CN105656282A - Linear permanent magnet servo motor with embedded position detection device - Google Patents
Linear permanent magnet servo motor with embedded position detection device Download PDFInfo
- Publication number
- CN105656282A CN105656282A CN201610068204.8A CN201610068204A CN105656282A CN 105656282 A CN105656282 A CN 105656282A CN 201610068204 A CN201610068204 A CN 201610068204A CN 105656282 A CN105656282 A CN 105656282A
- Authority
- CN
- China
- Prior art keywords
- permanent magnet
- servo motor
- embedded position
- tmr
- linear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 36
- 238000009826 distribution Methods 0.000 claims abstract description 14
- 238000005259 measurement Methods 0.000 claims abstract description 8
- 230000000737 periodic effect Effects 0.000 claims abstract description 4
- 230000005284 excitation Effects 0.000 claims description 18
- 239000010410 layer Substances 0.000 claims description 8
- 239000002356 single layer Substances 0.000 claims description 8
- 238000004804 winding Methods 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000003786 synthesis reaction Methods 0.000 claims 1
- 230000033001 locomotion Effects 0.000 abstract description 12
- 238000000034 method Methods 0.000 abstract description 8
- 230000005641 tunneling Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K41/00—Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
- H02K41/02—Linear motors; Sectional motors
- H02K41/03—Synchronous motors; Motors moving step by step; Reluctance motors
- H02K41/031—Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Linear Motors (AREA)
Abstract
本发明提出一种直线永磁伺服电机的嵌入式位置检测方法,针对直线永磁伺服电机内部机械等分的永磁体阵列,利用隧穿磁阻(TMR)芯片实现直线永磁伺服电机运动位置的嵌入式检测。所述嵌入式传感器包括空间正交的TMR芯片组合时栅信号处理系统,所述嵌入式传感器随着动子运动,从而TMR芯片感知机械等分永磁体的周期性磁场分布产生电压输出,经过时栅信号处理系统实现直线永磁伺服电机运动位置测量。本发明结构简单、组装方便、可靠性强,突破了传统在直线电机内安装独立光栅位置传感器的方法,具有紧缩电机结构尺寸、增强抗干扰性能和有效降低成本等优势。
The present invention proposes an embedded position detection method of a linear permanent magnet servo motor, aiming at the mechanically divided permanent magnet array inside the linear permanent magnet servo motor, using a tunneling reluctance (TMR) chip to realize the motion position detection of the linear permanent magnet servo motor Embedded detection. The embedded sensor includes a spatially orthogonal TMR chip combined with a time grid signal processing system. The embedded sensor moves with the mover, so that the TMR chip senses the periodic magnetic field distribution of the mechanically divided permanent magnet to generate a voltage output. The grid signal processing system realizes the position measurement of the linear permanent magnet servo motor. The invention has simple structure, convenient assembly and strong reliability, breaks through the traditional method of installing an independent grating position sensor in the linear motor, and has the advantages of compact motor structure size, enhanced anti-interference performance and effective cost reduction.
Description
技术领域 technical field
本发明属于直线永磁伺服电机技术领域,涉及电机的位置检测技术。 The invention belongs to the technical field of linear permanent magnet servo motors and relates to the position detection technology of the motors.
背景技术 Background technique
随着超高速切削、超精密加工等先进制造技术的发展,机床的各项性能指标又被赋予了更高的要求。特别是对机床进给系统的伺服性能提出了更高的要求:要有很高的驱动推力、快速进给速度和极高的快速定位精度。为了满足与日俱增的要求,一种将电能直接转换成直线运动机械能、而不需要任何中间转换机构的传动装置——直线伺服电机应运而生并取得了长足的发展。 With the development of advanced manufacturing technologies such as ultra-high-speed cutting and ultra-precision machining, various performance indicators of machine tools have been given higher requirements. In particular, higher requirements are put forward for the servo performance of the feed system of the machine tool: high driving thrust, fast feed speed and extremely high fast positioning accuracy. In order to meet the ever-increasing requirements, a transmission device that directly converts electrical energy into linear motion mechanical energy without any intermediate conversion mechanism - linear servo motor came into being and has achieved considerable development.
