CN105656042A - 一种upfc控制器间交互影响的规范型评估方法 - Google Patents

一种upfc控制器间交互影响的规范型评估方法 Download PDF

Info

Publication number
CN105656042A
CN105656042A CN201610176217.7A CN201610176217A CN105656042A CN 105656042 A CN105656042 A CN 105656042A CN 201610176217 A CN201610176217 A CN 201610176217A CN 105656042 A CN105656042 A CN 105656042A
Authority
CN
China
Prior art keywords
upfc
voltage
controller
electromotor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610176217.7A
Other languages
English (en)
Other versions
CN105656042B (zh
Inventor
周涛
罗建裕
苏田宇
陈中
任必兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
State Grid Jiangsu Electric Power Co Ltd
North China Electric Power University
Original Assignee
Southeast University
State Grid Jiangsu Electric Power Co Ltd
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University, State Grid Jiangsu Electric Power Co Ltd, North China Electric Power University filed Critical Southeast University
Priority to CN201610176217.7A priority Critical patent/CN105656042B/zh
Publication of CN105656042A publication Critical patent/CN105656042A/zh
Application granted granted Critical
Publication of CN105656042B publication Critical patent/CN105656042B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Abstract

本发明公开了一种UPFC控制器间交互影响的规范型评估方法,用于评定UPFC控制器间交互影响的强弱程度。其技术方案是:在稳态运行点对电力系统非线性系统状态方程泰勒级数展开,并保留二阶非线性项;进一步进行若当变换、规范型变换,计算非线性交互影响指标;在比较不同工况下非线性交互影响指标后,得出最终结论。本发明的UPFC控制器间交互影响分析方法,可以在直流电压控制器、交流电压控制器、潮流控制器不同状态(开环或闭环)下,对UPFC各控制器间交互影响强弱进行量化分析,为保证UPFC正常运行提供依据。

