CN105655557B - 一种锡不完全填充碳壳的碳包锡纳米材料的制备方法 - Google Patents

一种锡不完全填充碳壳的碳包锡纳米材料的制备方法 Download PDF

Info

Publication number
CN105655557B
CN105655557B CN201610029753.4A CN201610029753A CN105655557B CN 105655557 B CN105655557 B CN 105655557B CN 201610029753 A CN201610029753 A CN 201610029753A CN 105655557 B CN105655557 B CN 105655557B
Authority
CN
China
Prior art keywords
carbon
gas
sno
tin
tinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610029753.4A
Other languages
English (en)
Other versions
CN105655557A (zh
Inventor
曹可
王宏涛
刘嘉斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201610029753.4A priority Critical patent/CN105655557B/zh
Publication of CN105655557A publication Critical patent/CN105655557A/zh
Application granted granted Critical
Publication of CN105655557B publication Critical patent/CN105655557B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

一种锡不完全填充碳壳的碳包锡纳米材料的制备方法,包括将普通滤纸剪成条状置于烘箱中干燥待用;形成SnO2乙醇溶液;将SnO2乙醇溶液逐滴滴到干燥好的滤纸上;载有SnO2的滤纸放入石英舟中,然后将该石英舟放到CVD炉的恒温区,通入Ar气直到排净CVD炉的石英管中的空气,将CVD炉升温到反应温度通入C2H2气体,保温;停止通C2H2气体,持续通Ar气,升温到900℃‑1100℃,并保温30‑180分钟,后自然冷却到室温;停止通Ar气,打开石英管,取出样品,研磨。本发明具有能使碳壳与锡球之间存在间隙,该间隙成为锡在嵌锂和脱锂时体积膨胀时的缓冲空间的优点。

