CN105669960A - 掺锶羟基磷灰石表面接枝聚(ε-己内酯)复合材料及其制备方法 - Google Patents

掺锶羟基磷灰石表面接枝聚(ε-己内酯)复合材料及其制备方法 Download PDF

Info

Publication number
CN105669960A
CN105669960A CN201610175607.2A CN201610175607A CN105669960A CN 105669960 A CN105669960 A CN 105669960A CN 201610175607 A CN201610175607 A CN 201610175607A CN 105669960 A CN105669960 A CN 105669960A
Authority
CN
China
Prior art keywords
strontium
caprolactone
doped hydroxyapatite
matrix material
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610175607.2A
Other languages
English (en)
Inventor
尹静波
徐盛华
张伟骏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201610175607.2A priority Critical patent/CN105669960A/zh
Publication of CN105669960A publication Critical patent/CN105669960A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/692Polyesters containing atoms other than carbon, hydrogen and oxygen containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/325Calcium, strontium or barium phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明涉及了一种掺锶羟基磷灰石表面接枝聚(ε-己内酯)复合材料及其制备方法。该方法首先是利用酸碱法制备掺锶羟基磷灰石纳米粒子,并在高温下将其活化,以此为引发剂,在辛酸亚锡的催化下,引发ε-己内酯开环聚合,从而制得一种有机/无机杂化复合材料。本发明将具有良好成骨诱导活性、较高机械强度的掺锶羟基磷灰石纳米粒子,和具有较好柔韧性、可加工性、生物相容性、及药物通透性的聚(ε-己内酯),有效地融合在一起。克服了无机材料脆性大,分散性差以及单纯的聚(ε-己内酯)材料生物活性较差的缺点。在骨组织工程修复领域有着良好的发展前景。