目前应用最广泛的直线永磁交流伺服电机的运动位置检测方法通常是利用旁置的直线光栅进行检测。虽然该方式测量精度高,但一方面其造成了电机体积不可避免的增大,并且使直线电机的运行性能受到位置传感器安装效果的影响;另一方面光栅位置检测方法依赖机械的精密等分刻线,测量精度要受机械加工精度的影响。 At present, the most widely used linear permanent magnet AC servo motor motion position detection method is usually to use a side-mounted linear grating for detection. Although the measurement accuracy of this method is high, on the one hand, it causes an inevitable increase in the size of the motor, and the operating performance of the linear motor is affected by the installation effect of the position sensor; on the other hand, the grating position detection method relies on mechanical precision equal divisions Line, measurement accuracy will be affected by machining accuracy.
近年来出现了一种直接利用机械等分实现计量等分的时栅位置检测技术,并研制出了高精度的圆周式和直线式时栅位置传感器,还进一步提出了一种基于被测对象现有机械等分特性的寄生式时栅位置检测方法。但是现有的寄生式时栅位置检测技术均是基于电磁感应原理使用线圈进行检测,而线圈绕制难以保证均匀性而且体积通常较大,使得该种检测方法在直线电机中难以得到有效应用。 In recent years, a time grating position detection technology that directly uses mechanical equalization to realize metering equalization has appeared, and has developed high-precision circular and linear time grating position sensors, and further proposed a method based on the measured object. A parasitic time grating position detection method with mechanical bisection characteristics. However, the existing parasitic time grating position detection technology is based on the principle of electromagnetic induction and uses a coil for detection, and the coil winding is difficult to ensure uniformity and the volume is usually large, making it difficult to effectively apply this detection method to linear motors.
发明内容 Contents of the invention
本发明的目的在于提出一种具有嵌入式位置检测装置的直线永磁伺服电机,旨在通过替换直线电机现有的外置位置检测传感器,实现直线永磁伺服电机体积的减小和成本的降低,促进直线伺服电机更广泛的应用。 The purpose of the present invention is to propose a linear permanent magnet servo motor with an embedded position detection device, aiming at reducing the volume and cost of the linear permanent magnet servo motor by replacing the existing external position detection sensor of the linear motor , to promote the wider application of linear servo motors.
为了达到上述目的,本发明采用以下技术方案: In order to achieve the above object, the present invention adopts the following technical solutions:
本发明是针对直线永磁伺服电机内部机械等分的永磁体阵列,基于时栅位置测量原理,利用隧穿磁阻(TMR)芯片实现直线永磁伺服电机运动位置的嵌入式检测。 The invention is aimed at the mechanically divided permanent magnet array inside the linear permanent magnet servo motor. Based on the time grating position measurement principle, the embedded detection of the motion position of the linear permanent magnet servo motor is realized by using a tunneling reluctance (TMR) chip.
本发明提出的具有嵌入式位置检测装置的直线永磁伺服电机包括定子、动子和嵌入式位置检测装置。 The linear permanent magnet servo motor with an embedded position detection device proposed by the present invention includes a stator, a mover and an embedded position detection device.
所述定子包括机械等分的永磁体阵列和固定永磁体的磁轭,所述动子包括磁芯及绕制其上的线圈组。 The stator includes a mechanically divided permanent magnet array and a yoke for fixing the permanent magnets, and the mover includes a magnetic core and a coil group wound thereon.
所述嵌入式位置检测装置包括嵌入式位置传感头、激励模块和时栅信号处理系统;所述嵌入式位置传感头由PCB底板和沿板长度方向贴于其上的至少一组空间正交TMR芯片组成,嵌入式位置传感头固定于动子上嵌入式位置传感头固定于动子上上能感受机械等分永磁体所产生磁场的任何位置,嵌入式位置传感头的长度方向平行于动子的运动方向;嵌入式位置传感头通过激励模块分别向每组TMR芯片分别施加正弦激励和余弦激励,实现激励信号的时间正交,进而在随着动子的运动过程中,通过感受直线永磁伺服电机定子上机械等分的永磁体阵列周期性磁场分布,得到两路信号和输出,合成后得到的信号输入时栅信号处理系统,最终实现对直线永磁伺服电机位置的嵌入式检测。以上嵌入式位置检测装置适用于任何包含所述机械等分永磁体阵列的直线永磁伺服电机。 The embedded position detection device includes an embedded position sensing head, an excitation module and a time grid signal processing system; Composed of TMR chips, the embedded position sensing head is fixed on the mover. The embedded position sensing head is fixed on any position on the mover that can feel the magnetic field generated by the mechanically divided permanent magnet. The length of the embedded position sensing head The direction is parallel to the moving direction of the mover; the embedded position sensing head applies sine excitation and cosine excitation to each group of TMR chips respectively through the excitation module to realize the time orthogonality of the excitation signal, and then in the process of moving with the mover , by feeling the periodic magnetic field distribution of the mechanically divided permanent magnet array on the stator of the linear permanent magnet servo motor, two signals and outputs are obtained, and the synthesized signal is input to the time grid signal processing system, and finally the position of the linear permanent magnet servo motor is realized. embedded detection. The above embedded position detection device is applicable to any linear permanent magnet servo motor including the mechanically divided permanent magnet array.