Description

一种锡不完全填充碳壳的碳包锡纳米材料的制备方法
技术领域
本发明涉及锂离子电池负极材料领域,具体是一种锡不完全填充碳壳的碳包覆锡纳米复合材料的制备方法。
技术背景
锡基材料可以用作锂离子电池的负极材料,其理论的比容量为994 mAh g-1,石墨材料的理论比容量仅为372 mAh g-1,因而锡在锂离子电池方面具有巨大的应用潜力。但是,在电池充放电反应的过程中,由于锡锂合金相形成的可逆反应体积发生膨胀(约300%)引起电极材料的失效甚至分化,导致其实际容量较低且循环稳定性不高,随着充放电循环的进行,其容量衰减很快。
为了解决二氧化锡电极材料体积变化巨大的问题,人们常识了各种途径,比如制备二氧化锡纳米空心管、纳米线等结构。虽然这些常识不同程度地改善了Sn基负极材料的循环稳定性,但是其复杂的制备方法决定了高成本和难以大批量生成的问题。
中国专利申请201010619479.9披露了一种纳米碳包覆的锂电池负极材料的制备方法,通过将碳化后的废弃农作物与金属盐溶液混合后烧结得到多孔活性碳基体,然后将多孔活性碳基体回流处理后分散于氧化锡的前驱体溶液中,得到二氧化锡活性碳复合材料,最后将二氧化锡活性碳复合材料与天然高分子溶液加热反应后焙烧处理,得到纳米碳包覆的锂电池负极材料。碳壳具有良好的导电性,采用碳壳包覆可以防止活性材料团聚,并且对于锡这种嵌锂时体积膨胀很大的材料可以起到一定的束缚作用。这种纳米碳包覆的锂电池负极材料的缺点在于:二氧化锡的纳米球充满于碳壳内,由于充放电时、锡在嵌锂和脱锂时体积发生膨胀达到约300%,碳壳直接受到巨大的冲击力,导致碳壳容易破损,缩短负极的使用寿命。
发明内容
本发明的目的在于提供一种锡不完全填充碳壳的碳包锡纳米材料的制备方法,使碳壳与锡球之间存在间隙,该间隙成为锡在嵌锂和脱锂时体积膨胀时的缓冲空间。
一种锡不完全填充碳壳的碳包锡纳米材料的制备方法,包括以下步骤:
第一步:将普通滤纸剪成条状,置于烘箱中,40-60℃干燥6-12小时待用。
第二步:将SnO2粉体放入无水乙醇中、超声分散2-4小时形成SnO2乙醇溶液;超声处理使SnO2粉体充分分散到无水乙醇中。
第三步:将第二步中所得的SnO2乙醇溶液逐滴滴到第一步中干燥好的滤纸上,同时在40-60℃干燥6-12小时;从而使SnO2能充分溶渗入滤纸,使SnO2待在滤纸里,为后续反应提供Sn源。
第四步,将第三步中干燥好的载有SnO2的滤纸放入石英舟中,然后将该石英舟放到CVD炉的恒温区,通入Ar气直到排净CVD炉的石英管中的空气,将CVD炉升温到反应温度,再向CVD炉的石英管内通入C2H2气体,保温;保温过程中,C2H2气体与滤纸内的SnO2发生催化反应,并在SnO2表面沉积一层碳,碳包裹于SnO2表面从而形成碳壳。然后随着保温的持续,碳会进一步与SnO2的氧反应,生成CO2和Sn,从而获得碳壳在外、锡球在内的碳包锡的复合结构。
第五步,停止通C2H2气体,持续通Ar气,升温到900℃-1100℃,并保温30-180分钟,然后自然冷却到室温;Sn的熔点是232℃,沸点是2260℃。当CVD炉内的温度达到232℃以上时,碳壳内部的锡逐渐熔融呈液态,当温度高达900℃时,包在碳壳内部的Sn以液体的形式存在并部分汽化,Sn蒸汽的气压较高,使部分的Sn气体分子透过碳壳向外扩散,从而使碳壳内的Sn含量减少,当冷却下来时形成部分填充碳壳的Sn球。
第六步,停止通Ar气,打开石英管,取出样品,进行研磨得到锡不完全填充碳壳的碳包锡纳米材料粉末样品。
进一步,第二步中所述的SnO2酒精溶液的初始浓度为0.002mol L-1
进一步,第四步中所述的在CVD炉中的反应温度为650-850℃,保温时间为60-180分钟,所通气体流量之比约Ar:C2H2=(9~4):1。C2H2的裂解温度在600度以上,因此,在650-850℃温度范围能进行C2H2的裂解反应,从而在SnO2的表面形成一层碳壳。60-180分钟的保温时间足够让SnO2表面的碳与SnO2的氧反应,将碳壳内的所有SnO2转变为Sn,形成Sn球在内,碳壳在外的碳包锡纳米结构。
在实验的过程中,我们发现通过以上反应第一到第四步,可以得到比较好的球形碳包锡纳米颗粒,并且碳壳包覆均匀,碳壳厚度均一,并且碳壳的厚度受第四步的反应温度控制,随着温度的提高,碳壳厚度成增加趋势。而要得到锡在碳壳中所占体积较少的样品,需要通过第五步的保温过程,通过对750℃、900℃、1000℃、1100℃几个温度的测试。在750℃以下时,碳壳中的锡的体积没有减少。当温度到达900℃时,锡球的体积减小,能够得到锡不完全充满碳壳的结构。保温温度在1000℃时,可以得到锡半充满碳壳或者锡所占碳壳体积更小的样品。而保温温度在1100℃反应时间达到180分钟时碳壳破裂,没有得到球形的颗粒样品。本发明与现有技术相比,具有以下优点:(1)原料简单,本发明以SnO2为原料,乙炔为反应气氛,氩气为保护气氛;(2)工艺简单,通过CVD工艺制备样品,不需要经其他处理;(3)制备的碳包锡样品形貌为很好的球形,直径在50-500nm,与可以通过控制反应温度及反应时间得到不同锡球尺寸的样品。
附图说明
图1是本发明的实例1制备的锡完全充满碳壳的碳包锡纳米颗粒的在100nm的单位标尺下的TEM形貌图。
图2是为本发明的实例1制备的锡完全充满碳壳的碳包锡纳米颗粒的在1μm的单位标尺下的TEM形貌图。
图3为本发明的实例2制备的锡不完全充满碳壳的碳包锡纳米颗粒的在100nm的单位标尺下的TEM形貌图。
图4为本发明的实例3制备的锡不完全充满碳壳的碳包锡纳米颗粒的在100nm的单位标尺下的TEM形貌图。