Description

掺锶羟基磷灰石表面接枝聚(ε-己内酯)复合材料及其制备方法
技术领域
本发明涉及一种掺锶羟基磷灰石表面接枝聚(ε-己内酯)复合材料及其制备方法。
背景技术
羟基磷灰石是人骨骼和牙齿的主要无机成分,具有优良的生物相容性,能与骨组织紧密接触,具有良好的骨传导性,并对新骨生长具有一定诱导作用,在组织工程领域被广泛应用。研究发现,羟基磷灰石(HA)中的Ca被Sr、Mg、Ti、Fe、Mn、Zn等二价金属元素取代后,可以有效改善其成骨诱导活性。
本发明提出在掺锶羟基磷灰石粒子表面接枝聚(ε-己内酯)的方法制备掺锶羟基磷灰石/聚己内酯复合材料。其中聚(ε-己内酯)材料具有良好的力学强度、加工性能、生物相容性、及药物通透性。
目前,已有通过先在HA表面接枝乳酸或低聚乳酸,然后再引发环酯单体开环聚合,同现有技术相比,本发明操作步骤少,制备方法简单。所制备的材料与以物理方式结合的无机纳米粒子/聚合物复合材料相比,具有更好的分散性,有机/无机相的界面有着更强的粘连。同时,其具有良好的生物相容性、生物可降解性和成骨诱导活性,在骨组织工程领域具有广阔应用前景。
发明内容
本发明的目的之一在于克服现有技术中存在的问题,提供一种掺锶羟基磷灰石表面接枝聚(ε-己内酯)复合材料及。
本发明的目的之二在于提供该复合材料的制备方法。
本发明通过高温活化Srx-HA表面的羟基,在辛酸亚锡的催化下,引发ε-己内酯(ε-CL)开环聚合,并通过调整反应时间来控制聚(ε-己内酯)的接枝率。具体技术方案如下:
一种掺锶羟基磷灰石表面接枝聚(ε-己内酯)复合材料,其特征在于该复合材料是以活化后的掺锶羟基磷灰石纳米粒子为引发剂,引发ε-己内酯开环聚合,得一种有机/无机杂化复合材料,其接枝率为:1%~6%;所述的掺锶羟基磷灰石纳米粒子中钙元素与锶元素的摩尔比为:0<nSr/nCa<10。
所述的复合材料的分子量分布范围在:1×105~1×106
上述的掺锶羟基磷灰石纳米粒子的粒径分布范围在:20nm~500nm。
一种制备上述的掺锶羟基磷灰石表面接枝聚(ε-己内酯)复合材料的方法,其特征在于该方法的具体步骤为:
a.将氢氧化锶和氢氧化钙分散于去离子水中,控制n(Sr/Ca)=0~10;在90℃~100℃温度下,缓慢滴加0.10~0.20M的磷酸,磷酸浓度不易过大,控制钙和锶的摩尔数之和与磷的摩尔数的比为1.67:1;调整体系pH为10.0~11.0,真空反应24h,陈化2~3天,去离子水洗涤,得到掺锶羟基磷灰石纳米粒子Srx-HA,x=nSr/n(Ca+Sr);
b.将步骤a所得Srx-HA在100℃~120℃活化2h后;
c.将步骤b所得0.1~1gSrx-HA和5~10g精馏过的ε-己内酯单体于甲苯中,再加入0.88mL0.1~0.2molL-1的Sn(Oct)2的甲苯溶液作催化;于密闭容器中,在惰性气氛保护下,于100°C~120°C下反应3~24h;反应完毕后,所得产物用乙醚沉降,冷冻干燥,即得掺锶羟基磷灰石表面接枝聚(ε-己内酯)复合材料。
所述的掺锶羟基磷灰石表面接枝聚(ε-己内酯)复合材料的接枝率为所接枝上的聚合物对整个无机/聚合物粒子的质量比。
本发提供的Srx-HA-g-PCL复合材料可有效改善Srx-HA无机材料易团聚、脆性大、韧性不足等缺陷,同时还改善无机材料表面性能,增强其界面粘附力;同时,Srx-HA纳米粒子可以提高单纯聚(ε-己内酯)材料的生物活性。该材料是一种颇具应用前景的骨修复及替代材料,在组织工程领域具有很大的应用价值。
本发明提出在掺锶羟基磷灰石粒子表面接枝聚(ε-己内酯)的方法制备掺锶羟基磷灰石/聚己内酯复合材料。其中聚(ε-己内酯)材料具有良好的力学强度、加工性能、生物相容性、及药物通透性。
目前,已有通过先在HA表面接枝乳酸或低聚乳酸,然后再引发环酯单体开环聚合,同现有技术相比,本发明操作步骤少,制备方法简单。所制备的材料与以物理方式结合的无机纳米粒子/聚合物复合材料相比,具有更好的分散性,有机/无机相的界面有着更强的粘连。同时,其具有良好的生物相容性、生物可降解性和成骨诱导活性,在骨组织工程领域具有广阔应用前景。
具体实施方式
下面实例进一步说明本发明,但本发明不仅限于此。
实施例一:
将氢氧化锶和氢氧化钙分散于去离子水中,控制n(Sr/Ca)=1:9。并将其加热至90℃~100℃后,缓慢滴加0.10~0.20M的稀磷酸,控制n(Ca+Sr)/nP=1.67。待磷酸滴加完后,用氨水调整体系pH为10.0~11.0,真空反应24h,陈化2~3d,去离子水洗涤2~3次,冷冻干燥,得到Sr10-HA纳米粒子。
取一带有磁子的封闭安瓶,用煤气焰烘烤除水后,加入2g已在100℃~120℃烘箱中活化2h的Sr10-HA,用注射器取2~5g精馏过的ε-CL单体加入安瓶中,再依次加入50mL精制甲苯、和0.88mL0.1~0.2molL-1的Sn(Oct)2的甲苯溶液,在N2气氛下,于100~120°C油浴中反应3~4h。反应完毕后,所得产物用乙醚沉降,冷冻干燥,即得Sr10-HA-g-PCL复合材料,其接枝率为5%。
实施例二:
将氢氧化锶和氢氧化钙分散于去离子水中,控制n(Sr/Ca)=1:9。并将其加热至90℃~100℃后,缓慢滴加0.10~0.20M的稀磷酸,控制n(Ca+Sr)/nP=1.67。待磷酸滴加完后,用氨水调整体系pH为10.0~11.0,真空反应24h,陈化2~3d,去离子水洗涤2~3次,冷冻干燥,得到Sr10-HA纳米粒子。