作为一个优选方案,所述空间正交的TMR芯片组通常使用两片TMR芯片构成一组。所述空间正交的每组TMR芯片中两片TMR芯片的敏感方向沿相同方向放置,敏感方向既可沿着电机动子运动方向放置也可以垂直于电机动子运动方向放置。 As a preferred solution, the space-orthogonal TMR chip set usually uses two TMR chips to form a set. The sensitive directions of the two TMR chips in each set of spatially orthogonal TMR chips are placed along the same direction, and the sensitive directions can be placed along the moving direction of the motor mover or perpendicular to the moving direction of the motor mover.
作为一个优选方案,设机械等分永磁体阵列中相邻两片永磁体的中心距离为2l,组内两片TMR芯片的中心距离为L,则所述空间正交须满足关系L=(2n+1)l。 As a preferred solution, assuming that the center distance between two adjacent permanent magnets in the mechanically divided permanent magnet array is 2 l , and the center distance between two TMR chips in the group is L , then the spatial orthogonality must satisfy the relationship L= ( 2 n + 1) l .
作为一个优选方案,所述空间正交的TMR芯片组在时间正交信号的激励下,随着直线电机运动将产生反应位置变化的信号,采用公知的时栅信号处理系统进行处理。经放大、滤波、相位解调、运动位移计算处理后,最终得到直线永磁伺服电机的运动位置。 As a preferred solution, the space-orthogonal TMR chipset, under the excitation of the time-orthogonal signal, will generate a signal reflecting the position change along with the linear motor movement, which is processed by a known time-grid signal processing system. After amplification, filtering, phase demodulation, and calculation of motion displacement, the motion position of the linear permanent magnet servo motor is finally obtained.
作为优选,嵌入式位置传感头可以采用多组空间正交的TMR芯片,多组TMR芯片的输出通过平均处理,从而提高测量精度。进一步为了节省空间,当采用多组TMR芯片时,一组的两块TMR芯片与另一组的TMR芯片交替布置。 Preferably, the embedded position sensing head can use multiple sets of space-orthogonal TMR chips, and the outputs of multiple sets of TMR chips are averaged to improve measurement accuracy. Further, in order to save space, when multiple sets of TMR chips are used, the two TMR chips of one set are alternately arranged with the TMR chips of another set.
本发明与现有技术相比,其显著优点在于: Compared with the prior art, the present invention has significant advantages in that:
由PCB底板和TMR芯片组构成的嵌入式位置检测传感头结构简单,体积小且便于与现有任何包含所述机械等分永磁体阵列的直线永磁伺服电机相集成,不会导致电机体积的增大,也不会造成额外的运载负担;直接利用直线电机内部的机械等分的永磁体阵列进行位置检测,即可实现直线伺服电机进行运动控制所需计量等分的位置信号,比现在通常采用的直线光栅,该方法成本低廉、环境适应性强、可靠性高;嵌入式位置检测装置结构简单且成本适宜,对直线永磁伺服电机的位置传感技术而言是极大的技术突破与革新,在直线永磁伺服电机领域具有广阔的应用前景。 The embedded position detection sensor head composed of the PCB bottom plate and the TMR chipset has a simple structure, small size and is easy to be integrated with any existing linear permanent magnet servo motor containing the mechanically divided permanent magnet array, which will not increase the size of the motor The increase of the linear servo motor will not cause additional carrying load; directly use the mechanically divided permanent magnet array inside the linear motor for position detection, and the position signal of the linear servo motor for motion control can be realized. Compared with the current Generally used linear grating, this method has low cost, strong environmental adaptability, and high reliability; the embedded position detection device has a simple structure and low cost, which is a great technological breakthrough for the position sensing technology of linear permanent magnet servo motors With innovation, it has broad application prospects in the field of linear permanent magnet servo motors.