图5为本发明的实例4制备的锡不完全充满碳壳的碳包锡纳米颗粒的在100nm的单位标尺下的TEM形貌图。
图6是本发明的实例5制备的锡不完全充满碳壳的碳包锡纳米颗粒的在100nm的单位标尺下的TEM形貌图。
图7是本发明的实例5制备的锡不完全充满碳壳的碳包锡纳米颗粒在200nm的单位标尺下的TEM形貌图。
图8是本发明的实例6制备的锡不完全充满碳壳的碳包锡纳米颗粒的在100nm的单位标尺下的TEM形貌图。
图9是本发明的实例6制备的锡不完全充满碳壳的碳包锡纳米颗粒的在100nm的单位标尺下的TEM形貌图。
具体实施方式
下面结合附图和具体实施例对本发明做详细说明。
实施例1
取一张普通滤纸,剪成合适大小的条状,以便后边可以放入石英舟中,放入烘箱中在40-60℃干燥6-12小时待用。称取10mg SnO2粉体置于烧杯中,加入40mL无水乙醇,用保鲜膜封口,超声2-4小时。将超声分散好的SnO2乙醇溶液逐滴滴到干燥好的滤纸上,在40-60℃干燥6-12小时。将干燥好的SnO2的滤纸放入石英舟中,将石英舟放到CVD炉的恒温区,排净CVD炉石英管中的空气,通入流量为180sccm的Ar气,升温到750℃,再通入流量为20sccm的C2H2气体,保温60分钟。停止通C2H2气体,持续通Ar气,升温到750℃,保温180分钟,然后自然冷却到室温。停止通Ar气,打开石英管,取出样品,如图1和图2所示,可以进行研磨得到粉末样品。
实施例2
取一张普通滤纸,剪成合适大小的条状,以便后边可以放入石英舟中,放入烘箱中在40-60℃干燥6-12小时待用。称取10mg SnO2粉体置于烧杯中,加入40mL无水乙醇,用保鲜膜封口,超声2-4小时。将超声分散好的SnO2乙醇溶液逐滴滴到干燥好的滤纸上,在40-60℃干燥6-12小时。将干燥好的SnO2的滤纸放入石英舟中,将石英舟放到CVD炉的恒温区,排净CVD炉石英管中的空气,通入流量为200sccm的Ar气,升温到750℃,再通入流量为35sccm的C2H2气体,保温60分钟。停止通C2H2气体,持续通Ar气,升温到900℃,保温30分钟,然后自然冷却到室温。停止通Ar气,打开石英管,取出样品,可以进行研磨得到粉末样品,如图3所示。
实施例3
取一张普通滤纸,剪成合适大小的条状,以便后边可以放入石英舟中,放入烘箱中在40-60℃干燥6-12小时待用。称取10mg SnO2粉体置于烧杯中,加入40mL无水乙醇,用保鲜膜封口,超声2-4小时。将超声分散好的SnO2乙醇溶液逐滴滴到干燥好的滤纸上,在40-60℃干燥6-12小时。将干燥好的SnO2的滤纸放入石英舟中,将石英舟放到CVD炉的恒温区,排净CVD炉石英管中的空气,通入流量为200sccm的Ar气,升温到750℃,再通入流量为20sccm的C2H2气体,保温60分钟。停止通C2H2气体,持续通Ar气,升温到900℃,保温60分钟,然后自然冷却到室温。停止通Ar气,打开石英管,取出样品,如图4所示,可以进行研磨得到粉末样品。
实施例4
取一张普通滤纸,剪成合适大小的条状,以便后边可以放入石英舟中,放入烘箱中在40-60℃干燥6-12小时待用。称取10mg SnO2粉体置于烧杯中,加入40mL无水乙醇,用保鲜膜封口,超声2-4小时。将超声分散好的SnO2乙醇溶液逐滴滴到干燥好的滤纸上,在40-60℃干燥6-12小时。将干燥好的SnO2的滤纸放入石英舟中,将石英舟放到CVD炉的恒温区,排净CVD炉石英管中的空气,通入流量为200sccm的Ar气,升温到750℃,再通入流量为35sccm的C2H2气体,保温60分钟。停止通C2H2气体,持续通Ar气,升温到1000℃,保温180分钟,然后自然冷却到室温。停止通Ar气,打开石英管,取出样品,如图5所示,可以进行研磨得到粉末样品。
实施例5
取一张普通滤纸,剪成合适大小的条状,以便后边可以放入石英舟中,放入烘箱中在40-60℃干燥6-12小时待用。称取10mg SnO2粉体置于烧杯中,加入40mL无水乙醇,用保鲜膜封口,超声2-4小时。将超声分散好的SnO2乙醇溶液逐滴滴到干燥好的滤纸上,在40-60℃干燥6-12小时。将干燥好的SnO2的滤纸放入石英舟中,将石英舟放到CVD炉的恒温区,排净CVD炉石英管中的空气,通入流量为180sccm的Ar气,升温到750℃,再通入流量为20sccm的C2H2气体,保温60分钟。停止通C2H2气体,持续通Ar气,升温到1100℃,保温30分钟,然后自然冷却到室温。停止通Ar气,打开石英管,取出样品,如图6和7所示,可以进行研磨得到粉末样品。
实施例6
取一张普通滤纸,剪成合适大小的条状,以便后边可以放入石英舟中,放入烘箱中在40-60℃干燥6-12小时待用。称取10mg SnO2粉体置于烧杯中,加入40mL无水乙醇,用保鲜膜封口,超声2-4小时。将超声分散好的SnO2乙醇溶液逐滴滴到干燥好的滤纸上,在40-60℃干燥6-12小时。将干燥好的SnO2的滤纸放入石英舟中,将石英舟放到CVD炉的恒温区,排净CVD炉石英管中的空气,通入流量为180sccm的Ar气,升温到750℃,再通入流量为20sccm的C2H2气体,保温60分钟。停止通C2H2气体,持续通Ar气,升温到1100℃,保温180分钟,然后自然冷却到室温。停止通Ar气,打开石英管,取出样品,如图8和9所示。此时发现,Sn纳米颗粒外包裹的碳壳破裂,无法作为成品使用。
本说明书实施例所述的内容仅仅是对发明构思的实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式,本发明的保护范围也及于本领域技术人员根据本发明构思所能够想到的等同技术手段。