取一带有磁子的封闭安瓶,用煤气焰烘烤除水后,加入2g已在100℃~120℃烘箱中活化2h的Sr10-HA,用注射器取2~5g精馏过的ε-CL单体加入安瓶中,再依次加入50mL精制甲苯、和0.88mL0.1~0.2molL-1的Sn(Oct)2的甲苯溶液,在N2气氛下,于100~120°C油浴中反应6~8h。反应完毕后,所得产物用乙醚沉降,冷冻干燥,即得Sr10-HA-g-PCL复合材料,其接枝率为6%。
实施例三:
将氢氧化锶和氢氧化钙分散于去离子水中,控制n(Sr/Ca)=1:1。并将其加热至90℃~100℃后,缓慢滴加0.10~0.20M的稀磷酸,控制n(Ca+Sr)/nP=1.67。待磷酸滴加完后,用氨水调整体系pH为10.0~11.0,真空反应24h,陈化2~3d,去离子水洗涤2~3次,冷冻干燥,得到Sr50-HA纳米粒子。
取一带有磁子的封闭安瓶,用煤气焰烘烤除水后,加入2g已在100℃~120℃烘箱中活化2h的Sr50-HA,用注射器取2~5g精馏过的ε-CL单体加入安瓶中,再依次加入50mL精制甲苯、和0.88mL0.1~0.2molL-1的Sn(Oct)2的甲苯溶液,在N2气氛下,于100~120°C油浴中反应3~4h。反应完毕后,所得产物用乙醚沉降,冷冻干燥,即得Sr50-HA-g-PCL复合材料,其接枝率为5%。
实施例四:
将氢氧化锶和氢氧化钙分散于去离子水中,控制n(Sr/Ca)=1:1。并将其加热至90℃~100℃后,缓慢滴加0.10~0.20M的稀磷酸,控制n(Ca+Sr)/nP=1.67。待磷酸滴加完后,用氨水调整体系pH为10.0~11.0,真空反应24h,陈化2~3d,去离子水洗涤2~3次,冷冻干燥,得到Sr50-HA纳米粒子。
取一带有磁子的封闭安瓶,用煤气焰烘烤除水后,加入0.56g已在100℃~120℃烘箱中活化2h的Sr50-HA,用注射器取2~5g精馏过的ε-CL单体加入安瓶中,再依次加入50mL精制甲苯、和0.88mL0.1~0.2molL-1的Sn(Oct)2的甲苯溶液,在N2气氛下,于100~120°C油浴中反应6~8h。反应完毕后,所得产物用乙醚沉降,冷冻干燥,即得Sr50-HA-g-PCL复合材料,其接枝率为6%。
以上所述仅为本发明的较佳实施比例,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种掺锶羟基磷灰石表面接枝聚(ε-己内酯)复合材料,其特征在于该复合材料是以活化后的掺锶羟基磷灰石纳米粒子为引发剂,引发ε-己内酯开环聚合,得一种有机/无机杂化复合材料,其接枝率为:1%~6%;所述的掺锶羟基磷灰石纳米粒子中钙元素与锶元素的摩尔比为:0<nSr/nCa<10。
2.根据权利要求1所述的掺锶羟基磷灰石表面接枝聚(ε-己内酯)复合材料,其特征在于该复合材料的分子量分布范围在:1×105~1×106
3.根据权利要求1所述的掺锶羟基磷灰石表面接枝聚(ε-己内酯)复合材料,其特征在于所述的掺锶羟基磷灰石纳米粒子的粒径分布范围在:20nm~500nm。
4.一种制备根据权利要求1、2或3中所述的掺锶羟基磷灰石表面接枝聚(ε-己内酯)复合材料的方法,其特征在于该方法的具体步骤为:
a.将氢氧化锶和氢氧化钙分散于去离子水中,控制n(Sr/Ca)=0~10;在90℃~100℃温度下,缓慢滴加0.10~0.20M的磷酸,磷酸浓度不易过大,控制钙和锶的摩尔数之和与磷的摩尔数的比为1.67:1;调整体系pH为10.0~11.0,真空反应24h,陈化2~3天,去离子水洗涤,得到掺锶羟基磷灰石纳米粒子Srx-HA,x=nSr/n(Ca+Sr);
b.将步骤a所得Srx-HA在100℃~120℃活化2h后;
c.将步骤b所得0.1~1gSrx-HA和5~10g精馏过的ε-己内酯单体于甲苯中,再加入0.88mL0.1~0.2molL-1的Sn(Oct)2的甲苯溶液作催化;于密闭容器中,在惰性气氛保护下,于100°C~120°C下反应3~24h;反应完毕后,所得产物用乙醚沉降,冷冻干燥,即得掺锶羟基磷灰石表面接枝聚(ε-己内酯)复合材料。
CN201610175607.2A 2016-03-26 2016-03-26 掺锶羟基磷灰石表面接枝聚(ε-己内酯)复合材料及其制备方法 Pending CN105669960A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610175607.2A CN105669960A (zh) 2016-03-26 2016-03-26 掺锶羟基磷灰石表面接枝聚(ε-己内酯)复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610175607.2A CN105669960A (zh) 2016-03-26 2016-03-26 掺锶羟基磷灰石表面接枝聚(ε-己内酯)复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN105669960A true CN105669960A (zh) 2016-06-15

