
马缇亚斯·维斯灵
安纳·大卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DWI an der RWTH Aachen eV
Original Assignee
DWI an der RWTH Aachen eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DWI an der RWTH Aachen eV filed Critical DWI an der RWTH Aachen eV
Publication of CN105682775A publication Critical patent/CN105682775A/zh
Application granted granted Critical
Publication of CN105682775B publication Critical patent/CN105682775B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3403Regulation parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/04Tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0212Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Metallurgy (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Public Health (AREA)
  • Vascular Medicine (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Composite Materials (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明提供一种独立微管、制备其的方法与其用途、电极与膜电极组合件。本发明的独立微管由碳纳米管或基于碳纳米管的复合物制成,所述独立微管具有500μm到5000μm范围内的外径和50μm到1000μm范围内的壁厚度。根据本发明的微管可根据所要几何形状(外径和内径以及长度)、孔隙度、电导率和催化活性而形成,具有出色的孔隙度、机械和化学稳定性、电化学特性、高电和热导率以及高表面积和比电容。

Description

独立微管、制备其的方法与其用途、电极与膜电极组合件
技术领域
本发明涉及由碳纳米管或基于碳纳米管的复合物制成的微管。本发明还涉及使用由碳纳米管或基于碳纳米管的复合物制成的此些微管作为独立电极或与集电器集成或作为电化学系统中应用的膜电极组合件的一部分,所述电化学系统例如初级和二次电池、氧化还原流电池组、燃料电池、电化学电容器、电容性消电离系统、电化学和生物传感器装置或太阳能电池。由碳纳米管或基于碳纳米管的复合物制成的微管的另一用途涉及将其应用为用于水或废水过滤、用于含水和有机溶剂过滤、用于血液过滤、用于气体分离过程、用于气体和液体吸附过程或用于传感器应用中的受支撑或未受支撑管状膜。
背景技术
例如燃料电池、电化学电容器和氧化还原流电池组等电化学系统当今被认为是用于电能转换和存储(electrical energy conversion and storage,EECS)的有前景的技术,其对于常规电厂的恰当能量管理以及从太阳辐射、风电厂、可再生燃料、波动力和其它来源获得的可再生能量的有效利用是必需的。当今正为开发例如泵浦水电存储(pumpedhydroelectric storage,PHS)、压缩空气能量存储(compressed air energy storage,CAES)、飞轮等“常规”电能存储系统的经济可行的电化学替代方式而作出巨大努力。过去7年间观察到的电化学电能转换和存储系统的领域中的公开案的数目的急剧增加是最近的将来这些系统的重要性的完美指示。
大多数电化学EECS电抗器的核心为膜电极组合件(membrane electrodeassembly,MEA)。典型的MEA包括通过膜分隔开的两个多孔电极,所述膜既定避免电极的直接接触且经由离子物质的选择性或非选择性传送而闭合电路。
分别被称为阳极和阴极的电极上发生氧化和还原过程。图1展示用以提供利用MEA的EECS系统的实例的全钒氧化还原流电池(All-Vanadium Redox Flow Battery,AVRFB)的典型结构。在AVRFB中,MEA由通过膜分隔开的两个多孔电极构成。存储化学能的电解质是硫酸以及分别耦合在正和负半电池中的V4+/V5+和V2+/V3+钒的水溶液。存储在AVRFB中的化学能转换为多孔电极上的电能(且反之亦然),同时充放电反应期间产生或消耗的质子(等式1-2)选择性地经由通常为纳菲(Nifion)类型或由全氟磺酸或磺化聚芳醚制成的质子导电膜(proton conductive membrane,PEM)传送。
通常,比如燃料电池和氧化还原流电池组等电化学EECS系统包括许多MEA与通过膜分隔开(参看图2)的双极(或单极)电极的堆叠。
AVRFB中应用的电极由碳制成,即碳纤布、毛毡、纸等。事实是,由含碳材料制成的电极在大多数类型的电化学EECS系统中使用,例如氢、甲醇、醇、甲酸、氨、微生物和其它燃料电池;锂电池组;以及电化学电容器。
令人遗憾的是,电化学EECS系统的全规模应用在经济上仍是不可行的。为解决此障碍,电化学电抗器的性能必须改进,同时主要目标是增加系统的电力和/或能量密度,其是表征电化学EECS系统的性能的两个主要参数。改进电化学EECS装置的性能的基本方法是增加其组件的利用效率。
可经由电池几何形状的改进实现材料的较好利用和较高电力密度。类似于氧化还原流电池组和燃料电池中使用的常规平面膜电极组合件,管状MEA还包括三个基本层:正电极、负电极和电极之间的膜。图3上展示此管状MEA的一般结构。
管状设计归因于三个主要原因与电化学EECS系统的平面形状相比是有利的:管状电池具有较高电力密度、较低制造成本和较低寄生功率损耗。这些优点在固体氧化物燃料电池(solid oxide fuel cell,SOFC)中实现,其中管状几何形状为常见的且相对于平面几何形状占主导。实际上,SOFC的当前研究聚焦于具有小于2mm的直径的微管状电池。
显然,管状MEA的应用对于大多数类型的电化学EECS系统也将是有利的。令人遗憾的是,管状燃料电池和氧化还原流电池组的生产归因于(表观)自承式多孔管状含碳电极的不可用性而受妨碍。尽管存在此事实,管状电化学EECS系统的开发中的目标研究极其充分。因此,已建议用于质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)的管状设计的应用(Bullecks,B.、Rengaswamy,R.、Bhattacharyya,D.、Campbell,2011年,圆柱形PEM燃料电池的开发(Development of a cylindrical PEM fuel cell),国际氢能量期刊(International Journal of Hydrogen Energy),第36期,第713-719页)。此处,穿孔塑料注射器用于支撑电极和膜。此外,已开发具有不锈钢管件作为MEA载体的管状甲醇燃料电池。在此项技术中提议具有管件作为MEA的载体的更多管状甲醇燃料电池。还存在目标是认识用于微生物燃料电池的管状设计的研究(WO 2007/011206 A1)。