附图说明 Description of drawings
图1是本发明单层直线永磁伺服电机嵌入式位置检测方法结构示意图。 Fig. 1 is a schematic structural diagram of the embedded position detection method of a single-layer linear permanent magnet servo motor according to the present invention.
图2是本发明双层直线永磁伺服电机嵌入式位置检测方法结构示意图。 Fig. 2 is a schematic structural diagram of a method for detecting the embedded position of a double-layer linear permanent magnet servo motor according to the present invention.
图3是芯片敏感方向与运动方向垂直的单组空间正交TMR芯片组结构示意图。 Fig. 3 is a schematic diagram of the structure of a single spatially orthogonal TMR chipset in which the chip sensitive direction is perpendicular to the moving direction.
图4是芯片敏感方向与运动方向平行的单组空间正交TMR芯片组结构示意图。 Fig. 4 is a schematic diagram of the structure of a single spatially orthogonal TMR chipset in which the chip sensitive direction is parallel to the moving direction.
图5是芯片敏感方向与运动方向平行的双组空间正交TMR芯片组结构示意图。 Fig. 5 is a schematic structural diagram of a dual-group space-orthogonal TMR chip set in which the chip sensitive direction is parallel to the moving direction.
图6是本发明实施例中单层机械等分永磁体的磁力线分布示意图。 Fig. 6 is a schematic diagram of the distribution of magnetic force lines of a single-layer mechanically divided permanent magnet in an embodiment of the present invention.
图7是本发明实施例中双层机械等分永磁体的磁力线分布示意图。 Fig. 7 is a schematic diagram of the distribution of magnetic force lines of a double-layer mechanically divided permanent magnet in an embodiment of the present invention.
具体实施方式 detailed description
容易理解,依据本发明的技术方案,在不变更本发明的实质精神的情况下,本领域的一般技术人员可以想象出本发明的多种实施方式。因此,以下具体实施方式和附图仅是对本发明的技术方案的示例性说明,而不应当视为本发明的全部或者视为对本发明技术方案的限制或限定。 It is easy to understand that, according to the technical solution of the present invention, those skilled in the art can imagine various implementations of the present invention without changing the essence and spirit of the present invention. Therefore, the following specific embodiments and drawings are only exemplary descriptions of the technical solution of the present invention, and should not be regarded as the entirety of the present invention or as a limitation or limitation on the technical solution of the present invention.
结合图1,针对具有机械等分永磁体阵列112的直线永磁伺服电机1,嵌入式位置检测装置包括由PCB底板21和沿PCB底板21长度方向贴于其上的空间正交TMR芯片22组成的嵌入式位置传感头2、激励模块3和时栅信号处理系统4。嵌入式位置传感头2固定于直线永磁伺服电机1的动子12上,传感头2的长度方向平行于直线永磁伺服电机1动子12的运动方向。传感头2通过激励模块3分别向两片TMR芯片施加正弦激励和余弦激励,从而实现激励信号的时间正交,进而在随着动子12的运动过程中,通过感受直线永磁伺服电机定子11上机械等分永磁体阵列112周围的磁场分布,得到两路信号输出,合成后得到的信号输入时栅信号处理系统4,最终实现对直线永磁伺服电机位置的嵌入式检测。 Referring to FIG. 1 , for a linear permanent magnet servo motor 1 with a mechanically equally divided permanent magnet array 112 , the embedded position detection device includes a PCB bottom plate 21 and a spatially orthogonal TMR chip 22 attached to it along the length direction of the PCB bottom plate 21 . Embedded position sensing head 2, excitation module 3 and time grating signal processing system 4. The embedded position sensor head 2 is fixed on the mover 12 of the linear permanent magnet servo motor 1 , and the length direction of the sensor head 2 is parallel to the moving direction of the mover 12 of the linear permanent magnet servo motor 1 . The sensing head 2 applies sine excitation and cosine excitation to the two TMR chips respectively through the excitation module 3, so as to realize the time orthogonality of the excitation signals, and then in the process of moving with the mover 12, by feeling the linear permanent magnet servo motor stator Mechanically divide the magnetic field distribution around the permanent magnet array 112 on 11 to obtain two signal outputs, and the synthesized signals are input to the time grid signal processing system 4, and finally realize the embedded detection of the position of the linear permanent magnet servo motor.