Family

ID=56223905

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610175607.2A Pending CN105669960A (zh) 2016-03-26 2016-03-26 掺锶羟基磷灰石表面接枝聚(ε-己内酯)复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105669960A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1544524A (zh) * 2003-11-17 2004-11-10 中国科学院长春应用化学研究所 羟基磷灰石生物降解脂肪族聚酯复合材料的制备方法
CN103041447A (zh) * 2012-12-14 2013-04-17 深圳先进技术研究院 可注射丝素蛋白骨修复填充缓释材料及其制备方法和应用
CN103319696A (zh) * 2012-03-23 2013-09-25 中国科学院化学研究所 一种羟基磷灰石/可生物降解聚酯复合材料及其制备方法
CN103834041A (zh) * 2014-02-21 2014-06-04 重庆医药高等专科学校 一种MGF-Ct24E功能化聚乳酸仿生骨基质材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1544524A (zh) * 2003-11-17 2004-11-10 中国科学院长春应用化学研究所 羟基磷灰石生物降解脂肪族聚酯复合材料的制备方法
CN103319696A (zh) * 2012-03-23 2013-09-25 中国科学院化学研究所 一种羟基磷灰石/可生物降解聚酯复合材料及其制备方法
CN103041447A (zh) * 2012-12-14 2013-04-17 深圳先进技术研究院 可注射丝素蛋白骨修复填充缓释材料及其制备方法和应用
CN103834041A (zh) * 2014-02-21 2014-06-04 重庆医药高等专科学校 一种MGF-Ct24E功能化聚乳酸仿生骨基质材料及其制备方法

Similar Documents

Publication Publication Date Title
Feng et al. In situ generation of hydroxyapatite on biopolymer particles for fabrication of bone scaffolds owning bioactivity
Ye et al. Enhanced osteogenesis and angiogenesis by PCL/chitosan/Sr-doped calcium phosphate electrospun nanocomposite membrane for guided bone regeneration
Zhang et al. Amorphous calcium phosphate, hydroxyapatite and poly (D, L-lactic acid) composite nanofibers: electrospinning preparation, mineralization and in vivo bone defect repair
Yang et al. β-Tricalcium phosphate/poly (glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering
CN102824657B (zh) 骨修复材料及其制备方法
Pramanik et al. Progress of key strategies in development of electrospun scaffolds: bone tissue
KR101324170B1 (ko) 표면 개질된 금속 입자 및 생분해성 고분자를 포함하는 생체 이식물, 이의 염증 억제용으로서의 용도 및 그 제조 방법
Aboudzadeh et al. Fabrication and characterization of poly (D, L‐lactide‐co‐glycolide)/hydroxyapatite nanocomposite scaffolds for bone tissue regeneration
Fathi et al. Taking hydroxyapatite-coated titanium implants two steps forward: surface modification using graphene mesolayers and a hydroxyapatite-reinforced polymeric scaffold
Elangomannan et al. Carbon nanofiber/polycaprolactone/mineralized hydroxyapatite nanofibrous scaffolds for potential orthopedic applications
Kasuga et al. Siloxane-poly (lactic acid)-vaterite composites with 3D cotton-like structure
Qi et al. Sr2+ sustained release system augments bioactivity of polymer scaffold
Bodakhe et al. Injectable photocrosslinkable nanocomposite based on poly (glycerol sebacate) fumarate and hydroxyapatite: development, biocompatibility and bone regeneration in a rat calvarial bone defect model
Hosseini et al. Reinforcement of electrospun poly (ε‐caprolactone) scaffold using diopside nanopowder to promote biological and physical properties
Shabani et al. Ion-exchange polymer nanofibers for enhanced osteogenic differentiation of stem cells and ectopic bone formation
Takeoka et al. In situ preparation of poly (l-lactic acid-co-glycolic acid)/hydroxyapatite composites as artificial bone materials
Zhang et al. In-reactor engineering of bioactive aliphatic polyesters via magnesium-catalyzed polycondensation for guided tissue regeneration
Wu et al. Preparation and properties of BMPLGA/NBAG-β-TCP composite scaffold materials
Mondal et al. Poly (l-lactide-co-Є caprolactone) microspheres laden with bioactive glass-ceramic and alendronate sodium as bone regenerative scaffolds
Jin et al. Degradation behavior of poly (lactide-co-glycolide)/β-TCP composites prepared using microwave energy
Kim et al. Biofabrication of 3D printed hydroxyapatite composite scaffolds for bone regeneration
Hong et al. The influences of polycaprolactone-grafted nanoparticles on the properties of polycaprolactone composites with enhanced osteoconductivity
CN108096629B (zh) 一种聚甲基丙烯酸甲酯骨粘固剂及其制备方法
Wakita et al. Effect of preparation route on the degradation behavior and ion releasability of siloxane-poly (lactic acid)-vaterite hybrid nonwoven fabrics for guided bone regeneration
CN105669960A (zh) 掺锶羟基磷灰石表面接枝聚(ε-己内酯)复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160615