在当今可用于制造电化学电抗器的大量含碳材料当中,碳纳米管(carbonnanotube,CNT)归因于出色的机械和电化学特性而扮演着特殊角色。碳纳米管是可被认为是由辊压石墨烯薄片制成的圆柱形的伪一维材料,其具有纳米尺度的直径和超过1000的长度与直径比。根据石墨层的数目,CNT可分类为单壁碳纳米管(single walled carbonnanotube,SWCNT)、双壁碳纳米管(double walled carbon nanotube,DWCNT)、三壁碳纳米管(triple walled carbon nanotube,TWCNT)和多壁碳纳米管(multi walled carbonnanotube,MWCNT)。SWCNT具有分别为1nm-3nm和0.4nm-2.4nm的外径和内径。MWCNT的外径可低至2nm并且最多100nm,这取决于壁的数目。CNT中的碳-碳sp2键比金刚石结构中的sp3键坚固得多。出于所述原因,CNT拥有优越的机械稳定性,其中杨氏模量(Young′s module)高达1.2TPa且拉伸强度为50GPa-200GPa。SWCNT和MWCNT的电阻率分别为约10-6Ωcm和3x10-5Ωcm,这使其可能成为已知碳制造的电导体中的最佳者。碳纳米管归因于其表面特性和对腐蚀的抵抗性而被认为是质子交换膜燃料电池(proton exchanging membrane fuel cell,PEMFC)中的优良催化剂载体。在现有技术水平,据报道,用Pt涂抹的酸处理的MWCNT展示出比标准Pt/C催化剂高四倍的耐久性。还论证了用于H2-O2PEMFC中的氧还原反应的Pt-CNT催化剂的效力。此外,加载有Pt/IrO2的碳纳米管已经成功地应用作为用于直甲醇燃料电池的阳极催化剂。发现Pd/SnO2-TiO2-MWCNT催化剂对于直甲酸燃料电池极其有效。PEMFC中CNT作为催化剂载体的许多其它应用可查阅相关文献。
碳纳米管可经组装为也被称为巴基纸(buckypaper,BP)的肉眼可见的独立膜。这些膜归因于管件-管件接合点中的范德瓦尔斯力而经由CNT的自组装而形成,且可由单壁和多壁碳纳米管两者制备。通常,通过微米尺度孔滤波器经由CNT的悬浮液的过滤和所形成CNT垫的清洗及干燥来制造BP。溶剂的蒸发也可应用于BP的产生。电泳沉积是应用于独立CNT膜的制备的另一技术。在此情况下,CNT在悬浮液中正或负充电,随后电泳沉积到导电或不导电支撑件上。取决于制备技术和所应用的条件,可产生具有几微米并且最多几百微米的厚度的BP。CNT膜还可使用电沉积、无电镀敷和其它技术用适当催化剂加载。或者,碳纳米管可能在制造巴基纸之前用催化剂或改性剂加载。
由用铂催化剂加载的SWCNT和碳纳米纤维制成的巴基纸独立电极经建议用于H2-O2PEMFC,且发现此材料极其有效。此外,用铂催化剂加载的SWCNT巴基纸已应用为用于微生物燃料电池的阴极。此外已知的是用于锂硫电池的独立的SWCNT巴基纸电极。此处,应用于制备的SWCNT在悬浮液的过滤之前被填充硫。Liu等人的回顾论文提供关于可再充电Li离子电池组中的基于CNT的复合物的大量应用的细节(Liu,X.M.、Huang,Z.D.、Oh,S.W.、Zhang,B.、Ma,P.C.、Yuen,M.M.F.、Kim,J.K.,2012年,作为用于可再充电Li离子电池组的电极材料的基于碳纳米管(CNT)的复合物:回顾(Carbon nanotube(CNT)-based composites aselectrode material for rechargeable Li-ion batteries:A review).复合物科学和技术(Composites Science and Technology),第72期,第121-144页)。
归因于高电导率、灵活性、机械稳定性、高表面积和高比电容,巴基纸是应用于通过具有不同盐度的水的掺合(也被称作蓝能量技术)的能量产生的电化学电容器(超级电容器)、电容性消电离和电容性双层扩展(Capacitive Double Layer Expansion,CDLE)技术中的有吸引力的电极材料。已展示DWCNT巴基纸的比电容是32F/g,且此值经由将MnO2电沉积到BP上而增加到达129F/g。实际上,可通过例如RuO2、MoO3、Ni(OH)2、Co3O4、Fe2O3、In2O3、TiO2和V2O5等许多类型的氧化还原有源金属氧化物的沉积来改进CNT膜的比电容。
钒氧化还原流电池(redox flow battery,RFB)是最多研究且有前景的类型的RFB。碳纳米管也被发现是用于正半电池反应(V5+/V4+)的有效催化剂,而以羧基官能化的MWCNT展示出比共同电极材料快(约3倍)的动能(Li,W.、Liu,J.、Yan,C.,2011年,用作用于钒氧化还原流电池的VO2 +/VO2+电极反应催化剂的多壁碳纳米管(Multi-walled carbonnanotubes used as an electrode reaction catalyst for VO2 +/VO2+for a vanadiumredox flow battery),碳(Carbon),第49期,第3463-3470页)。
此项技术中已知的CNT和巴基纸的额外电化学应用包含气体传感器和生物传感器。
可得出结论:CNT膜可能成功地应用于任何电化学电能转换和存储(ElectricalEnergy Conversion and Storage,EECS)系统中,其中归因于CNT膜的较好物理-化学特性而常规地使用例如碳毛毡和布等多孔含碳材料。
此外,由CNT制成的CNT膜可应用于水和废水的纳米过滤和超过滤,且用于如以下文献中所揭示的气体分离过程:Sears,K.、Dumee,L.、Schutz,J.、She,M.、Huynh,C.、Hawkins,S.、Duke,M.、Gray,S.,2010年,用于水净化和气体分离的碳纳米管膜的最新进展(Recent developments in carbon nanotube membranes for water purification andgas separation),材料(Materials),第3期,第127-149页。