本发明不仅适用于具有单层机械等分永磁体阵列的直线永磁伺服电机1,对任何具有机械等分永磁体阵列的直线永磁伺服电机同样适用。结合图2,描述了嵌入式位置检测装置在具有双层机械等分永磁体阵列612的直线永磁伺服电机6上的应用。嵌入式位置传感头2同样固定于直线永磁伺服电机6的动子62上,类似地,在不影响直线永磁伺服电机运行的前提条件下只要能够保证嵌入式位置传感头2的长度方向与电机的运动方向平行,嵌入式位置传感头2可固定于动子62上任何可安装区域。 The present invention is not only applicable to the linear permanent magnet servo motor 1 with a single-layer mechanically divided permanent magnet array, but also applicable to any linear permanent magnet servo motor with a mechanically divided permanent magnet array. With reference to FIG. 2 , the application of the embedded position detection device on the linear permanent magnet servo motor 6 with a double-layer mechanically equally divided permanent magnet array 612 is described. The embedded position sensing head 2 is also fixed on the mover 62 of the linear permanent magnet servo motor 6. Similarly, as long as the length of the embedded position sensing head 2 can be guaranteed without affecting the operation of the linear permanent magnet servo motor The direction is parallel to the moving direction of the motor, and the embedded position sensing head 2 can be fixed on any installable area on the mover 62 .
以下结合图3、图4和图5,对嵌入式位置传感头2进一步详细描述如下: Below in conjunction with Fig. 3, Fig. 4 and Fig. 5, the embedded position sensing head 2 is further described in detail as follows:
TMR芯片22具有确定的磁场敏感方向,当被测磁场方向与TMR芯片22的敏感方向一致时,TMR芯片22的输出最大,反之当被测磁场方向与TMR芯片22的敏感方向垂直时,TMR芯片22的输出最小。与此同时,单层和双层机械等分永磁体阵列112和612产生的磁场在周围空间中广泛分布,在各个方向上均可能存在磁场分量。从而嵌入式位置传感头2可固定于动子12动子62上任何可安装区域。即使在图1和图2所示的固定方式中,TMR芯片22在PCB底板21上同样存在多种放置形式。 The TMR chip 22 has a definite magnetic field sensitive direction. When the measured magnetic field direction is consistent with the sensitive direction of the TMR chip 22, the output of the TMR chip 22 is maximum; otherwise, when the measured magnetic field direction is perpendicular to the sensitive direction of the TMR chip 22, the TMR chip 22 has the smallest output. At the same time, the magnetic fields generated by the single-layer and double-layer mechanically divided permanent magnet arrays 112 and 612 are widely distributed in the surrounding space, and there may be magnetic field components in all directions. Therefore, the embedded position sensing head 2 can be fixed on any installable area on the mover 62 of the mover 12 . Even in the fixing manner shown in FIG. 1 and FIG. 2 , there are also multiple placement forms of the TMR chip 22 on the PCB bottom plate 21 .
由图3可见,嵌入式位置传感头2的PCB底板21上贴有两片空间正交的TMR芯片22。TMR芯片22的敏感方向垂直于PCB底板21的长度方向。当嵌入式位置传感头2沿平行于动子12的运动方向固定于动子12或62上时,TMR芯片22的敏感方向同样垂直于电机的运动方向。 It can be seen from FIG. 3 that two spatially orthogonal TMR chips 22 are pasted on the PCB base 21 of the embedded position sensing head 2 . The sensitive direction of the TMR chip 22 is perpendicular to the length direction of the PCB bottom plate 21 . When the embedded position sensing head 2 is fixed on the mover 12 or 62 parallel to the moving direction of the mover 12, the sensitive direction of the TMR chip 22 is also perpendicular to the moving direction of the motor.
参见图4,则进一步显示了TMR芯片22的敏感方向平行于PCB底板21的长度方向布置的情况。 Referring to FIG. 4 , it further shows that the sensitive direction of the TMR chip 22 is arranged parallel to the length direction of the PCB bottom plate 21 .
图3和图4均显示的是嵌入式位置传感头2上仅贴两片的TMR芯片22形成一组空间正交的情况。除此之外,嵌入式位置传感头2上还可以贴多组空间正交的TMR芯片组,将多组TMR芯片组的输出通过平均处理以进一步提高测量精度。 Both Fig. 3 and Fig. 4 show the situation that only two TMR chips 22 are pasted on the embedded position sensing head 2 to form a group of spatially orthogonal. In addition, multiple sets of space-orthogonal TMR chipsets can be attached to the embedded position sensor head 2, and the outputs of multiple sets of TMR chipsets can be averaged to further improve the measurement accuracy.
