CN105679844A - 一种减反层及利用该减反层改善太阳能电池组件色差的方法 - Google Patents

一种减反层及利用该减反层改善太阳能电池组件色差的方法 Download PDF

Info

Publication number
CN105679844A
CN105679844A CN201610147756.8A CN201610147756A CN105679844A CN 105679844 A CN105679844 A CN 105679844A CN 201610147756 A CN201610147756 A CN 201610147756A CN 105679844 A CN105679844 A CN 105679844A
Authority
CN
China
Prior art keywords
layer
sih
reflection layer
deposition
hydrogen purge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610147756.8A
Other languages
English (en)
Other versions
CN105679844B (zh
Inventor
缪清
刘梦影
陈守辉
杨慧敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AE Solar Co Ltd
Original Assignee
AE Solar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AE Solar Co Ltd filed Critical AE Solar Co Ltd
Priority to CN201610147756.8A priority Critical patent/CN105679844B/zh
Publication of CN105679844A publication Critical patent/CN105679844A/zh
Application granted granted Critical
Publication of CN105679844B publication Critical patent/CN105679844B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种减反层,该减反层的折射率n介于TCO与i层之间,本发明同时公开了利用该减反层改善太阳能电池组件色差的方法,步骤包括:(1)在TCO上采用化学气相沉积的方法制备沉积具有减反作用的p1层,即减反层;(2)在p1层之后,制备非晶硅/非晶硅锗单结或多结电池。本发明非晶硅太阳能电池具有减反作用的p1层的制备方法简单,可广泛应用于光伏建筑中,表面美观,给非晶硅太阳能组件带来独特的市场优势。