另外,已知碳纳米管和多壁CNT(明确地说)有效地吸附二氧化碳(Su,F.、Lu,C.、Chen,W.、Bai,H.、Hwang,J.F,“经由多壁碳纳米管从烟道气俘获CO2(Capture of CO2 fromflue gas via multiwalled carbon nanotubes)”、总环境科学(Science of the TotalEnvironment),2009年,第407(8)期,第3017-3023页)。通过MWCNT实现的CO2吸附的性能可经由CNT的适当修改(例如,通过3-氨丙基-三乙氧基硅烷)而进一步改进。
此外,已知碳纳米管与离子液体结合具有作为用于胶电极、致动器、传感器和催化剂的支撑件的混合材料的潜在应用(碳纳米材料-离子液体混合,M.Tunckol、J.Durand、P.Serp,碳(Carbon),50(4)4303)。碳纳米管充当电子导体且同时将离子液体支撑和固定到其特性受碳纳米管内含物影响的膏体中。离子液体又充当用于异构或同构化学催化剂的溶剂。CNT和离子液体的此些膏体不可能定形到自承式微管中。
最后,还已知碳表面选择性地吸附来自血液的内毒素。需要使碳表面直接接触血液以移除朝向膜表面的毒素且具有血液中的低毒素浓度。此将致使从血液蛋白质进行进一步毒素解配位。血液处理膜大体为管状且需要平滑表面。将碳粒子嵌入到聚合物基质中常常产生粗糙表面,且平滑聚合物多孔覆盖层用于防止此问题。然而,吸附层位于覆盖层下方。内毒素仅可扩散到膜主体的深处。与极其平滑表面的直接血液接触将是合乎需要的。
发明内容
鉴于上文,本发明的基本目标是,提供一种新的具有微管几何形状和出色的孔隙度、机械和化学稳定性、电化学特性、高电和热导率以及高表面积和比电容的材料。产品的特性应可使用生产方法的适当调谐和修改而调节到所要值。出色的特性应使此产品对于电化学系统非常有价值,因此能够用作独立电极以及用作膜电极组合件的一部分。此外,此种新的材料应能够用于水或废水过滤、血液过滤、含水和有机溶剂过滤或气体分离过程,用于从气态和液体流体的吸附过程。
根据本发明,上文所描述的关于管状电化学电抗器和过滤和/或吸附装置的生产的技术难题通过提供由碳纳米管或基于碳纳米管的复合物制成的独立(即独立式、自承式(未受支撑),即不需要任何支撑)微管来解决,其中所述微管具有500μm到5000μm(确切地说1000μm到5000μm)范围内的外径,和50μm到1000μm(确切地说100μm到1000μm)范围内的壁厚度。
实际上,根据本发明的微管的尺寸在毫米范围中,即比称其“微管”要大。然而,在关于当前技术领域的公开案中,具有小于2mm的外径的管状电极被称为“微管电极”(例如,Howe,K.S.、Gareth,J.T、Kendall,K.,“微管固体氧化物燃料电池和堆叠(Micro-tubularsolid oxide fuel cells and stacks)”,电源期刊(Journal of Power Sources),2011年,第196(4)期,第1677-1686页)。因此,代替于“管件”,术语“微管”遍及本说明书而使用。
根据本发明的微管包括碳纳米管或基于碳纳米管的复合物。优选地,微管由碳纳米管或碳纳米管复合物构成。在优选实施例中,碳纳米管是多壁碳纳米管。
优选地,独立微管的外径在1500μm到3000μm范围中,且壁厚度优选地在200μm到500μm范围中。独立微管的最大长度可高达200cm,优选地微管的长度在10cm与100cm之间。
根据本发明的微管可根据所要几何形状(外径和内径以及长度)、孔隙度、电导率和催化活性而形成。本发明进一步涉及在电化学电抗器中使用由碳纳米管或基于碳纳米管的复合物制成的微管作为独立的自承式电极或/和作为膜电极组合件的一部分。
此外,本发明还涉及具有集成集电器的此类微管。CNT微管归因于其长度的限制性导电性而具有实际应用中的有限长度。电阻的此梯度致使CNT微管电极的长度上电流的梯度。此电阻问题可通过将CNT微管与集电器集成来解决,即通过提供具有壁中(in-wall)集电器的CNT微管,举例来说采用由例如钛、铜、铝、钛、铂、镍或不锈钢制成的弹簧的形式。
本发明还涉及使用由碳纳米管或基于碳纳米管的复合物制成的微管作为受支撑或未受支撑管状膜,尤其用于水或废水过滤、有机溶剂过滤或气体分离过程。受支撑微管可具有适合于特定目的的任何厚度。
本发明进一步涉及使用由碳纳米管或基于碳纳米管的复合物制成的受支撑或未受载支撑的微管(含或不含用于气体吸附的特殊修改),尤其用于从烟道气或其它类型的气体进行CO2移除。另一实施例涉及使用由碳纳米管或基于碳纳米管的复合物制成的受支撑或未受支撑微管用于电子电荷存储应用,尤其用作超级电容器。
BR PI0 706 086涉及具有小于20微米的外径的微管,与根据本发明的具有高达500μm到5000μm范围内的外径的管件/微管形成对比。此外,在BR PI0 706 086中,壁厚度小于1μm,而在根据本发明的管件/微管中,最小壁厚度为100μm。归因于所述小尺寸,如上文阐述的既定应用(管状电化学电池的制造和水气分离过程(其中初级气相或液相在管件内部流动且次级气相或液相位于管件外部)、具有壁中集电器的微管)对于所述BR PI0 706 086中所揭示的微管是不可能的。
附图说明
进一步图式如下:
图1展示用以提供利用MEA的EECS系统的实例的全钒氧化还原流电池(All-Vanadium Redox Flow Battery,AVRFB)的典型结构。
图2展示包括许多MEA与通过膜分隔开的双极(或单极)电极的堆叠的电化学EECS系统。
图3展示管状MEA的一般结构。
图4展示由使用MWCNT悬浮液的过滤经由微过滤中空纤维聚丙烯膜所制备的多壁碳纳米管而制成的微管。
图5表示在经由聚丙烯微过滤中空纤维膜过滤MWCNT悬浮液期间由注射泵施加的压力的变化。相同条件下的两次重复以ml/分钟的恒定流动速率展示,且悬浮液由1g/l的多壁碳纳米管和10g/l的Triton X-100(作为蒸馏水中的分散剂)制成。
图6展示由MWCNT制成的独立微管的制备的最终阶段,此时其从应用于制备的聚丙烯中空纤维膜撤回。
图7展示针对应用于用于制备CNT悬浮液的Triton X-100表面活性剂的移除的不同体积的异丙醇获得的热解重量分析的结果。展示用于2-丙醇的每一负载的两次重复。分析8.04mg/cm2的MWCNT负载下制造的微管。
图8a与图8b展示以8.04mg/cm2(8a)和4.01mg/cm2(8b)的MWCNT负载制备的MWCNT微管的扫描电子显微镜图像(scanning electron microscope,SEM)(放大率50)。
图9a到图9c展示以8.04mg/cm2(9a)、6.03mg/cm2(9b)和4.01mg/cm2(9c)的MWCNT负载制备的MWCNT微管的横截面的SEM图像(放大率50)。
图10展示从由多壁碳纳米管和Nafion-117质子交换膜制成的微管制备的膜电极组合件的横断面的SEM图像(放大率50和500)。
图11展示包括由碳纳米管和多孔聚丙烯膜制成的微管的膜电极组合件。
图12a到图12f展示具有壁中集电器的CNT微管及其制备。
具体实施方式
本发明涉及用于制造电化学电抗器作为独立电极或/和作为膜电极组合件的一部分的由碳纳米管或基于碳纳米管的复合物制成的微管及其应用。