图5显示了具有两组空间正交TMR芯片组22的嵌入式位置传感头结构。为了节省空间,左数第一片和第三片TMR芯片形成空间正交,剩下两片TMR芯片形成空间正交。左数第一片和第二片TMR芯片可以采用同样的正弦(或余弦)信号激励,左数第三片和第四片TMR芯片则可以采用同样的余弦(或正弦)信号激励。 FIG. 5 shows an embedded position sensing head structure with two sets of spatially orthogonal TMR chipsets 22 . In order to save space, the first and third TMR chips from the left are spatially orthogonal, and the remaining two TMR chips are spatially orthogonal. The first and second TMR chips from the left can be excited by the same sine (or cosine) signal, and the third and fourth TMR chips from the left can be excited by the same cosine (or sine) signal.
结合图6和图7,对本发明所述的两种形式的直线永磁伺服电机1的磁力线分布进行说明:对于具有单层机械等分永磁体阵列112的直线永磁伺服电机1,其单层机械等分永磁体阵列112由多块沿厚度方向磁化的长方形永磁体按磁极交替放置的方式组合而成,其周围的磁力线分布如图6所示。可见,磁力线在多块永磁体周围交替分布。下面讨论永磁体阵列112上部区域和下部区域左右方向上的磁场分量:在两块永磁体之间区域,左右方向上的磁场分量最大,在永磁体的中心区域,左右方向上的磁场分量最小。 In conjunction with Fig. 6 and Fig. 7, the magnetic field line distribution of two forms of linear permanent magnet servo motor 1 described in the present invention is illustrated: for a linear permanent magnet servo motor 1 with a single-layer mechanically divided permanent magnet array 112, its single-layer The mechanically equally divided permanent magnet array 112 is composed of a plurality of rectangular permanent magnets magnetized along the thickness direction in a manner of alternately placing magnetic poles, and the distribution of magnetic force lines around it is shown in FIG. 6 . It can be seen that the lines of magnetic force are alternately distributed around the multiple permanent magnets. The magnetic field components in the left and right directions of the upper and lower regions of the permanent magnet array 112 are discussed below: in the region between two permanent magnets, the magnetic field components in the left and right directions are the largest, and in the central region of the permanent magnets, the magnetic field components in the left and right directions are the smallest.
对于具有双层机械等分永磁体阵列612的直线永磁伺服电机2,其周围的磁力线分布如图7所示。可见,磁力线在多块永磁体周围交替分布。对于永磁体阵列612上部区域和下部区域左右方向上磁场分量的分布情况与单层永磁体阵列112上部区域和下部区域左右方向上磁场分量的分布情况相同。双层永磁体阵列612层间的磁场分布情况则十分复杂,从而对嵌入式位置传感头的安装位置要求更高。安装位置稍微变化就有可能导致磁场分布情况急剧变化。 For the linear permanent magnet servo motor 2 with a double-layer mechanically divided permanent magnet array 612 , the distribution of magnetic force lines around it is shown in FIG. 7 . It can be seen that the lines of magnetic force are alternately distributed around the multiple permanent magnets. The distribution of the magnetic field components in the upper and lower regions of the permanent magnet array 612 is the same as the distribution of the magnetic field components in the upper and lower regions of the single-layer permanent magnet array 112 . The magnetic field distribution between the layers of the double-layer permanent magnet array 612 is very complicated, so the requirements for the installation position of the embedded position sensing head are higher. A slight change in the installation position may cause a drastic change in the magnetic field distribution.
对于嵌入式位置传感头2中每组TMR芯片22之间的空间正交,,如图6和图7所示,即假设机械等分永磁体阵列中相邻两片永磁体的中心距离为2l,组内两片TMR芯片的中心距离为L,如图3、图4和图5所示,则空间正交须满足关系L=(2n+1)l。 For the spatial orthogonality between each group of TMR chips 22 in the embedded position sensor head 2, as shown in Figure 6 and Figure 7, it is assumed that the center distance between two adjacent permanent magnets in the mechanically divided permanent magnet array is 2 l , the distance between the centers of two TMR chips in the group is L, as shown in Figure 3, Figure 4 and Figure 5, then the spatial orthogonality must satisfy the relationship L= (2 n+ 1) l .