Description

一种UPFC控制器间交互影响的规范型评估方法
技术领域
本发明涉及一种UPFC控制器间交互影响的规范型评估方法,属于电力系统控制技术。
背景技术
统一潮流控制器(UnifiedPowerFlowController,UPFC)通常是由两个电压源型换流器(VSC)组成的,它们共用一个直流电容,一侧通过耦合变压器并联到母线上,主要用来维持母线电压稳定,一侧通过耦合变压器串联到线路中,主要用来控制线路潮流,合理调节系统有功和无功的流动,提高线路的传输能力。
目前,UPFC控制器主要采用的是基于同步旋转dq坐标系的控制方法。并联换流器的输出电流iE被分解为iEd和iEq两个分量,通过控制d轴分量iEd用来控制直流电容两侧的电压,通过控制q轴分量iEq用来控制并联换流器接入点的母线电压;串联换流器注入系统的电流iB被分解成iBd和iBq,线路传输的有功功率P由q轴分量iBq控制,线路传输的无功功率Q有d轴分量iBd控制。采用PI调节器的控制器比较常见,而采用神经网络、模糊控制等方案虽然在理论上有较好的控制效果,但由于缺乏实践的验证,在工程应用上比较少见。若UPFC控制器间存在较强的交互影响,将影响UPFC控制器的正常运行以及系统稳定性。
规范型理论(NormalForm),是一种非常强大的数学工具,广泛用于研究电力系统的模式交互分析、系统稳定域研究及其控制器设计。因此可以利用规范型理论评估UPFC控制器间的交互影响。规范型理论描述如下:
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种UPFC控制器间交互影响的规范型评估方法,依据电力系统的非线性方程,应用规范型理论,得到非线性交互指标,并进行UPFC控制器间交互影响的量化分析,可以用于定量分析UPFC控制器之间交互影响的强弱。
技术方案:为实现上述目的,本发明采用的技术方案为:
一种UPFC控制器间交互影响的规范型评估方法,依据系统非线性状态方程,利用规范型理论,分别计算不同工况下含UPFC控制器的系统非线性交互影响指标,比较不同工况下系统非线性交互影响指标的大小,进而判断UPFC控制器间交互影响的强弱,具体包括如下步骤:
(1)收集系统中发电机与励磁系统参数、输电线路参数和UPFC参数,计算当前工况下状态变量与代数变量的稳态值,得到当前工况下含UPFC控制器的系统非线性状态方程:
x · = f ( x ) - - - ( 1 )
其中:x=[x1x2…xi…xn],xi是系统的第i个状态变量,是x的一阶导数;f(x)=[f1f2…fi…fn],fi是f(x)中的第i个方程;
(2)对含有UPFC控制器的系统非线性状态方程在稳态点进行泰勒级数展开,并保留到二阶非线性项,可以得到:
x · = A x + 1 2 x T H 1 x x T H 2 x . . . x T H n x - - - ( 2 )
其中:A是系统非线性状态方程的雅克比矩阵,A中第i行第j列的元素为Hi是二阶偏导数的海森(Hessian)矩阵,Hi中第j行第k列的元素为xT是x的转置;
计算A的特征值矩阵Λ=[λ1λ2…λj…λn],左特征向量V和右特征向量U,λj对应系统的第j个振荡模态;
(3)假设存在x=UY变换,将x=UY带入式(2)进行若当(Jordan)变换,计算若当型系数
y · j = λ j y j + Y T C j Y = λ j y j + Σ k = 1 n Σ l = 1 n C k l j y k y l - - - ( 3 )
C j = 1 2 Σ i = 1 n ( V j i T ( U T H i U ) ) - - - ( 4 )
其中:Y是若当变量,Y=[y1y2…yj…yn]T是yj的一阶导数;YTCjY是中的二次项,Cj是YTCjY中的系数矩阵,Cj中第k行第l列的元素为VT是V的转置,是VT中第j行第i列的元素;
(4)进行规范型变换,并计算规范型系数:
Y=z+h(z)(5)
其中:z是规范型变量,z=[z1z2…zj…zn];h(z)是以n个矩阵为元素的向量,h(z)中第j个矩阵的第k行第l列的元素为
(5)通过求解非线性优化问题获得z的初始值z0
ming(z0)=z0+h(z0)-Y0(6)
其中:Y0是Y的初始值;
(6)评价当前工况下,系统的第j个振荡模态下的非线性交互影响指标index(j):