本发明还涉及由具有分层结构的碳纳米管制成的微管,这意味着微管的壁包括不同层的材料,例如经改性和未经改性碳纳米管、单壁和多壁碳纳米管、例如催化剂等添加剂层、聚合物、碳纳米纤维或其它纳米尺寸的材料,以及希望用于特定应用的其它类型的材料。
根据本发明的膜电极组合件是:
1.膜电极组合件,其包括由碳纳米管制成且在内或外表面上涂覆有多孔或无孔选择性或非选择性膜的微管;以及
2.膜电极组合件,其包括由碳纳米管制成且嵌套定位且其间具有多孔或无孔膜的两个或两个以上微管(参看图11)。
根据本发明的电化学电抗器是:初级和二次电池、燃料电池、氧化还原流电池组、电化学电容器、气体、生物和其它传感器、微生物燃料电池和太阳能电池。
应理解,此处提供的用于根据本发明的由碳纳米管(或基于碳纳米管的复合物)制成的微管的应用和产生方法的所有实例仅包含本发明的特定应用和产生方法,且并不排除此处未指定的其它应用和产生方法。
根据本发明,所述微管可由任何类型的碳纳米管(即单壁和多壁或其混合物)制成。添加剂可能用于制备具有特定电化学或物理特性的微管,在此情况下微管被称为“由基于碳纳米管的复合物制成的微管”。因此,可从加载有所要催化剂(明确地说,金属、金属的盐或/和其氧化物)的碳纳米管产生具有特定催化活性的微管。改性剂可在制造微管之前加载到碳纳米管以更改其表面积和比电容,此改性剂的若干实例是:RuO2、MoO3、Ni(OH)2、Co3O4、Fe2O3、In2O3、TiO2和V2O5。具有经更改表面化学性质的碳纳米管(举例来说,具有(-COOH)、羟基(-OH)和羰基(-C=O)群组官能化的碳纳米管)应用于制造具有特定物理-化学和催化特性的微管。
在采用基于碳纳米管的复合物的情况下,纳米管可进一步包括选自金属、金属氧化物、金属有机构架和沸石的类别的材料密集型或多孔纳米大小的粒子。在本发明的实施例中,纳米管可进一步包括选自由以下组成的群组的材料:LiCoO2、LiMnO2、LiNiO2、LiMn2O4、Li(Ni1/2Mn1/2)O2,LiFePO4、导电聚合物、Li4Ti5O12、过渡金属氧化物、TiO2、SnO2、Si和硫。在另一实施例中,基于碳纳米管的复合物进一步包括选自石墨烯、纳米带、类碳的树状体和碳纳米粒子的类别的碳基粒子。
由基于碳纳米管的复合物制成的微管可经制造和用作电化学活性材料的载体。举例来说,本发明还涉及由由基于碳纳米管的复合物制成的微管制造的管状锂离子电池组,其具有以下阴极材料:LiCoO2、LiMnO2、LiNiO2、LiMn2O4、Li(Ni1/2Mn1/2)O2和许多其它材料。
至少两种方法适合于制造根据本发明的微管:
1.经由管状形式的适当多孔膜过滤碳纳米管的悬浮液;以及
2.碳纳米管从碳纳米管的悬浮液进行电泳沉积到管状形式的载体上。
碳纳米管的悬浮液的制备是所属领域的技术人员众所周知的,且大量程序适合于制造适于制造由碳纳米管制成的微管的CNT悬浮液。大体来说,CNT悬浮液的制备包括此处简单描述的若干主要步骤。在制备悬浮液之前,CNT经预处理以移除纳米管的制备内使用的含碳杂质和催化剂残余(Fe、Co、Ni、Au、Pd、Ag、Pb、Mn、Cr、Ru、Mo、Cu)。接下来,可进行之前描述的碳纳米管的修改。此步骤之后是悬浮液的制备。已知大量溶剂用于制备CNT悬浮液。几个实例是:异丙醇(isopropyl alcohol,IPA)、N-甲基吡咯啶酮(N-methylpyrrolidone,NMP)、N,N-二甲基甲酰胺(N,N-dimethylformamide,DMF)和水。使用例如Triton X-100、十二烷基苯磺酸钠(sodium dodecylbenzene sulfonate,NaDDBS)、十二烷基硫酸钠(sodiumdodecyl sulfate,SDS)、双十六烷基磷酸氢或其它化合物等合适的表面活性剂制备水中的CNT悬浮液。以正基团和负基团带电的碳纳米管可应用于制备CNT悬浮液,而不需应用表面活性剂或其它分散剂。另外,应用于根据本发明的微管的碳纳米管的悬浮液可包括碳纳米管与其它有机材料和无机材料(例如碳纳米纤维、聚合物、金属等)的混合物。超声波处理通常应用为用于制备CNT悬浮液的最终步骤。
根据本发明,经由过滤制造微管可实行如下:经由管状多孔膜对CNT的悬浮液进行过滤。由陶瓷或聚合材料(确切地说,聚丙烯)制成的超过滤管状中空纤维膜和微过滤管状中空纤维膜可用于制备根据本发明的由碳纳米管和基于CNT的复合物制成的微管。此超过滤(ultrafiltration,UF)中空纤维膜和微过滤(microfiltration,MF)中空纤维膜以不同几何大小(最常见外径和内径分别为1mm到10mm和0.5mm到8mm)和不同孔隙大小分布而市售(例如来自Spectrum Labs)。典型的UF膜和MF膜具有0.5mm到8mm的内径且在大范围特性内可用。
微管的最终长度和内/外径取决于膜的几何形状、碳纳米管的特性、悬浮液的组份和应用于过滤的膜上悬浮液的体积负载。可在内部→外部和外部→内部两个方向上执行过滤。具有微米结构和纳米结构的表面纹理的膜可应用于制造由碳纳米管和基于碳纳米管的复合物制成的微米结构微管和纳米结构微管。
第二,经由电泳沉积由碳纳米管或基于碳纳米管的复合物制成的微管的制造可在管状形式的多孔和无孔、导电和不导电支撑材料上实行。可使用一个外圆柱形电极(支撑件位于其内部且次级电极位于管状支撑件内部)在管状支撑件的内或外表面上执行电泳沉积。取决于碳纳米管的电荷(正或负)和管状支撑件的涂层(内部或外部)的所要表面,具有适当方向和适当强度的电场经由其极化施加在两个辅助电极之间持续所要时间周期。在导电支撑件的情况下,其可用作碳纳米管的电泳沉积期间的辅助电极。
可使用已知技术来制备由具有定向碳纳米管的碳纳米管所制成的微管。举例来说,过滤过程期间磁场的施加可用于对由碳纳米管或基于碳纳米管的复合物制成的微管中碳纳米管定向。
由碳纳米管制成的微管的制造的下一步骤可为分散剂(如果应用的话)的移除。此通过用适当液体清洗加载有碳纳米管的支撑件来完成。举例来说,如果过滤方法应用于制造由碳纳米管制成的微管,那么可在CNT悬浮液在过滤的相同方向上渗入之后经由多孔支撑件过滤异丙醇直至完全移除表面活性剂为止。
由碳纳米管(及其复合物)制成的微管的制造的最后一般步骤为干燥步骤。此通常通过在不同温度下使用真空或空气或惰性气氛进行直至实现产品的所要纯度为止。归因于干燥期间CNT膜的收缩,所产生的微管可容易地从应用于其制备的支撑件移除。或者,复合物(由碳纳米管制成的微管和应用于制备的支撑件)为产品本身。
可使用过滤方法或电泳沉积或这两者经由在管状支撑件的一个或两个表面上形成微管而完成膜电极组合件的制备。
可经由在内部→外部方向上过滤CNT悬浮液从而形成内部微管电极继之以内部电极的清洗、干燥和移除而完成基于由碳纳米管或基于碳纳米管的复合物制成的微管以及多孔膜的膜电极组合件的制备。接下来,应用次级电极到多孔管状支撑件的外表面。藉由使用CNT悬浮液的外部→内部过滤来使微管CNT电极形成于多孔支撑件的外表面上。在由碳纳米管制成的外微管的清洗和干燥之后,内部电极放置回到多孔支撑件中,且MEA的制造完成;也参看图11。