Description

一种减反层及利用该减反层改善太阳能电池组件色差的方法
技术领域
本发明涉及太阳能电池技术领域,具体为一种减反层及利用该减反层改善太阳能电池组件色差的方法。
背景技术
目前,薄膜硅太阳能电池组件可以用作建筑一体化光伏(BIPV)产品。在BIPV应用中,组件的颜色均匀性(色差)是一项很重要的性能参数。颜色的均匀性会显著影响建筑的美观,减少组件表面色差可以使光伏产品更好的结合到建筑中。
视觉所产生的颜色效果取决于物体表面反射的光对人眼中的三种锥形细胞产生的刺激程度。三种锥形细胞对不同波长λ的光所产生的刺激相应函数分别为R(λ),G(λ),B(λ)。当人眼接收到的物体表面反射光谱为S(λ)时,该物体所变现出来的颜色为(R,G,B)
G = ∫ 380 780 S ( λ ) G ( λ ) d λ
R = ∫ 380 780 S ( λ ) R ( λ ) d λ
B = ∫ 380 780 S ( λ ) B ( λ ) d λ
当调节表面反射的光谱时,物体表现出来的颜色就会发生改变。色差简单来说就是颜色的差别。一般用ΔE来评判色差的大小,ΔE代表色差综合偏差量,数值等于L,a*a*的平方和再开方。ΔE越小代表色差越小,国家标准要求BIPV中,任意两点的色差值ΔE小于3。国际上通用的颜色表示方法遵照CIELAB系统,它是一个均匀的颜色空间,每种颜色表示为(L*,a*,b*),其中L*显示的是光的强度,a*表示红/绿的程度,b*表示黄/蓝的程度。(L*,a*,b*)可通过(R,G,B)值通过线性变换得到。为与国际通用标准保持一致,本发明所用的颜色测量和色差表征均使用CIELAB方法。
非晶硅电池(单结)的结构一般为导电玻璃(FTO)/p1/(a-Si)i1/n1,传统的非晶硅薄膜技术,p1的折射率无法跟FTO和(a-Si)i1很好地匹配,观察者容易辨别色差。有些BIPV技术中为了减小组件的色差会在透明导玻璃FTO和电池中间沉积一层减反膜,减小组件表面反射光谱的强度,减小色差,但是该方法需要再加镀一层减反层,增加成本。
发明内容
本发明所解决的技术问题在于提供一种减反层及利用该减反层改善太阳能电池组件色差的方法,从而解决上述背景技术中的问题。
本发明所解决的技术问题采用以下技术方案来实现:
一种减反层,该减反层的显著特征在于:该减反层的折射率n介于TCO与i层之间。
上述的TCO即透明导电玻璃;i层即非晶体硅Si层。
本发明中,作为一种优选的技术方案,所述减反层的厚度为8nm-15nm。
本发明中,作为一种进一步优选的技术方案,所述减反层的折射率为2.4-3.2。
本发明中,作为一种进一步优选的技术方案,所述减反层的厚度为为8-10nm。
本发明中,作为一种优选的技术方案,所述减反层采用化学气相沉积的方法制备而成。
利用减反层改善太阳能电池组件色差的方法,包括如下步骤:
(1)在TCO上采用化学气相沉积的方法制备沉积具有减反作用的p1层,即减反层;
(2)在p1层之后,制备非晶硅/非晶硅锗单结或多结电池。
本发明中,步骤(1)的详细工艺如下:
抽真空至10-3Pa以下,用Ar气体处理清洗TCO,清洗时间为30-300S,然后沉积p1层,其中p1中的总沉积时间为60-80秒,沉积功率为250~400W,RF电源的占空比为25%~66%;沉积过程中CH4/H2=10%~30%,TMB/H2=3%~8%;SiH4/H2的比例在沉积过程中循环变化,0-10S,SiH4/H2=8%~15%;10-20S,SiH4/H2=3%~10%;20-30S,SiH4/H2=8%~15%;30-40S,SiH4/H2=3%~10%;40-50S,SiH4/H2=8%~15%;50-60S,SiH4/H2=3%~10%;60-70S,SiH4/H2=8%~15%;70-80S,SiH4/H2=3%~10%。该详细工艺采用化学气相沉积设备进行,其中各气体比例是指体积比。
本发明中,步骤(2)的工艺为:
在制备p1层之后,氢气吹扫,制备p1/i1缓冲层,氢气吹扫,制备i1层,氢气吹扫,制备i1/n1缓冲层,氢气吹扫,制备n1层,氢气吹扫。
上述的制备p1/i1缓冲层、制备i1层、制备i1/n1缓冲层以及制备n1层均为本领域技术人员公知的技术,详细步骤不做赘述。
另外,本发明中只叙述了单结电池的制备方法,此方法也适用于多结电池中。
由于采用了以上技术方案,本发明具有以下有益效果:
对比传统的工艺,具有减反p1层的组件,后者色差得到明显改善。以国家标准,两点间的色差值ΔE<3为标准,传统组件色差良率为26%,在此基础上,采用新型的具有减反作用的p1,组件色差良率可达90%。
本发明非晶硅太阳能电池具有减反作用的p1层的制备方法简单,可广泛应用于光伏建筑中,表面美观,给非晶硅太阳能组件带来独特的市场优势。
附图说明
图1为具有减反层太阳能组件的结构示意图;
图2为普通组件表面色差的分布图;
图3为具有减反层的组件色差的分布图。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施例,进一步阐述本发明。
参见图1,为具有本发明减反层的太阳能组件,自下而上依序为TCO透明导电玻璃、减反层、il层和n1层。其中,减反层的显著特征在于:该减反层的折射率n介于TCO与i层(非晶体硅层)之间。
实施例1
本实施例中,所述减反层的厚度为8nm,所述减反层的折射率为2.4,所述减反层采用化学气相沉积的方法制备而成。
利用减反层改善太阳能电池组件色差的方法,包括如下步骤:
(1)在TCO上采用化学气相沉积的方法制备沉积具有减反作用的p1层,即减反层;详细工艺如下:抽真空至10-3Pa,用Ar气体处理清洗TCO,清洗时间为30S,然后沉积p1层,其中p1层中的总沉积时间为60秒,沉积功率为250W,RF电源的占空比为25%;沉积过程中CH4/H2=10%,TMB/H2=3%;SiH4/H2的比例在沉积过程中循环变化,0-10S,SiH4/H2=8%;10-20S,SiH4/H2=3%;20-30S,SiH4/H2=8%;30-40S,SiH4/H2=3%;40-50S,SiH4/H2=8%;50-60S,SiH4/H2=3%;60-70S,SiH4/H2=8%;70-80S,SiH4/H2=3%。该详细工艺采用化学气相沉积设备进行,其中的气体比例是指体积比。
(2)在p1层之后,制备非晶硅/非晶硅锗单结或多结电池,其工艺为:
在制备p1层之后,氢气吹扫,制备p1/i1缓冲层,氢气吹扫,制备i1层,氢气吹扫,制备i1/n1缓冲层,氢气吹扫,制备n1层,氢气吹扫。
实施例2
本实施例中,所述减反层的厚度为15nm,所述减反层的折射率为3.2,所述减反层采用化学气相沉积的方法制备而成。
利用减反层改善太阳能电池组件色差的方法,包括如下步骤:
(1)在TCO上采用化学气相沉积的方法制备沉积具有减反作用的p1层,即减反层;详细工艺如下:
抽真空至10-3Pa以下,用Ar气体处理清洗TCO,清洗时间为300S,然后沉积p1层,其中p1中的总沉积时间为80秒,沉积功率为400W,RF电源的占空比为66%;沉积过程中CH4/H2=30%,TMB/H2=8%;SiH4/H2的比例在沉积过程中循环变化,0-10S,SiH4/H2=15%;10-20S,SiH4/H2=10%;20-30S,SiH4/H2=15%;30-40S,SiH4/H2=10%;40-50S,SiH4/H2=15%;50-60S,SiH4/H2=10%;60-70S,SiH4/H2=15%;70-80S,SiH4/H2=10%。该详细工艺采用化学气相沉积设备进行。
(2)在p1层之后,制备非晶硅/非晶硅锗单结或多结电池,其工艺为:
在制备p1层之后,氢气吹扫,制备p1/i1缓冲层,氢气吹扫,制备i1层,氢气吹扫,制备i1/n1缓冲层,氢气吹扫,制备n1层,氢气吹扫。
实施例3
本实施例中,所述减反层的厚度为10nm,所述减反层的折射率为3.0,所述减反层采用化学气相沉积的方法制备而成。
利用减反层改善太阳能电池组件色差的方法,包括如下步骤:
(1)在TCO上采用化学气相沉积的方法制备沉积具有减反作用的p1层,即减反层;详细工艺如下:
抽真空至10-3Pa以下,用Ar气体处理清洗TCO,清洗时间为200S,然后沉积p1层,其中p1中的总沉积时间为75秒,沉积功率为300W,RF电源的占空比为50%;沉积过程中CH4/H2=20%,TMB/H2=5%;SiH4/H2的比例在沉积过程中循环变化,0-10S,SiH4/H2=10%;10-20S,SiH4/H2=7%;20-30S,SiH4/H2=10%;30-40S,SiH4/H2=7%;40-50S,SiH4/H2=10%;50-60S,SiH4/H2=7%;60-70S,SiH4/H2=10%;70-80S,SiH4/H2=7%。该详细工艺采用化学气相沉积设备进行。
(2)在p1层之后,制备非晶硅/非晶硅锗单结或多结电池,其工艺为:在制备p1层之后,氢气吹扫,制备p1/i1缓冲层,氢气吹扫,制备i1层,氢气吹扫,制备i1/n1缓冲层,氢气吹扫,制备n1层,氢气吹扫。
以国家标准,两点间的色差值ΔE<3为标准,通过分别统计1000片本发明的太阳能组件以及传统的太阳能组件(不具有减反层)的色差,可以得出如图2、图3的色差分布图,传统组件色差良率为26%,在此基础上,采用本发明减反层的组件,组件色差良率可达90%。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (8)