下面结合图4所示的嵌入式位置传感头2,将其平行于电机运动方向放置于永磁体阵列112之上,即在图6中沿左至右放置于永磁体阵列112上部区域进行分析。由于两片TMR芯片空间正交,当其中一片TMR芯片位于两片永磁体之间的区域时,另一片TMR则位于永磁体的中心区域,两片TMR芯片输出信号相位相差90°。随着动子的运动,两片TMR芯片的空间正交特性保持不变,两片TMR芯片输出信号相位始终相差90°。 Next, in conjunction with the embedded position sensing head 2 shown in FIG. 4 , it is placed on the permanent magnet array 112 parallel to the direction of motion of the motor, that is, it is placed on the upper area of the permanent magnet array 112 from left to right in FIG. 6 for analysis. . Since the two TMR chips are orthogonal in space, when one of the TMR chips is located in the area between the two permanent magnets and the other TMR is located in the central area of the permanent magnet, the output signals of the two TMR chips have a phase difference of 90°. With the movement of the mover, the spatial orthogonal characteristics of the two TMR chips remain unchanged, and the output signal phases of the two TMR chips always differ by 90°.
所述嵌入式位置传感头2随着动子运动,从而TMR芯片感知机械等分永磁体的周期性磁场分布产生电压输出,在时间正交的激励信号作用下,两片TMR芯片输出两路信号,相加则得到时栅信号处理系统4所需带位置信息的信号,经时栅信号处理系统4处理后最终输出直线电机的运动位置信息,实现直线永磁伺服电机运动位置测量。 The embedded position sensing head 2 moves with the mover, so that the TMR chip senses the periodic magnetic field distribution of the mechanically divided permanent magnet to generate a voltage output. Under the action of the time-orthogonal excitation signal, the two TMR chips output two The signals are added to obtain the signal with position information required by the time grid signal processing system 4, and finally output the motion position information of the linear motor after being processed by the time grid signal processing system 4, so as to realize the motion position measurement of the linear permanent magnet servo motor.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610068204.8A CN105656282B (en) | 2016-02-01 | 2016-02-01 | A kind of linear permanent-magnet servomotor with embedded position detecting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610068204.8A CN105656282B (en) | 2016-02-01 | 2016-02-01 | A kind of linear permanent-magnet servomotor with embedded position detecting device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105656282A true CN105656282A (en) | 2016-06-08 |
CN105656282B CN105656282B (en) | 2017-12-01 |
Family
ID=56489153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610068204.8A Active CN105656282B (en) | 2016-02-01 | 2016-02-01 | A kind of linear permanent-magnet servomotor with embedded position detecting device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105656282B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107015424A (en) * | 2015-12-25 | 2017-08-04 | 株式会社理光 | Mobile apparatus, image forming apparatus and image projecting equipment |
CN109323646A (en) * | 2018-11-13 | 2019-02-12 | 阿斯科纳科技(深圳)有限公司 | A Position Sensor System Applied to Linear Motor Vector Control |
CN111722022A (en) * | 2020-05-09 | 2020-09-29 | 上海达铭科技有限公司 | Cable path detection method based on weak magnetic signal measurement |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001197717A (en) * | 2000-01-12 | 2001-07-19 | Yaskawa Electric Corp | Field component of linear motor and method of magnetizing permanent magnet for field |
JP2010057280A (en) * | 2008-08-28 | 2010-03-11 | Thk Co Ltd | Linear motor system, linear motor actuator and controller |
CN101680779A (en) * | 2007-05-31 | 2010-03-24 | Thk株式会社 | Linear motor position detection system |
CN101971470A (en) * | 2008-03-25 | 2011-02-09 | 伯斯有限公司 | Position measurement using magnetic fields |
CN202034884U (en) * | 2011-01-07 | 2011-11-09 | 青岛同日电机有限公司 | Permanent magnet linear synchronous motor |
CN102549386A (en) * | 2009-09-24 | 2012-07-04 | 大陆汽车有限责任公司 | Method for analyzing signals from an angle sensor |
-
2016
- 2016-02-01 CN CN201610068204.8A patent/CN105656282B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001197717A (en) * | 2000-01-12 | 2001-07-19 | Yaskawa Electric Corp | Field component of linear motor and method of magnetizing permanent magnet for field |
CN101680779A (en) * | 2007-05-31 | 2010-03-24 | Thk株式会社 | Linear motor position detection system |
CN101971470A (en) * | 2008-03-25 | 2011-02-09 | 伯斯有限公司 | Position measurement using magnetic fields |
JP2010057280A (en) * | 2008-08-28 | 2010-03-11 | Thk Co Ltd | Linear motor system, linear motor actuator and controller |
CN102549386A (en) * | 2009-09-24 | 2012-07-04 | 大陆汽车有限责任公司 | Method for analyzing signals from an angle sensor |