可藉由使用过滤方法来制备由碳纳米管制成的独立微管而执行基于无孔膜的膜电极组合件的制造。接下来,膜形成于微管的外表面上。对于离子导电膜,可应用单体溶液的浇注和后续热固化。或者,微管插入到具有适当几何形状和性质的管状膜中。为实现MEA的制造,具有经涂覆膜的第一管件插入到次级电极中,所述次级电极为由适当几何形状的碳纳米管制成的另一微管或其它管状电极。或者,可通过使用电泳沉积方法应用由CNT(或其复合物)制成的次级微管电极。
现将在以下实例中进一步说明本发明,所述实例不限于以下实例
实例
实例1:由多壁碳纳米管制成的独立微管
具有6-9nm的外径和5μm长度的多壁碳纳米管(MWCNT)(>95%纯度,Sigma-Aldrich)按原样使用,而无任何预处理。原始CNT的水悬浮液制备如下:1克的CNT与10g的Triton-X 100(实验室级别,Sigma-Aldrich)表面活性剂在1升蒸馏水(18m′Ω)中混合、磁性搅拌持续30分钟且在1升Duran瓶中超声处理持续3小时(75%振幅,UP200S,Hielscher),Duran瓶浸没到冰浴中以防止悬浮液过热。使用MWCNT悬浮液的内部→外部过滤经由聚丙烯(polypropylene,PP)微过滤(microfiltration,MF)中空纤维膜(分别具有46.5cm长度以及1.8±0.15和0.45±0.05mm内径和壁厚度,PP S6/2,Accurel)来制备由MWCNT(图4)制成的微管。每一中空纤维的一端用粘合胶密封且MWCNT的悬浮液利用装备有50ml塑料注射器的注射泵(PHD Ultra,Harvard设备)在1ml/分钟的流动速率下供应到膜的打开的端部。经过滤溶液收集到量筒中。可用于过滤的MF膜的有效长度是44cm。在本研究内制备五种类型的微管,而不同体积的经过滤MWCNT悬浮液应用于每种类型的微管:100ml、125ml、150ml、175ml和200ml,其对应于到(分别)PP膜的内表面上的4.01mg/cm2、5.02mg/cm2、6.03mg/cm2、7.034mg/cm2和8.04mg/cm2的MWCNT负载。所产生的微管的长度接近44cm。接下来,经由加载CNT的中空纤维(内-->外)过滤异丙醇(Applichem,98%纯度)以移除表面活性剂且在30℃下在真空烘箱中脱水整夜。
在从聚丙烯(PP)中空纤维支撑件移除干燥MWCNT-微管之后,微管在30℃下存放在真空烘箱中,随后进行进一步分析。
图5表示经由MF膜过滤MWCNT悬浮液期间利用压力传输器(P-31,Wika,德国)测得的压力增加。这些膜分别具有≥4和≥8巴的突发和内爆压力。根据图5,应用于MWCNT-微管的制备的压力在安全范围内(小于3巴)。图5上呈现的压降是归因于用新部分的MWCNT悬浮液定期再充填注射器。图6说明当从PP MF中空纤维膜移出时的MWCNT微管。
使用热重量分析(thermogravimetric analysis,TGA)研究分散剂(在此情况下,Triton X-100)移除的效力。以针对其中的每一者两次重复来分析三种类型MWCNT:在无异丙醇清洗的情况下制备的微管;利用50ml的异丙醇清洗的情况下制备的微管;以及利用100ml的异丙醇清洗的情况下制备的微管。根据图7,约270℃下开始的重量损失归因于Triton-X 100的蒸发(沸点270℃)而发生。可通过应用100ml的异丙醇实现表面活性剂的几乎完整移除,或者可应用约300℃下真空(或惰性气氛)中的热处理。无清洗步骤的情况下制造的微管包含许多缺点,出于此原因始终需要应用清洗。
图8和9表示MWCNT-微管的SEM(Hitachi S-3000N)图像。比如图9上展示的横截面视图用于确定MWCNT-微管的壁厚度和直径。
表1列举经制造的MWCNT-微管的物理特性。MWCNT微管壁的平均密度、孔隙度和孔宽度分别是360±15.3mg/cm3、58±7.2%和25±2.9nm。利用ASAP 2020(Micromeritics)设备确定MWCNT-微管的BET表面积、孔隙度和孔宽度。
表1.MWCNT-微管的物理特性。标准偏差的值(%)在括号中呈现。
表2集中关于本研究期间制备的MWCNT-微管的电导率/电阻率的数据。使用利用恒电势器/恒流器(Autolab,PGSTAT302N,Metrohm)的4探针方法测量微管的电导率。
表2.MWCNT-微管的电导率(括号中:标准偏差%)。
实例2:具有质子交换膜和由碳纳米管制成的微管的膜电极组合件
具有836(±0.7%)μm的外径和274.4(±3.6%)μm的壁厚度的由多壁碳纳米管制成的微管通过刷拭和风干而用Nafion 117溶液(5%,Aldrich)涂覆。在150℃下真空烘箱中执行热固化持续6小时。图10展示使用扫描电子显微镜记录的膜电极组合件的横截面图像。
膜的所得厚度为近似15μm。利用5M硫酸测试MEA以查看渗漏,所述5M硫酸使用蠕动泵以30ml/分钟的流动速率抽吸穿过管状MEA。未检测到穿过MEA的溶液的可见损失。此膜电极组合件可使用电泳沉积方法与次级微管CNT电极一起组装。或者,由碳纳米管制成的单独制造的微管可能经组装为用于MEA的制造的外部电极。此部分中所揭示的膜电极组合件可用于大多数类型的质子交换燃料电池、所有钒氧化还原流电池和用于转换和存储电能的其它电化学系统。
实例3:包括由碳纳米管制成的微管和聚丙烯微滤膜的管状MEA
多壁碳纳米管的175ml悬浮液经由聚丙烯微滤膜(内部→外部)过滤,用100ml的异丙醇清洗且在30℃下在真空烘箱中干燥持续24小时(细节请参看实例1)。然后,从聚丙烯支撑件移除微管,且再次使用微滤膜在膜的外表面上制备由碳纳米管制成的次级微管。此时300ml的CNT悬浮液经由膜在外部→内部方向上过滤,用100ml的异丙醇清洗且在真空烘箱处干燥。最后,内部电极插入到中空纤维中以实现MEA。图12展示所产生的膜电极组合件。此类型的具有多孔膜的MEA可应用于电化学电抗器,其中阴极液与阳极液的混合是允许的。此应用的一个实例为微生物燃料电池。
实例4:具有壁中集电器的CNT微管
1.材料
集电器材料:
1)钛线0.2mm直径
2)铜线0.18mm直径
CNT悬浮液:
MWCNT的1g/l水悬浮液和10g/l Triton X-100。
膜:
分别具有11、15、16和17.5cm长度以及1.8±0.15和0.45±0.05mm内径和壁厚度的微过滤中空纤维膜(PP S6/2,Accurel)
2.制备
使用1mm直径棒(图12b)制造弹簧的形式(图12a)的Ti和铜集电器。1.在1mm支撑棒上辊压钛集电器(图12a)和铜集电器(图12b)。接下来,集电器插入到MF中空纤维膜中,且移除支撑棒。图12c展示插入到MF中空纤维膜中的钛集电器。随后,用粘合胶密封中空纤维的一端,且以1ml/分钟的流动速率经由膜浸润(内-->外)MWCNT悬浮液从而形成具有约180μm的壁厚度的CNT-微管。然后,经由异丙醇(50ml)的渗入移除Triton X-100。最后,管件在30℃下在真空烘箱中干燥。
3.结果
图12d-f展示具有Ti集电器的CNT微管。