1.一种减反层,其特征在于:所述减反层的折射率n介于TCO与i层之间。
2.根据权利要求1所述的一种减反层,其特征在于:所述减反层的折射率为2.4-3.2。
3.根据权利要求1所述的一种减反层,其特征在于:所述减反层的厚度为8nm-15nm。
4.根据权利要求3所述的一种减反层,其特征在于:所述减反层的厚度为为8-10nm。
5.根据权利要求1任一项所述的一种减反层,其特征在于:所述减反层采用化学气相沉积的方法制备而成。
6.利用如权利要求1-5任一项所述减反层改善太阳能电池组件色差的方法,包括如下步骤:
(1)在TCO上采用化学气相沉积的方法制备沉积具有减反作用的p1层,即减反层;
(2)在p1层之后,制备非晶硅/非晶硅锗单结或多结电池。
7.根据权利要求6所述的改善太阳能电池组件色差的方法,其特征在于:步骤(1)的详细工艺如下:
抽真空至10-3Pa以下,用Ar气体处理清洗TCO,清洗时间为30-300S,然后沉积p1层,其中p1中的总沉积时间为60-80秒,沉积功率为250~400W,RF电源的占空比为25%~66%;沉积过程中CH4/H2=10%~30%,TMB/H2=3%~8%;SiH4/H2的比例在沉积过程中循环变化,0-10S,SiH4/H2=8%~15%;10-20S,SiH4/H2=3%~10%;20-30S,SiH4/H2=8%~15%;30-40S,SiH4/H2=3%~10%;40-50S,SiH4/H2=8%~15%;50-60S,SiH4/H2=3%~10%;60-70S,SiH4/H2=8%~15%;70-80S,SiH4/H2=3%~10%。
8.根据权利要求6所述的改善太阳能电池组件色差的方法,其特征在于:步骤(2)的工艺为:在制备p1层之后,氢气吹扫,制备p1/i1缓冲层,氢气吹扫,制备i1层,氢气吹扫,制备i1/n1缓冲层,氢气吹扫,制备n1层,氢气吹扫。
CN201610147756.8A 2016-03-15 2016-03-15 一种减反层及利用该减反层改善太阳能电池组件色差的方法 Active CN105679844B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610147756.8A CN105679844B (zh) 2016-03-15 2016-03-15 一种减反层及利用该减反层改善太阳能电池组件色差的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610147756.8A CN105679844B (zh) 2016-03-15 2016-03-15 一种减反层及利用该减反层改善太阳能电池组件色差的方法