CN202034884U (en) * | 2011-01-07 | 2011-11-09 | 青岛同日电机有限公司 | Permanent magnet linear synchronous motor |
Non-Patent Citations (1)
Title |
---|
吕华,等: "隧道磁电阻(TMR)磁传感器的特性与应用", 《磁性材料及器件》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107015424A (en) * | 2015-12-25 | 2017-08-04 | 株式会社理光 | Mobile apparatus, image forming apparatus and image projecting equipment |
CN109323646A (en) * | 2018-11-13 | 2019-02-12 | 阿斯科纳科技(深圳)有限公司 | A Position Sensor System Applied to Linear Motor Vector Control |
CN111722022A (en) * | 2020-05-09 | 2020-09-29 | 上海达铭科技有限公司 | Cable path detection method based on weak magnetic signal measurement |
CN111722022B (en) * | 2020-05-09 | 2023-02-14 | 上海达铭科技有限公司 | Cable path detection method based on weak magnetic signal measurement |
Also Published As
Publication number | Publication date |
---|---|
CN105656282B (en) | 2017-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9270156B2 (en) | Linear motor | |
US8362720B2 (en) | Linear motor position detection system | |
CN101769981B (en) | Phase searching detection method for permanent-magnet planar motor by adopting linear Hall array | |
CN100521468C (en) | Permanent-magnet synchronous planar motor | |
CN105656282B (en) | A kind of linear permanent-magnet servomotor with embedded position detecting device | |
CN102723185B (en) | Double-channel axial magnetic circuit reluctance type rotary transformer | |
CN102842412A (en) | Co-excitation coarse-refined coupling magnetic resistance type rotary transformer | |
EP2587223A2 (en) | Magnetic encoder with improved resolution | |
CN103822576B (en) | Method using linear Hall sensor group to detect permanent magnet plane motor rotor coil phase | |
CN101610022A (en) | A Planar Motor Using Slotted Coils | |
CN102664097A (en) | Double-channel axial magnetic circuit outer rotor reluctance type rotary transformer | |
CN101750548A (en) | Phase hunting detection method for permanent magnet planar motor adopting switch Hall array | |
Zhang et al. | Modeling and design of an integrated winding synchronous permanent magnet planar motor | |
CN102800368B (en) | Positioning method of initial zero position of air floatation planar motor | |
CN104949610B (en) | Magnetic floats cable stage motor magnetic to Barebone and its alignment methods | |
Zhang et al. | Characteristic analysis of an ironless linear synchronous motor with novel halbach magnet array | |
CN114089231A (en) | Magnetic sensor module, printed permanent magnet synchronous motor and application method thereof | |
Seo et al. | Characteristic analysis and experimental verification for a double-sided permanent magnet linear synchronous generator according to magnetization array | |
Celikel et al. | An investigation on the position errors of resolvers designed in different structures: A review | |
JP2005102408A (en) | External rotation type hybrid stepping motor | |
CN210380552U (en) | Position sensor suitable for non-magnetic-track linear motor | |
CN109631869B (en) | High-precision two-dimensional linear displacement sensor system | |
CN106997031B (en) | Sensor module and packaging method thereof | |
CN103633884B (en) | A kind of magnetic suspension permanent magnet planar motor based on pressure sensor group plays float method | |
CN117470281B (en) | Electromagnetic structure for angle sensor and angle sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20160608 Assignee: Chongqing fueryou Technology Development Co.,Ltd. Assignor: Chongqing University of Technology Contract record no.: X2024980028433 Denomination of invention: A linear permanent magnet servo motor with embedded position detection device Granted publication date: 20171201 License type: Common License Record date: 20241202 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20160608 Assignee: Baishen Times (Chongqing) Energy Technology Co.,Ltd. Assignor: Chongqing University of Technology Contract record no.: X2024980036532 Denomination of invention: A linear permanent magnet servo motor with embedded position detection device Granted publication date: 20171201 License type: Common License Record date: 20241230 |
|
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20160608 Assignee: CHONGQING LONGYEA POWER EQUIPMENT CO.,LTD. Assignor: Chongqing University of Technology Contract record no.: X2024980044552 Denomination of invention: A linear permanent magnet servo motor with embedded position detection device Granted publication date: 20171201 License type: Common License Record date: 20250126 |