Claims (14)

1.一种独立微管的制造方法,所述独立微管由碳纳米管或基于碳纳米管的复合物制成,其特征在于,所述独立微管具有500 μm到5000 μm范围内的外径和50 μm到1000 μm范围内的壁厚度,所述独立微管不需要任何支撑物,所述制造方法的特征在于包括:
经由管状形式的多孔膜过滤碳纳米管的悬浮液;或
所述碳纳米管从所述碳纳米管的悬浮液进行电泳沉积到管状形式的载体上。
2.根据权利要求1所述的独立微管的制造方法,其特征在于,所述独立微管具有1500 μm到3000 μm范围内的外径和200 μm到500 μm范围内的壁厚度。
3.根据权利要求1所述的独立微管的制造方法,其特征在于,所述独立微管具有高达200 cm的最大长度。
4.根据权利要求1所述的独立微管的制造方法,其特征在于,所述碳纳米管是多壁碳纳米管。
5.根据权利要求1所述的独立微管的制造方法,其特征在于,所述碳纳米管是单壁碳纳米管。
6.根据权利要求1所述的独立微管的制造方法,其特征在于,所述碳纳米管加载有催化剂或改性剂。
7.根据权利要求1所述的独立微管的制造方法,其特征在于,所述碳纳米管利用羧基、羟基和羰基基团官能化。
8.根据权利要求1所述的独立微管的制造方法,其特征在于,所述碳纳米管是定向的。
9.根据权利要求1所述的独立微管的制造方法,其特征在于,基于所述碳纳米管的所述复合物进一步包括选自金属、金属氧化物、金属有机构架和沸石的类别的密集型或多孔纳米大小的粒子。
10.根据权利要求1所述的独立微管的制造方法,其特征在于,基于所述碳纳米管的所述复合物进一步包括选自石墨烯、纳米带、类碳的树状体和碳纳米粒子的类别的碳基粒子。
11.根据权利要求1所述的独立微管的制造方法,其特征在于,基于碳纳米管的所述复合物进一步包括选自由以下组成的群组的材料:LiCoO2、LiMnO2、LiNiO2、LiMn2O4、Li(Ni1/ 2Mn1/2)O2、LiFePO4、导电聚合物、Li4Ti5O12、过渡金属氧化物、TiO2、SnO2、Si和硫。
12.根据权利要求1所述的独立微管的制造方法,其特征在于,在制造所述独立微管之前,所述碳纳米管加载有催化剂或改性剂。
13.根据权利要求1所述的独立微管的制造方法,其特征在于,在所述制造所述微管之后或期间,所述碳纳米管加载有催化剂或改性剂。
14.根据权利要求1、12或13中任一权利要求所述的方法,其特征在于,进一步包含通过使用真空、空气或惰性气氛进行干燥的步骤。
CN201480050600.7A 2013-07-16 2014-07-14 独立微管、制备其的方法与其用途、电极与膜电极组合件 Active CN105682775B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13003572.8 2013-07-16
EP13003572.8A EP2827412A1 (en) 2013-07-16 2013-07-16 Microtubes made of carbon nanotubes
PCT/EP2014/001923 WO2015007382A1 (en) 2013-07-16 2014-07-14 Microtubes made of carbon nanotubes