Publications (2)

Publication Number Publication Date
CN105679844A true CN105679844A (zh) 2016-06-15
CN105679844B CN105679844B (zh) 2017-09-19

Family

ID=56310485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610147756.8A Active CN105679844B (zh) 2016-03-15 2016-03-15 一种减反层及利用该减反层改善太阳能电池组件色差的方法

Country Status (1)

Country Link
CN (1) CN105679844B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800711A (zh) * 2012-06-29 2012-11-28 浙江正泰太阳能科技有限公司 一种硅基薄膜太阳能电池
CN103035777A (zh) * 2011-10-08 2013-04-10 长沙理工大学 一种改良的多晶硅太阳电池三层SiN减反膜的制备方法
CN103618022A (zh) * 2013-10-18 2014-03-05 浙江晶科能源有限公司 一种太阳能电池减反射膜的制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035777A (zh) * 2011-10-08 2013-04-10 长沙理工大学 一种改良的多晶硅太阳电池三层SiN减反膜的制备方法
CN102800711A (zh) * 2012-06-29 2012-11-28 浙江正泰太阳能科技有限公司 一种硅基薄膜太阳能电池
CN103618022A (zh) * 2013-10-18 2014-03-05 浙江晶科能源有限公司 一种太阳能电池减反射膜的制作方法

Also Published As

Publication number Publication date
CN105679844B (zh) 2017-09-19

Similar Documents

Publication Publication Date Title
Matsui et al. High‐efficiency thin‐film silicon solar cells with improved light‐soaking stability
Boccard et al. High-stable-efficiency tandem thin-film silicon solar cell with low-refractive-index silicon-oxide interlayer
Li et al. Realization of colored multicrystalline silicon solar cells with SiO2/SiNx: H double layer antireflection coatings
CN110957378A (zh) 一种提升p型双面电池双面率的背膜及其制备方法
Osterthun et al. Spectral engineering of ultrathin germanium solar cells for combined photovoltaic and photosynthesis
Biron et al. New progress in the fabrication of n–i–p micromorph solar cells for opaque substrates
Myong et al. Superstrate type flexible thin-film Si solar cells using flexible glass substrates
Söderström et al. ZnO Transparent conductive oxide for thin film silicon solar cells
CN103296145A (zh) 用于硅基薄膜太阳电池的禁带可调式光子晶体背反射器
Heo et al. ZnO: B back reflector with high haze and low absorption enhanced triple-junction thin film Si solar modules
CN107068774A (zh) 太阳能电池减反钝化膜及其制备方法及太阳能电池片
Hishida et al. Designing band offset of a-SiO: H solar cells for very high open-circuit voltage (1.06 V) by adjusting band gap of p–i–n junction
Guo et al. Optimization of broadband omnidirectional antireflection coatings for solar cells
Wang et al. Benefits of photonic management strategy for highly efficient bifacial solar cells
Multone et al. Triple-junction amorphous/microcrystalline silicon solar cells: Towards industrially viable thin film solar technology
CN103367472B (zh) 一种t型顶电极背反射薄膜太阳电池
CN102130212B (zh) 一种太阳能电池制作方法
Zhang et al. Influence of interface textures on light management in thin-film silicon solar cells with intermediate reflector
Caglar et al. Nanocrystalline zinc oxide for surface morphology control in thin-film silicon solar cells
Du et al. Performance enhancement of multicrystalline silicon solar cells and modules using double‐layered SiNx: H antireflection coatings
CN104091839B (zh) 一种用于太阳能电池片的减反射膜的制造方法
CN102082191A (zh) 均匀透光低辐射纳米硅太阳能电池及制备方法
CN101431122A (zh) 太阳电池减反射膜生产工艺
CN104362183A (zh) 具有折射率渐变特征的硅碳窗口层薄膜和制备方法及应用
Fecioru-Morariu et al. High quality amorphous Si solar cells for large area mass production Micromorph tandem cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Antireflection layer and method for improving color difference of solar cell module by using the antireflection layer

Effective date of registration: 20211223

Granted publication date: 20170919

Pledgee: Huai'an Runhong Financing Guarantee Co.,Ltd.

Pledgor: ALTERNATIVE ENERGY (AE) SOLAR Co.,Ltd.

Registration number: Y2021980016059

PC01 Cancellation of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20230213

Granted publication date: 20170919

Pledgee: Huai'an Runhong Financing Guarantee Co.,Ltd.

Pledgor: ALTERNATIVE ENERGY (AE) SOLAR Co.,Ltd.

Registration number: Y2021980016059