Claims (3)

1.一种锡不完全填充碳壳的碳包锡纳米材料的制备方法,包括以下步骤:
第一步:将普通滤纸剪成条状,置于烘箱中,40-60℃干燥6-12小时待用;
第二步:将SnO2粉体放入无水乙醇中、超声分散2-4小时形成SnO2乙醇溶液;
第三步:将第二步中所得的SnO2乙醇溶液逐滴滴到第一步中干燥好的滤纸上,同时在40-60℃干燥6-12小时;
第四步,将第三步中干燥好的载有SnO2的滤纸放入石英舟中,然后将该石英舟放到CVD炉的恒温区,通入Ar气直到排净CVD炉的石英管中的空气,将CVD炉升温到反应温度,再向CVD炉的石英管内通入C2H2气体,保温,保温时间足够使C2H2将SnO2转变为Sn在内,碳壳在外的碳包锡结构;
第五步,停止通C2H2气体,持续通Ar气,CVD炉升温到900℃-1100℃,并保温30-180分钟,然后自然冷却到室温;
第六步,停止通Ar气,打开石英管,取出样品,进行研磨得到锡不完全填充碳壳的碳包锡纳米材料粉末样品。
2.如权利要求1所述的锡不完全填充碳壳的碳包锡纳米材料的制备方法,其特征在于:第二步中所述的SnO2乙醇溶液的初始浓度为0.002mol L-1
3.如权利要求2所述的锡不完全填充碳壳的碳包锡纳米材料的制备方法,其特征在于:第四步中所述的在CVD炉中的反应温度为650-850℃,保温时间为60-180分钟,所通气体流量之比Ar:C2H2=(9~4):1。
CN201610029753.4A 2016-01-18 2016-01-18 一种锡不完全填充碳壳的碳包锡纳米材料的制备方法 Expired - Fee Related CN105655557B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610029753.4A CN105655557B (zh) 2016-01-18 2016-01-18 一种锡不完全填充碳壳的碳包锡纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610029753.4A CN105655557B (zh) 2016-01-18 2016-01-18 一种锡不完全填充碳壳的碳包锡纳米材料的制备方法

Publications (2)

Publication Number Publication Date
CN105655557A CN105655557A (zh) 2016-06-08
CN105655557B true CN105655557B (zh) 2018-07-27