Publications (2)

Publication Number Publication Date
CN105682775A CN105682775A (zh) 2016-06-15
CN105682775B true CN105682775B (zh) 2018-07-20

Family

ID=48875461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480050600.7A Active CN105682775B (zh) 2013-07-16 2014-07-14 独立微管、制备其的方法与其用途、电极与膜电极组合件

Country Status (5)

Country Link
US (1) US20160301084A1 (zh)
EP (2) EP2827412A1 (zh)
KR (1) KR101862757B1 (zh)
CN (1) CN105682775B (zh)
WO (1) WO2015007382A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104028112B (zh) * 2014-03-05 2016-01-13 大连理工大学 一种规模化制备碳纳米管中空纤维膜的方法
WO2016135722A1 (en) * 2015-02-23 2016-09-01 Emefcy Ltd. An oxygen reduction catalyst element, method of its production, and uses thereof
CN105489894B (zh) * 2016-01-26 2019-03-26 长安大学 金属甲酸盐/碳纳米管锂离子电池负极材料及其制备方法
US20170244100A1 (en) * 2016-02-23 2017-08-24 Sylvatex, Inc. Solution-based formation of a nanostructured, carbon-coated, inorganic composite
US10556206B2 (en) 2016-08-31 2020-02-11 Savannah River Nuclear Solutions, Llc Isotope separation methods and systems
DE102016122285A1 (de) * 2016-11-19 2018-05-24 Friedrich-Schiller-Universität Jena Redox-Flow-Batterie zur Speicherung elektrischer Energie mit radial angeordneten Hohlfasermembranen
DE102016122284A1 (de) 2016-11-19 2018-05-24 Friedrich-Schiller-Universität Jena Redox-Flow-Batterie zur Speicherung elektrischer Energie mit Hohlfasermembranen
EP3733268A4 (en) * 2017-12-28 2021-08-25 Kitagawa Industries Co., Ltd. WATER TREATMENT FLOW PATH ELEMENT
CN108614018B (zh) * 2018-05-11 2021-04-20 安阳师范学院 氮掺杂氧化锌/碳中空多面体光电化学传感材料及其制备方法
CN110548397B (zh) * 2018-06-04 2022-01-28 宁波蓝盾新材料科技有限公司 一种新型复合还原氧化碳纳米管正渗透膜及其制备方法
JP7408632B2 (ja) * 2018-08-22 2024-01-05 ジェイテック・エナジー・インコーポレーテッド 排気ガスエネルギー回収変換器
US11840463B2 (en) * 2018-09-11 2023-12-12 Suzhou University of Science and Technology Device and method for advanced water treatment
CN109574159A (zh) * 2018-12-07 2019-04-05 智造起源科技有限公司 一种介电电泳电极结构
CN110927218A (zh) * 2019-12-10 2020-03-27 苏州慧闻纳米科技有限公司 用于检测二氧化氮的气敏材料的制备方法及气体传感器
CN110957144B (zh) * 2019-12-11 2021-12-17 国网黑龙江省电力有限公司电力科学研究院 一种导电聚合物包覆MoO3的超级电容器材料及其制法
US11519670B2 (en) 2020-02-11 2022-12-06 Airborne ECS, LLC Microtube heat exchanger devices, systems and methods
CN112103092B (zh) * 2020-07-27 2022-02-11 浙江工业大学 金属阳离子掺杂多硫化钴/氢氧化钴复合材料及其制备方法与应用
CN112201485B (zh) * 2020-09-01 2021-08-10 华南理工大学 金属有机框架化合物/石墨烯电极材料及制备方法与应用
CN114477141B (zh) * 2020-10-24 2023-11-24 江苏天奈科技股份有限公司 一种寡壁碳纳米管纤维束及其制备工艺
CN113648788A (zh) * 2021-07-27 2021-11-16 南京工业大学 一种表面具有高密度离子液体的纳米材料
US20240154140A1 (en) * 2022-11-08 2024-05-09 Ess Tech, Inc. Magnetic fragment filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1910771A (zh) * 2004-01-14 2007-02-07 Kh化学有限公司 包括作为粘合剂的硫纳米粒子或金属纳米粒子的碳纳米管电极或碳纳米纤维电极及其制备工艺
CN101365647A (zh) * 2005-11-16 2009-02-11 海珀里昂催化国际有限公司 单壁和多壁碳纳米管混合结构
BRPI0706086A2 (pt) * 2007-09-19 2009-06-02 Comissao Nac Energia Nuclear ánodo para célula a combustìvel baseado em microtubos com paredes porosas nanoestruturadas a base de carbono parcialmente impregnadas de ionÈmero