i n d e x ( j ) = | max k , l ( h k l j z k 0 z l 0 ) / z j 0 | - - - ( 7 )
其中:zk0、zl0、zj0分别为zk、zl、zj的初始值;
(7)针对不同工况重复步骤(1)~(6),得到不同工况下系统的第j个振荡模态下的非线性交互影响指标;针对UPFC上某一个控制器,所有控制器(包含该控制器)均闭环得到的非线性交互影响指标与该控制器单独闭环(其他控制器开环)得到的非线性交互影响指标差值越小,则认为该控制器与其他控制器的交互影响越弱,反之越强。
有益效果:本发明提供的UPFC控制器间交互影响的规范型评估方法,可以评估UPFC各控制间交互影响的强弱,为协调设计UPFC上各控制器,改善控制器性能提供依据,进而避免令UPFC运行效果恶化的交互作用。
附图说明
图1为装有UPFC的四机两区域电力系统;
图2为UPFC等效电路图;
图3为定直流电压控制器的传递框图;
图4为定交流电压控制器的传递框图;
图5为定有功功率控制器的传递框图;
图6为定无功功率控制器的传递框图;
图7为工况4下各控制器的仿真图。
具体实施方式
下面结合附图对本发明作更进一步的说明。
一种UPFC控制器间交互影响的规范型评估方法,依据系统非线性状态方程,利用规范型理论,分别计算不同工况下含UPFC控制器的系统非线性交互影响指标,比较不同工况下系统非线性交互影响指标的大小,进而判断UPFC控制器间交互影响的强弱,具体包括如下步骤:
(1)收集系统中发电机与励磁系统参数、输电线路参数和UPFC参数,计算当前工况下状态变量与代数变量的稳态值,得到当前工况下含UPFC控制器的系统非线性状态方程:
x · = f ( x ) - - - ( 1 )
其中:x=[x1x2…xi…xn],xi是系统的第i个状态变量,是x的一阶导数;f(x)=[f1f2…fi…fn],fi是f(x)中的第i个方程;
(2)对含有UPFC控制器的系统非线性状态方程在稳态点进行泰勒级数展开,并保留到二阶非线性项,可以得到:
x · = A x + 1 2 x T H 1 x x T H 2 x . . . x T H n x - - - ( 2 )
其中:A是系统非线性状态方程的雅克比矩阵,A中第i行第j列的元素为Hi是二阶偏导数的海森(Hessian)矩阵,Hi中第j行第k列的元素为xT是x的转置;
计算A的特征值矩阵Λ=[λ1λ2…λj…λn],左特征向量V和右特征向量U,λj对应系统的第j个振荡模态;
(3)假设存在x=UY变换,将x=UY带入式(2)进行若当(Jordan)变换,计算若当型系数
y · j = λ j y j + Y T C j Y = λ j y j + Σ k = 1 n Σ l = 1 n C k l j y k y l - - - ( 3 )
C j = 1 2 Σ i = 1 n ( V j i T ( U T H i U ) ) - - - ( 4 )
其中:Y是若当变量,Y=[y1y2…yj…yn]T是yj的一阶导数;YTCjY是中的二次项,Cj是YTCjY中的系数矩阵,Cj中第k行第l列的元素为VT是V的转置,是VT中第j行第i列的元素;
(4)进行规范型变换,并计算规范型系数:
Y=z+h(z)(5)
其中:z是规范型变量,z=[z1z2…zj…zn];h(z)是以n个矩阵为元素的向量,h(z)中第j个矩阵的第k行第l列的元素为
(5)通过求解非线性优化问题获得z的初始值z0
ming(z0)=z0+h(z0)-Y0(6)
其中:Y0是Y的初始值;
(6)评价当前工况下,系统的第j个振荡模态下的非线性交互影响指标index(j):
i n d e x ( j ) = | max k , l ( h k l j z k 0 z l 0 ) / z j 0 | - - - ( 7 )
其中:zk0、zl0、zj0分别为zk、zl、zj的初始值;
(7)针对不同工况重复步骤(1)~(6),得到不同工况下系统的第j个振荡模态下的非线性交互影响指标;针对UPFC上某一个控制器,所有控制器均闭环得到的非线性交互影响指标与该控制器单独闭环(其他控制器开环)得到的非线性交互影响指标差值越小,则认为该控制器与其他控制器的交互影响越弱,反之越强。
在含有一台UPFC控制器和m台发电机的电力系统中,发电机采用三阶模型,励磁系统采用一阶模型,UPFC控制器采用9阶模型。
第i台发电机的状态方程包括:
式(8)中的代数变量通过式(9)求得:
V d i = X q i I q i V q i = E q i ′ - X d i ′ I d i P = V d i I d i + V q i I q i E q i = E q i ′ + ( X d i - X d i ′ ) I d i V g i = V d i 2 + V q i 2 - - - ( 9 )
式中:δi为第i台发电机转子相对于同步参考轴的角位移,ωi是第i台发电机的转速,ω0为同步转速;Mi为第i台发电机的转子运动惯性常数,Di为第i台发电机的转子运动阻尼系数;Pmi和Pi分别为第i台发电机的输入机械功率和输出电磁功率;Eqi'为第i台发电机的交轴暂态电动势,Eqi为第i台发电机对应实际励磁电流的空载电动势,Efd0i为第i台发电机对应于励磁电压作用下的励磁电流强制分量的空载电动势,Efdi'为第i台发电机自动电压调节器的输出电压;Td0i'为第i台发电机的励磁绕组本身的时间常数;Vgi为第i台同步发电机的机端电压幅值,Vrefgi为第i台发电机的机端电压的给定参考值;KAi和TAi为第i台发电机的自动电压调节器的增益和时间常数,Vdi和Vqi为第i台发电机机端电压在自身di-qi旋转坐标系下的直轴和交轴分量,Idi和Iqi为第i台发电机输出电流在自身di-qi旋转坐标系下的直轴和交轴分量;Xdi、Xqi、Xdi'为第i台发电机的直轴电抗、交轴电抗和直轴暂态电抗。
UPFC控制器的状态方程为:
f 5 : U · d c = 3 2 1 U d c C d c [ ( U E d I E d + V E q I E q ) + ( V B d I B d + V B q I B q ) ] f 6 : I · E d ′ = K i 1 ( V d c - V d c r e f ) f 7 : V · E d ′ = K i 2 ( I E d r e f - I E d ) f 8 : I · E q ′ = K i 3 ( V 5 - V 5 r e f ) f 9 : V · E q ′ = K i 4 ( I E q r e f - I E q ) f 10 : I · B d ′ = K i 5 ( Q - Q r e f ) f 11 : V · B d ′ = K i 6 ( I B d r e f - I B d ) f 12 : I · B q ′ = K i 7 ( P - P r e f ) f 13 : V · B q ′ = K i 8 ( I B q r e f - I B q ) - - - ( 10 )
式中:Vdc为UPFC直流电容电压,Vdcref为UPFC直流电容参考电压,Cdc为UPFC直流电容;VEd和IEd为UPFC并联侧的电压和电流的d轴分量,VEq和IEq为UPFC并联侧的电压和电流的q轴分量,VBd和IBd为UPFC串联侧的电压和电流的d轴分量,VBq和IBq为UPFC串联侧的电压和电流的q轴分量;VEd'和IEd'为UPFC并联侧的电压和电流的d轴分量的计算值,VEq'和IEq'为UPFC并联侧的电压和电流的q轴分量的计算值;VBd'和IBd'为UPFC串联侧的电压和电流的d轴分量的计算值,VBq'和IBq'为UPFC串联侧的电压和电流的q轴分量的计算值;VEdref和IEdref为UPFC并联侧的参考电压和参考电流的d轴分量,VEqref和IEqref为UPFC并联侧的参考电压和参考电流的q轴分量;VBdref和IBdref为UPFC串联侧的参考电压和参考电流的d轴分量,VBqref和IBqref为UPFC串联侧的参考电压和参考电流的q轴分量;Ki1~Ki8和Kp1~Kp8分别为四个UPFC的8个PI控制器的积分系数和比例系数;XE为UPFC并联侧等效电抗,XB为UPFC串联侧等效电抗;V3d,V4d,V5d和V3q,V4q,V5q为连接UPFC的节点电压的d轴、q轴分量。
因此可知系统的状态变量为:
x=[x1x2…xi…xn]
=[…,δii,Eqi',Efdi',…,Vdc,IEd',VEd',IEq',VEq',IBd',VBd',IBq',VBq']
光滑矢量场为:
f(x)=[…,fi1,fi2,fi3,fi4,…,f5,f6,f7,f8,f9,f10,f11,f12,f13],i=1,2,…,m
利用式(2)对进行泰勒级数展开,得到雅克比矩阵A为:
再计算海森矩阵,以Hi2为列,Hi2为:
下面以四机两区电力系统为例说明分析过程。该电力系统包含14个节点:1、2、3、4节点为发电机,节点7和节点9为负荷,其他节点为母线;其中,UPFC的串联部分安装在节点12与节点13之间,UPFC的并联部分安装在节点14上,如图1所示。
四机两区域电力系统及UPFC的参数(均为标幺值)如下:
表1四机两区电力系统的节点参数
表2四机两区电力系统的线路参数
起始节点 终止节点 线路电阻 线路电抗 线路电纳
1 5 0 0.0167 0
2 6 0 0.0167 0
3 11 0 0.0167 0
4 10 0 0.0167 0
5 6 0.0025 0.025 0.04375
6 7 0.001 0.01 0.0175
7 8 0.011 0.11 0.1925
7 8 0.011 0.11 0.1925
8 12 0 0.033 0
8 14 0 0.033 0
13 9 0 0.077 0
8 9 0.011 0.11 0.1925
9 10 0.001 0.01 0.0175
10 11 0.0025 0.025 0.04375
表3四机两区电力系统的发电机及励磁参数
表4UPFC及其控制器参数
UPFC Cdc 1 Udc 1 XE 0.02 XB 0.01
控制器1 Kp1 5 Ki1 0.01 Kp2 2 Ki2 0.02
控制器2 Kp3 2 Ki3 0.02 Kp4 2 Ki4 0.02
控制器3 Kp5 2 Ki5 0.02 Kp6 2 Ki6 0.02
控制器4 Kp7 2 Ki7 0.02 Kp8 2 Ki8 0.02
对于四机两区电力系统,表5列出4种不同的工况,分别计算关键模态处的非线性交互影响指标,比较不同工况下该指标的大小,从而定量分析UPFC不同控制器间交互影响的强弱程度。表6给出了装有一台UPFC的四机两区电力系统的机电振荡模式。
表5UPFC4种运行工况
工况1 工况2 工况3 工况4
直流电压控制器 闭环 闭环 闭环 闭环
交流电压控制器 开环 闭环 开环 闭环
潮流控制器 开环 开环 闭环 闭环
表6装有一台UPFC的四机两区电力系统机电振荡模式
模态 特征值 阻尼比 频率(Hz) 模态类型 参与机组
1/3 -0.139±j5.766 0.024 0.917 局部模式 G1、G2
2/4 -0.160±j6.075 0.026 0.966 局部模式 G3、G4
5/6 -0.160±j2.789 0.057 0.443 区域模式 G3、G4、G2、G1
表7列出了四种工况下非线性交互影响指标。UPFC的正常运行需要保持直流电容上的电压恒定,以只有直流电压控制器闭环的工况1为基准,比较其他工况下的非线性交互影响指标。从表7中的数据可以发现,工况2、工况3与工况1相比,非线性交互影响指标相差不大。因此,定交流电压控制器闭环或定潮流控制器闭环与定直流电压控制器的交互影响很弱。进一步对比工况2、工况3与工况4,这三种工况下,非线性交互影响指标同样相差很小。因此,定直流电压控制器、定交流电压控制器和定潮流控制器全部闭环时,各个控制器之间的交互影响很弱。
表7非线性交互影响指标
模态 工况1 工况2 工况3 工况4
1/3 7.89 16.14 19.11 17.83
2/4 1.63 3.54 1.64 4.10
5/6 1.25 2.37 3.02 9.56
为了验证分析结果,在工况4下,分别对定直流电压控制器、定交流电压控制器、定有功功率控制器进行仿真测试,测试结果如图7所示。
图7(a)中,定直流电压控制器的参考电压Vdcref在1s时增加1%,波形没有明显振荡,逐渐趋于平稳。
图7(b)中,定交流电压控制器的参考电压Vref在1s时增加2%,仿真波形在阶跃后趋于稳定。
图7(c)中,定有功功率控制器的参考值Pref在1s时增加5%,波形经过小幅振荡后趋于平稳。
因此,仿真结果验证了规范型分析结果的正确性,即当UPFC所有控制器均闭环时,各控制器间交互影响很弱。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (2)

1.一种UPFC控制器间交互影响的规范型评估方法,其特征在于:依据系统非线性状态方程,利用规范型理论,分别计算不同工况下含UPFC控制器的系统非线性交互影响指标,比较不同工况下系统非线性交互影响指标的大小,进而判断UPFC控制器间交互影响的强弱,具体包括如下步骤:
(1)收集系统中发电机与励磁系统参数、输电线路参数和UPFC参数,计算当前工况下状态变量与代数变量的稳态值,得到当前工况下含UPFC控制器的系统非线性状态方程:
x · = f ( x ) - - - ( 1 )
其中:x=[x1x2…xi…xn],xi是系统的第i个状态变量,是x的一阶导数;f(x)=[f1f2…fi…fi…fn],fi是f(x)中的第i个方程;
(2)对含有UPFC控制器的系统非线性状态方程在稳态点进行泰勒级数展开,并保留到二阶非线性项,可以得到:
x · = A x + 1 2 x T H 1 x x T H 2 x . . . x T H n x - - - ( 2 )
其中:A是系统非线性状态方程的雅克比矩阵,A中第i行第j列的元素为Hi是二阶偏导数的海森矩阵,Hi中第j行第k列的元素为xT是x的转置;
计算A的特征值矩阵Λ=[λ1λ2…λj…λn],左特征向量V和右特征向量U,λj对应系统的第j个振荡模态;
(3)假设存在x=UY变换,将x=UY带入式(2)进行若当变换,计算若当型系数
y · j = λ j y j + Y T C j Y = λ j y j + Σ k = 1 n Σ l = 1 n C k l j y k y l - - - ( 3 )
C j = 1 2 Σ i = 1 n ( V j i T ( U T H i U ) ) - - - ( 4 )
其中:Y是若当变量,Y=[y1y2…yj…yn]T是yj的一阶导数;YTCjY是中的二次项,Cj是YTCjY中的系数矩阵,Cj中第k行第l列的元素为VT是V的转置,是VT中第j行第i列的元素;
(4)进行规范型变换,并计算规范型系数:
Y=z+h(z)(5)
其中:z是规范型变量,z=[z1z2…zj…zn];h(z)是以n个矩阵为元素的向量,h(z)中第j个矩阵的第k行第l列的元素为
(5)通过求解非线性优化问题获得z的初始值z0
ming(z0)=z0+h(z0)-Y0(6)
其中:Y0是Y的初始值;
(6)评价当前工况下,系统的第j个振荡模态下的非线性交互影响指标index(j):
i n d e x ( j ) = | m a x k , l ( h k l j z k 0 z l 0 ) / z j 0 | - - - ( 7 )
其中:zk0、zl0、zj0分别为zk、zl、zj的初始值;
(7)针对不同工况重复步骤(1)~(6),得到不同工况下系统的第j个振荡模态下的非线性交互影响指标;针对UPFC上某一个控制器,所有控制器均闭环得到的非线性交互影响指标与该控制器单独闭环得到的非线性交互影响指标差值越小,则认为该控制器与UPFC上其他控制器的交互影响越弱,反之越强。
2.根据权利要求1所述的UPFC控制器间交互影响的规范型评估方法,其特征在于:在含有一台UPFC和m台发电机的电力系统中,发电机采用三阶模型,励磁系统采用一阶模型,UPFC控制器采用9阶模型;
第i台发电机的状态方程包括:
式(8)中的代数变量通过式(9)求得:
V d i = X q i I q i V q i = E q i ′ - X d i ′ I d i P i = V d i I d i + V q i I q i E q i = E q i ′ + ( X d i - X d i ′ ) I d i V g i = V d i 2 + V q i 2 - - - ( 9 )
式中:δi为第i台发电机转子相对于同步参考轴的角位移,ωi是第i台发电机的转速,ω0为同步转速;Mi为第i台发电机的转子运动惯性常数,Di为第i台发电机的转子运动阻尼系数;Pmi和Pi分别为第i台发电机的输入机械功率和输出电磁功率;Eqi'为第i台发电机的交轴暂态电动势,Eqi为第i台发电机对应实际励磁电流的空载电动势,Efd0i为第i台发电机对应于励磁电压作用下的励磁电流强制分量的空载电动势,Efdi'为第i台发电机自动电压调节器的输出电压;Td0i'为第i台发电机的励磁绕组本身的时间常数;Vgi为第i台同步发电机的机端电压幅值,Vrefgi为第i台发电机的机端电压的给定参考值;KAi和TAi为第i台发电机的自动电压调节器的增益和时间常数,Vdi和Vqi为第i台发电机机端电压在自身di-qi旋转坐标系下的直轴和交轴分量,Idi和Iqi为第i台发电机输出电流在自身di-qi旋转坐标系下的直轴和交轴分量;Xdi、Xqi、Xdi'为第i台发电机的直轴电抗、交轴电抗和直轴暂态电抗;
UPFC控制器的状态方程为:
f 5 : U · d c = 3 2 1 U d c C d c [ ( V E d I E d + V E q I E q ) + ( V B d I B d + V B q I B q ) ] f 6 : I · E d ′ = K i 1 ( V d c - V d c r e f ) f 7 : V · E d ′ = K i 2 ( I E d r e f - I E d ) f 8 : I · E q ′ = K i 3 ( V 5 - V 5 r e f ) f 9 : V · E q ′ = K i 4 ( I E q r e f - I E q ) f 10 : I · B d ′ = K i 5 ( Q - Q r e f ) f 11 : V · B d ′ = K i 6 ( I B d r e f - I B d ) f 12 : I · B q ′ = K i 7 ( P - P r e f ) f 13 : V · B q ′ = K i 8 ( I B q r e f - I B q ) - - - ( 10 )
式中:Vdc为UPFC直流电容电压,Vdcref为UPFC直流电容参考电压,Cdc为UPFC直流电容;VEd和IEd为UPFC并联侧的电压和电流的d轴分量,VEq和IEq为UPFC并联侧的电压和电流的q轴分量,VBd和IBd为UPFC串联侧的电压和电流的d轴分量,VBq和IBq为UPFC串联侧的电压和电流的q轴分量;VEd'和IEd'为UPFC并联侧的电压和电流的d轴分量的计算值,VEq'和IEq'为UPFC并联侧的电压和电流的q轴分量的计算值;VBd'和IBd'为UPFC串联侧的电压和电流的d轴分量的计算值,VBq'和IBq'为UPFC串联侧的电压和电流的q轴分量的计算值;VEdref和IEdref为UPFC并联侧的参考电压和参考电流的d轴分量,VEqref和IEqref为UPFC并联侧的参考电压和参考电流的q轴分量;VBdref和IBdref为UPFC串联侧的参考电压和参考电流的d轴分量,VBqref和IBqref为UPFC串联侧的参考电压和参考电流的q轴分量;Ki1~Ki8和Kp1~Kp8分别为四个UPFC的8个PI控制器的积分系数和比例系数;XE为UPFC并联侧等效电抗,XB为UPFC串联侧等效电抗;V3d,V4d,V5d和V3q,V4q,V5q为连接UPFC的节点电压的d轴、q轴分量。
CN201610176217.7A 2016-03-25 2016-03-25 一种upfc控制器间交互影响的规范型评估方法 Expired - Fee Related CN105656042B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610176217.7A CN105656042B (zh) 2016-03-25 2016-03-25 一种upfc控制器间交互影响的规范型评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610176217.7A CN105656042B (zh) 2016-03-25 2016-03-25 一种upfc控制器间交互影响的规范型评估方法

Publications (2)

Publication Number Publication Date
CN105656042A true CN105656042A (zh) 2016-06-08
CN105656042B CN105656042B (zh) 2019-03-01

Family

ID=56494674

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610176217.7A Expired - Fee Related CN105656042B (zh) 2016-03-25 2016-03-25 一种upfc控制器间交互影响的规范型评估方法

Country Status (1)

Country Link
CN (1) CN105656042B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107240927A (zh) * 2017-07-18 2017-10-10 常州天曼智能科技有限公司 一种直流线间潮流控制器
CN107968416A (zh) * 2017-12-07 2018-04-27 郑州轻工业学院 一种基于upfc阻尼含风电系统振荡特性的pod设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101256550A (zh) * 2008-04-17 2008-09-03 上海交通大学 复杂电网相位同步并行化评估系统
CN101325324A (zh) * 2008-04-14 2008-12-17 清华大学 一种基于实时运行方式的架空线抗凝冰方法
US20110098056A1 (en) * 2009-10-28 2011-04-28 Rhoads Geoffrey B Intuitive computing methods and systems
CN102185325A (zh) * 2011-04-25 2011-09-14 东北电力大学 基于网络量测信息的电力系统暂态稳定性定量评价方法
CN102427224A (zh) * 2011-10-22 2012-04-25 东北电力大学 输电线路重合闸时刻在线捕捉方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101325324A (zh) * 2008-04-14 2008-12-17 清华大学 一种基于实时运行方式的架空线抗凝冰方法
CN101256550A (zh) * 2008-04-17 2008-09-03 上海交通大学 复杂电网相位同步并行化评估系统
US20110098056A1 (en) * 2009-10-28 2011-04-28 Rhoads Geoffrey B Intuitive computing methods and systems
CN102185325A (zh) * 2011-04-25 2011-09-14 东北电力大学 基于网络量测信息的电力系统暂态稳定性定量评价方法
CN102427224A (zh) * 2011-10-22 2012-04-25 东北电力大学 输电线路重合闸时刻在线捕捉方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107240927A (zh) * 2017-07-18 2017-10-10 常州天曼智能科技有限公司 一种直流线间潮流控制器
CN107968416A (zh) * 2017-12-07 2018-04-27 郑州轻工业学院 一种基于upfc阻尼含风电系统振荡特性的pod设计方法

Also Published As

Publication number Publication date
CN105656042B (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
CN103197559B (zh) 一种改善双馈机组接入后系统小干扰稳定性的方法
Alsseid et al. Small signal modelling and stability analysis of multiterminal VSC-HVDC
Zhou et al. Effect of reactive power characteristic of offshore wind power plant on low-frequency stability
CN110676874B (zh) 计及频率耦合效应的直驱式风机次同步振荡电气量分析方法
CN109921421B (zh) 双馈风电机组输出谐波电流模型建立方法
CN103870703A (zh) 一种基于戴维南等值参数跟踪的动态短路比计算方法
CN105471313A (zh) 基于负载电流状态观测器的三相逆变器双环优化控制方法
CN104993711A (zh) 一种电压暂降过渡过程模拟装置及方法
CN113346513A (zh) 一种辨识直驱风机强迫次同步振荡的方法
Zhang et al. Development of a hybrid emulation platform based on RTDS and reconfigurable power converter-based testbed
Trevisan et al. Analysis of low frequency interactions of DFIG wind turbine systems in series compensated grids
CN104104097A (zh) 一种评估风电机组送出系统次同步振荡的方法
CN103904651B (zh) 一种基于串补作用系数的次同步谐振风险筛选方法
CN105656042A (zh) 一种upfc控制器间交互影响的规范型评估方法
CN104767207A (zh) 基于发电机无功储备灵敏度的电压稳定预防控制方法
Zhai et al. Analysis of sub synchronous oscillation characteristics from a direct drive wind farm based on the complex torque coefficient method
CN107179706B (zh) 适用于受端大电网仿真分析的uhvdc模型及建模方法
Dong et al. Subsynchronous resonance Mitigation for series compensation transmission system of DFIG based on Pr control
CN108988387A (zh) 基于转子电流移相平均的双馈风电机组次同步谐振抑制方法
CN105140957A (zh) 基于风电场和光伏电站聚合模型的机电振荡模式估算方法
CN115730468A (zh) 一种构网型变流器直流侧电压混合控制方法、系统及装置
CN105576673B (zh) 一种基于e‑statcom的强迫功率振荡抑制方法及系统
Shao et al. Medium-frequency and sub-synchronous oscillation analysis of direct-drive wind farms connected to the parallel-compensated AC grid
Selmi et al. A simple method for the steady state performances of self-excited induction generators
CN104362914B (zh) 一种励磁阻尼控制器与静止同步补偿器等价容量的实时计算方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190301

Termination date: 20200325

CF01 Termination of patent right due to non-payment of annual fee