Family

ID=56487674

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610029753.4A Expired - Fee Related CN105655557B (zh) 2016-01-18 2016-01-18 一种锡不完全填充碳壳的碳包锡纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN105655557B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107658462A (zh) * 2017-10-20 2018-02-02 上海纳米技术及应用国家工程研究中心有限公司 碳包覆纳米锡球的制备方法及其产品和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1806966A (zh) * 2006-02-20 2006-07-26 浙江大学 一种合成碳包覆锡纳米线的方法
CN102255079A (zh) * 2011-05-17 2011-11-23 奇瑞汽车股份有限公司 一种锂离子电池负极用锡碳复合材料及其制备方法和锂离子电池
CN102832374A (zh) * 2012-09-18 2012-12-19 奇瑞汽车股份有限公司 锡碳复合材料及其制备方法、锂离子电池
CN104362319A (zh) * 2014-11-21 2015-02-18 东莞市迈科科技有限公司 一种多孔锡碳复合材料的制备方法
CN104425805A (zh) * 2013-09-03 2015-03-18 奇瑞汽车股份有限公司 一种锡碳复合材料及其制备方法、锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1806966A (zh) * 2006-02-20 2006-07-26 浙江大学 一种合成碳包覆锡纳米线的方法
CN102255079A (zh) * 2011-05-17 2011-11-23 奇瑞汽车股份有限公司 一种锂离子电池负极用锡碳复合材料及其制备方法和锂离子电池
CN102832374A (zh) * 2012-09-18 2012-12-19 奇瑞汽车股份有限公司 锡碳复合材料及其制备方法、锂离子电池
CN104425805A (zh) * 2013-09-03 2015-03-18 奇瑞汽车股份有限公司 一种锡碳复合材料及其制备方法、锂离子电池
CN104362319A (zh) * 2014-11-21 2015-02-18 东莞市迈科科技有限公司 一种多孔锡碳复合材料的制备方法

Also Published As

Publication number Publication date
CN105655557A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
CN105406050B (zh) 一种复合硅负极材料、制备方法和用途
Yuan et al. Leaf‐like graphene‐oxide‐wrapped sulfur for high‐performance lithium–sulfur battery
Lou et al. Designed Synthesis of coaxial SnO₂@ carbon hollow nanospheres for highly reversible lithium storage
Qi et al. Suitable thickness of carbon coating layers for silicon anode
CN1038205C (zh) 在可逆真空下的绝热夹套及其应用
CN104752698B (zh) 一种用于锂离子电池负极的硅碳复合材料及其制备方法
CN108461723A (zh) 一种用于锂离子电池的硅基复合材料及其制备方法
CN108493438A (zh) 一种锂离子电池用SiOx基复合负极材料及其制备方法
WO2019019411A1 (zh) 具有疏水包覆层的金属锂-骨架碳复合材料、其制备方法与应用
WO2020220676A1 (zh) 高空气稳定性无机硫化物固体电解质及其制备方法与应用
CN105489854B (zh) 一种高容量负极材料的制备方法
CN108091825A (zh) 一种锂离子电池极片及其电池
CN104393266B (zh) 一种核壳结构的硅-碳复合电极材料及其制备方法
CN108963236A (zh) 硅材料/碳复合材料及其制备方法、碳包覆的硅材料/碳复合材料及其制备方法
Hu et al. Surface layer design of cathode materials based on mechanical stability towards long cycle life for lithium secondary batteries
CN109768246A (zh) 一种用于锂离子电池的纳米硅复合阳极材料及其制备方法
CN107528063A (zh) 一种玉米淀粉多孔碳封装的核壳结构硅/碳材料的制备方法及其应用
CN109473658A (zh) 一种锂离子电池负极材料的制备方法及应用其的锂离子电池
CN107768618A (zh) 硅碳复合材料的制备方法及其作为锂离子电池负极材料的应用
CN107359345A (zh) 一种玉米淀粉多孔碳@石墨的制备方法及其应用
CN107673412A (zh) 一种多孔四氧化三钴纳米材料及其制备方法和应用
CN109950515A (zh) 一种锂离子电池硅基负极材料及其制备方法
CN105655557B (zh) 一种锡不完全填充碳壳的碳包锡纳米材料的制备方法
Liu et al. Multiple roles of titanium carbide in performance boosting: Mediator, anchor and electrocatalyst for polysulfides redox regulation
CN109285998B (zh) 硅/硅铁氧化物/氧化铁/碳的核壳复合结构材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180727

Termination date: 20220118