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8999200B2 (en) * 2002-07-23 2015-04-07 Sabic Global Technologies B.V. Conductive thermoplastic composites and methods of making
NL1029544C2 (nl) 2005-07-15 2007-01-16 Magneto Special Anodes B V Biologische brandstofcel.
US8248305B2 (en) * 2008-06-03 2012-08-21 University Of Houston Antennas based on a conductive polymer composite and methods for production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1910771A (zh) * 2004-01-14 2007-02-07 Kh化学有限公司 包括作为粘合剂的硫纳米粒子或金属纳米粒子的碳纳米管电极或碳纳米纤维电极及其制备工艺
CN101365647A (zh) * 2005-11-16 2009-02-11 海珀里昂催化国际有限公司 单壁和多壁碳纳米管混合结构
BRPI0706086A2 (pt) * 2007-09-19 2009-06-02 Comissao Nac Energia Nuclear ánodo para célula a combustìvel baseado em microtubos com paredes porosas nanoestruturadas a base de carbono parcialmente impregnadas de ionÈmero

Also Published As

Publication number Publication date
EP3022785A1 (en) 2016-05-25
KR101862757B1 (ko) 2018-05-30
WO2015007382A1 (en) 2015-01-22
EP3022785B1 (en) 2018-09-26
EP2827412A1 (en) 2015-01-21
KR20160048068A (ko) 2016-05-03
CN105682775A (zh) 2016-06-15
US20160301084A1 (en) 2016-10-13

Similar Documents

Publication Publication Date Title
CN105682775B (zh) 独立微管、制备其的方法与其用途、电极与膜电极组合件
Liang et al. Highly compressible carbon sponge supercapacitor electrode with enhanced performance by growing nickel–cobalt sulfide nanosheets
Purkait et al. High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks
Liu et al. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations
Fan et al. Carbon material‐based anodes in the microbial fuel cells
Zhao et al. Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance
Zhang et al. Nitrogen-doped hierarchical porous carbon nanowhisker ensembles on carbon nanofiber for high-performance supercapacitors
JP5562416B2 (ja) 燃料電池用の勾配多孔性および触媒密度を有する触媒電極およびその製造方法
US7553341B2 (en) High power density supercapacitors with carbon nanotube electrodes
Mukhiya et al. Integrating the essence of a metal–organic framework with electrospinning: a new approach for making a metal nanoparticle confined N-doped carbon nanotubes/porous carbon nanofibrous membrane for energy storage and conversion
Liu et al. Porous carbon derived from disposable shaddock peel as an excellent catalyst toward VO2+/VO2+ couple for vanadium redox battery
WO2009148111A1 (ja) 触媒及びその製造方法、膜電極接合体及びその製造方法、燃料電池部材及びその製造方法、燃料電池及び蓄電装置
Lee et al. Coffee-driven green activation of cellulose and its use for all-paper flexible supercapacitors
Cheng et al. Carbon nanomaterials for flexible energy storage
El-Sabban et al. Facile one-pot synthesis of template-free porous sulfur-doped g-C3N4/Bi2S3 nanocomposite as efficient supercapacitor electrode materials
KR20140000664A (ko) 연료전지용 전극
US10815576B2 (en) Carbon dioxide reduction over carbon-containing materials
CN104201007B (zh) 一种碳纳米材料基柔性超级电容器电极材料及其制备方法
Zhang et al. Effects of sodium alginate on the composition, morphology, and electrochemical properties of electrospun carbon nanofibers as electrodes for supercapacitors
Mustafa et al. Nanoscopic and Macro-porous carbon nano-foam electrodes with improved Mass transport for Vanadium Redox flow Batteries
US20150024304A1 (en) Catalyst layer constituting body and method for preparing catalyst layer constituting body
Fan et al. Preparation and capacitive properties of a free-standing phosphomolybdic acid heteropoly blue modified reduced graphite oxide composite
Mustafa et al. Insights on the electrochemical activity of porous carbonaceous electrodes in non-aqueous vanadium redox flow batteries
Yin et al. Self-supported carbon electrodes with a carbon membrane and Co3O4 nanosheets for high-performance enzymeless glucose detection and supercapacitors
Lim et al. Porphyrin-stabilized CNT in nanofiber via non-covalent interaction for enhanced electrochemical performance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant