CN105645399A - 一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法 - Google Patents

一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法 Download PDF

Info

Publication number
CN105645399A
CN105645399A CN201610145769.1A CN201610145769A CN105645399A CN 105645399 A CN105645399 A CN 105645399A CN 201610145769 A CN201610145769 A CN 201610145769A CN 105645399 A CN105645399 A CN 105645399A
Authority
CN
China
Prior art keywords
super capacitor
preparation
copper
dimensional
layer porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610145769.1A
Other languages
English (en)
Other versions
CN105645399B (zh
Inventor
赵进
王喜章
吴强
杨立军
胡征
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANJING UNIVERSITY (SUZHOU) HIGH-TECH INSTITUTE
Original Assignee
NANJING UNIVERSITY (SUZHOU) HIGH-TECH INSTITUTE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANJING UNIVERSITY (SUZHOU) HIGH-TECH INSTITUTE filed Critical NANJING UNIVERSITY (SUZHOU) HIGH-TECH INSTITUTE
Priority to CN201610145769.1A priority Critical patent/CN105645399B/zh
Publication of CN105645399A publication Critical patent/CN105645399A/zh
Application granted granted Critical
Publication of CN105645399B publication Critical patent/CN105645399B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法。将碱式碳酸铜和PMMA均匀混合并于氢气和惰性气体的混合气氛加热热解还原得到铜和PMMA混合物;将铜和PMMA混合物于氢气和惰性气体的混合气氛下加热生长石墨烯得到铜石墨烯,待系统自然降温至室温后取出样品;将所收集的产物以足量的氧化性蚀刻液去除铜模板,过滤、水洗多次后干燥得到产品。本发明所得到的产品具有比表面积大、导电性高、浸润性优异和微孔-介孔-大孔相互联通的分级自相似开放性孔结构等特点,作为超级电容器电极材料,其在水系和离子液体电解液中均展现出高能量密度、超高功率密度以及优异的循环稳定性。

Description

一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法
技术领域:
本发明涉及一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法。
背景技术:
双电层超级电容(EDLCs)也称为超级电容器。与锂离子电池相比,EDLCs具有更高的功率密度和更长的循环稳定性,因而得到了人们广泛的关注和研究(Science2015,347,41)。电极材料结构和理化性质的调控是提升双电层超级电容器(EDLC)性能的关键。一般来讲,一个理想的超级电容器电极材料应该具备:(i)高的比表面积提供足够的电荷存储空间;(ii)合适的介孔-微孔-大孔分布来促进倍率性能和比电容;(iii)高的导电性以保证高功率密度和高倍率性能好;(iV)好的材料浸润性以增加离子可接触比表面积和促进离子扩散。sp2碳材料具有导电性好、形貌结构丰富以及容易通过杂原子掺杂和表面官能化来调节的电子结构和表面性质等特点,因而成为目前最常用的EDLCs电极材料(Adv.Mater.2011,23,4828;Adv.EnergyMater.2014,4,1300816)。
石墨烯作为近十年来最为重要的碳材料具有理论上高的导电性、比表面积和比电容,因而被广泛用作EDLCs电极材料研究。然而,石墨烯容易团聚和堆垛的缺点极大的限制了电解液离子在其中的快速传输和其离子可接触比表面积,这严重降低了其超级电容器性能。构建三维石墨烯是一条有效的克服这一缺点的途径(Chem.Soc.Rev.2014,43,3303;EnergyEnviron.Sci.2014,7,1850)。以化学还原氧化石墨烯构建的三维石墨烯通常导电性较低(Adv.EnergyMater.2015,1500786;Adv.Mater.2014,26,615),金属框架上生长的石墨烯具有好的导电性,但是其具有比表面积低、主要由大孔构成和疏水的缺点(NatureMaterials2011,10,424;)。因此,制备出兼具大比表面积、高导电性和好的浸润性的三维石墨烯依然是一个挑战。
发明内容:
本发明的目的是为了克服现有技术中的不足而提供一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法,本发明在去除铜模板的同时能够在石墨烯表面引入极性含氧官能团,制得了具有大比表面积、高导电性、优异浸润性和微孔-介孔-大孔相互联通的分级自相似性的开放性孔结构的三维石墨烯产品。
一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法,其特征在于,包括以下步骤:
(1)取碱式碳酸铜和PMMA丙酮溶液均匀混合,烘干后得到碱式碳酸铜和PMMA混合物;
(2)将步骤(1)所述的碱式碳酸铜和PMMA混合物于氢气和惰性气体混合气氛下加热热解还原得到铜和PMMA混合物;
(3)将步骤(2)所述的铜和PMMA混合物在氢气和惰性气体的混合气氛下以500-1000℃/min的速率迅速升温至生长温度进行石墨烯生长反应,反应结束后,自然降温至室温后取出铜石墨烯样品;
(4)将步骤(3)所述的铜石墨烯样品以氧化性蚀刻液去除铜模板,过滤、水洗多次后干燥得到产品。
步骤(1)中所述碱式碳酸铜和PMMA的质量比为10-5:1。
步骤(2)中所述的加热热解还原的温度为220-300℃;加热热解还原的时间为2-5小时;所述惰性气体为氩气、氮气、氦气中的一种或多种;所述氢气和惰性气体混合气的流量为10-200sccm;其中氢气占混合气的体积比为5%-50%。
步骤(3)中所述的生长温度为700-1050℃;石墨烯生长反应的时间为30-120min。
步骤(4)中所述的氧化性蚀刻液为水、盐酸、双氧水按照体积比为4:3:1混合的混合液,或者其他任意能够在溶解铜的同时在碳材料表面引入极性含氧官能团的蚀刻液。
本发明提供的一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法,与现有技术相比的有益效果如下:
(1)本发明得到的三维石墨烯兼具了高导电性(导电性高达828S/m)和优异浸润性(通接触角测试:水和离子液体液滴在材料表面90s内均被完全吸收)。
(2)本发明得到的三维石墨烯还具备大比表面积、微孔-介孔-大孔相互联通和自相似开放性孔结构特征。
(3)本发明得到的三维石墨烯材料作为超级电容器电极材料在水系和离子液体电解液中均展现出高能量密度、超高功率密度以及优异的循环稳定性。
附图说明:
图1:三维石墨烯不同放大倍数下的扫描电镜图。
图2:三维石墨烯在6molL-1KOH电解液中的超级电容器性能。a)不同电流密度下的比电容。b)Ragone图。c)100Ag-1电流密度下的循环稳定性。
图3:三维石墨烯在离子液体EMIMBF4电解液中的超级电容器性能。a)不同电流密度下的比电容。b)Ragone图。c)100Ag-1电流密度下的循环稳定性。
具体实施方式:
实施例1:
步骤(1):取20g碱式碳酸铜和2gPMMA丙酮溶液均匀混合,于80℃下烘干后得到碱式碳酸铜和PMMA混合物;
步骤(2):将步骤(1)所述的碱式碳酸铜和PMMA混合物于流量为10sccm的H2/Ar混合气下(H2占混合气体积的5%),220℃加热热解还原2h得到铜和PMMA混合物;
步骤(3):将步骤(2)所述的铜和PMMA混合物在流量为10sccm的H2/Ar混合气下(H2占混合气体积的5%),以500℃/min的速率迅速升温至700℃进行石墨烯生长反应并在该温度下保持30min,反应结束后,自然降温至室温后取出铜石墨烯样品;
步骤(4):将步骤(3)所述的铜石墨烯样品以体积比为4:3:1的H2O-HCl-H2O2混合液去除铜模板,过滤、水洗多次后干燥得到产品。
实施例2:
步骤(1):取20g碱式碳酸铜和3gPMMA丙酮溶液均匀混合,于80℃下烘干后得到碱式碳酸铜和PMMA混合物;
步骤(2):将步骤(1)所述的碱式碳酸铜和PMMA混合物于流量为100sccm的H2/Ar混合气下(H2占混合气体积的50%),250℃加热热解还原3h得到铜和PMMA混合物;
步骤(3):将步骤(2)所述的铜和PMMA混合物在流量为100sccm的H2/Ar混合气下(H2占混合气体积的50%),以1000℃/min的速率迅速升温至1000℃进行石墨烯生长反应并在该温度下保持60min,反应结束后,自然降温至室温后取出铜石墨烯样品;
步骤(4):将步骤(3)所述的铜石墨烯样品以体积比为4:3:1的H2O-HCl-H2O2混合液去除铜模板,过滤、水洗多次后干燥得到产品。
实施例3:
步骤(1):取20g碱式碳酸铜和4gPMMA丙酮溶液均匀混合,于80℃下烘干后得到碱式碳酸铜和PMMA混合物;
步骤(2):将步骤(1)所述的碱式碳酸铜和PMMA混合物于流量为200sccm的H2/Ar混合气下(H2占混合气体积的50%),300℃加热热解还原5h得到铜和PMMA混合物;
步骤(3):将步骤(2)所述的铜和PMMA混合物在流量为200sccm的H2/Ar混合气下(H2占混合气体积的50%),以900℃/min的速率迅速升温至900℃进行石墨烯生长反应并在该温度下保持5h,反应结束后,自然降温至室温后取出铜石墨烯样品;
步骤(4):将步骤(3)所述的铜石墨烯样品以体积比为4:3:1的H2O-HCl-H2O2混合液去除铜模板,过滤、水洗多次后干燥得到产品。
以实施例2中得到的三维石墨烯作为超级电容器电极材料,在6molL-1KOH和离子液体EMIMBF4电解液中分别进行两电极超级电容器性能测试。测试结果如下:
1.6molL-1KOH电解液下的超级电容器性能:1Ag-1电流密度下的比电容达231Fg-1,电流密度增加至2000Ag-1,比电容依然保持129Fg-1,展现出超高的倍率性能;相应EDLC展现出高能量密度(8.0Whkg-1)、超高的倍率性能和功率密度(199.7kWkg-1);100Ag-1高电流下20000个循环后,其电容保持率约为99%,展现出优异的循环稳定性(参见附图2)。
2.离子液体EMIMBF4中,3DG在1Ag-1电流密度下的比电容达226Fg-1,电流密度增加至200Ag-1,比电容依然保持135Fg-1,展现出优异的倍率性能;相应EDLC展现出了接近锂离子电池水平的高能量密度(125.5Whkg-1)和超高功率密度(152.9kWkg-1);100Ag-1高电流下20000个循环后,其电容保持率约为91%,展现出优异的循环稳定性(参见附图3)。
本发明的具体实施方式中未涉及的说明属于本领域公知技术,可参考公知技术加以实施。
本发明经反复试验验证,取得了满意的试用效果。
本发明的实施方式不限于上述实施例,在不脱离本发明宗旨的前提下做出的各种变化均属于本发明的保护范围之内。

Claims (9)

1.一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法,其特征在于:包括以下步骤:
(1)取碱式碳酸铜和PMMA丙酮溶液均匀混合,烘干后得到碱式碳酸铜和PMMA混合物;
(2)将步骤(1)所述的碱式碳酸铜和PMMA混合物于氢气和惰性气体混合气氛下加热热解还原得到铜和PMMA混合物;
(3)将步骤(2)所述的铜和PMMA混合物在氢气和惰性气体的混合气氛下以500-1000℃/min的速率迅速升温至生长温度进行石墨烯生长反应,反应结束后,自然降温至室温后取出铜石墨烯样品;
(4)将步骤(3)所述的铜石墨烯样品以氧化性蚀刻液去除铜模板,过滤、水洗多次后干燥得到产品。
2.根据权利要求1所述的一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法,其特征在于:步骤(1)中所述碱式碳酸铜和PMMA的质量比为10-5:1。
3.根据权利要求1所述的一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法,其特征在于:步骤(2)中所述的加热热解还原的温度为220-300℃。
4.根据权利要求1所述的一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法,其特征在于:步骤(2)中所述的加热热解还原的时间为2-5小时。
5.根据权利要求1所述的一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法,其特征在于:步骤(2)中所述的惰性气体为氩气、氮气、氦气中的一种或多种。
6.根据权利要求1所述的一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法,其特征在于:步骤(2)中所述氢气和惰性气体混合气的流量为10-200sccm;所述氢气占混合气的体积比为5%-50%。
7.根据权利要求1所述的一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法,其特征在于:步骤(3)中所述的生长温度为700-1050℃。
8.根据权利要求1所述的一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法,其特征在于:步骤(3)中所述的石墨烯生长反应的时间为30-120min。
9.根据权利要求1所述的一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法,其特征在于:步骤(4)中所述的氧化性蚀刻液为水、盐酸、双氧水按照体积比为4:3:1混合的混合液,或者其他任意能够在溶解铜的同时在碳材料表面引入极性含氧官能团的蚀刻液。
CN201610145769.1A 2016-03-15 2016-03-15 一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法 Expired - Fee Related CN105645399B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610145769.1A CN105645399B (zh) 2016-03-15 2016-03-15 一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610145769.1A CN105645399B (zh) 2016-03-15 2016-03-15 一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法

Publications (2)

Publication Number Publication Date
CN105645399A true CN105645399A (zh) 2016-06-08
CN105645399B CN105645399B (zh) 2017-12-12

Family

ID=56493581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610145769.1A Expired - Fee Related CN105645399B (zh) 2016-03-15 2016-03-15 一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法

Country Status (1)

Country Link
CN (1) CN105645399B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107010615A (zh) * 2017-03-27 2017-08-04 中南大学 一种三维石墨烯的制备方法及其应用
CN107867680A (zh) * 2017-10-31 2018-04-03 浙江大学 基于连续成型模板法的单层自支撑三维石墨烯的制备方法及双氧水传感应用
CN108597908A (zh) * 2018-06-22 2018-09-28 广东工业大学 一种三维多孔石墨烯-二硫化钒复合电极材料、其制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180243A (zh) * 2010-12-29 2013-06-26 海洋王照明科技股份有限公司 多孔石墨烯材料及其制备方法和作为电极材料的应用
CN103787320A (zh) * 2014-01-17 2014-05-14 西北师范大学 一种类石墨烯片层结构的碳纳米片材料的制备和应用
CN104701546A (zh) * 2013-12-06 2015-06-10 北京化工大学 一种多孔石墨烯纳米片、制备方法及其作为电极材料的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180243A (zh) * 2010-12-29 2013-06-26 海洋王照明科技股份有限公司 多孔石墨烯材料及其制备方法和作为电极材料的应用
CN104701546A (zh) * 2013-12-06 2015-06-10 北京化工大学 一种多孔石墨烯纳米片、制备方法及其作为电极材料的应用
CN103787320A (zh) * 2014-01-17 2014-05-14 西北师范大学 一种类石墨烯片层结构的碳纳米片材料的制备和应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107010615A (zh) * 2017-03-27 2017-08-04 中南大学 一种三维石墨烯的制备方法及其应用
CN107010615B (zh) * 2017-03-27 2019-04-30 中南大学 一种三维石墨烯的制备方法及其应用
CN107867680A (zh) * 2017-10-31 2018-04-03 浙江大学 基于连续成型模板法的单层自支撑三维石墨烯的制备方法及双氧水传感应用
CN108597908A (zh) * 2018-06-22 2018-09-28 广东工业大学 一种三维多孔石墨烯-二硫化钒复合电极材料、其制备方法及其应用
CN108597908B (zh) * 2018-06-22 2020-04-28 广东工业大学 一种三维多孔石墨烯-二硫化钒复合电极材料、其制备方法及其应用

Also Published As

Publication number Publication date
CN105645399B (zh) 2017-12-12

Similar Documents

Publication Publication Date Title
Wang et al. Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives
Li et al. High-power and long-life lithium-ion capacitors constructed from N-doped hierarchical carbon nanolayer cathode and mesoporous graphene anode
Liu et al. Carbon cloth as an advanced electrode material for supercapacitors: progress and challenges
Shang et al. N, P, and S co-doped 3D porous carbon-architectured cathode for high-performance Zn-ion hybrid capacitors
Liu et al. Porous V2O5 nanorods/reduced graphene oxide composites for high performance symmetric supercapacitors
CN103903879B (zh) 一种多孔石墨烯/MnO2复合薄膜及其制备方法和用途
Acharya et al. Leaf-like integrated hierarchical NiCo2O4 nanorods@ Ni-Co-LDH nanosheets electrodes for high-rate asymmetric supercapacitors
CN108232151B (zh) 一种高容量复合负极材料、制备方法及包含其的锂离子电池
CN103050704B (zh) 一种多孔导电添加剂及其制备方法、锂离子电池
Xiao et al. Balancing crystallinity and specific surface area of metal-organic framework derived nickel hydroxide for high-performance supercapacitor
Jiang et al. Fabrication of a vanadium nitride/N-doped carbon hollow nanosphere composite as an efficient electrode material for asymmetric supercapacitors
CN110379646B (zh) 一种基于二硒化钼/木炭的非对称超级电容器的制备方法
KR101799639B1 (ko) 환원 그래핀산화물 복합체의 제조방법과 이에 의해 제조된 환원 그래핀산화물 복합체 및 이를 포함하는 슈퍼커패시터
Xi et al. High-rate supercapacitor based on 3D hierarchical N-doped porous carbon derived from sustainable spongy cornstalk pith
CN108922790A (zh) 一种钠离子嵌入的二氧化锰/氮掺杂多孔碳复合材料的制备方法和应用
CN109411736B (zh) 一种磷化钴/石墨烯/n掺杂碳复合材料及其制备方法
Chen et al. Highly monodisperse dumbbell-like yolk-shell manganese monoxide/carbon microspheres for lithium storage and their lithiation evolution
Chen et al. A Novel Strategy of Multi‐element Nanocomposite Synthesis for High Performance ZnO‐CoSe2 Supercapacitor Material Development
CN105047890A (zh) 一种三维多孔石墨烯复合材料锂离子电池负极材料及其制备方法
CN105645399A (zh) 一种高性能超级电容器用分级自相似性三维寡层多孔石墨烯的制备方法
Du et al. Pseudocapacitance of nanoporous Ni@ NiO nanoparticles on Ni foam substrate: Influence of the annealing temperature
CN111564610A (zh) 一种碳纳米管修饰的碳包覆磷化亚铜-铜复合颗粒及其制备方法和应用
CN109560277B (zh) 一种纳米线状硒化锰/碳复合材料的制备方法
CN108598403B (zh) 锂离子电池二元过渡金属氧化物负极材料的形成方法
Wu et al. Ti3C2/fluorine-doped carbon as anode material for high performance potassium-ion batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 215123 Suzhou Industrial Park, Jiangsu Road, No. 150

Applicant after: Nanjing University (Suzhou) High-tech Institute

Address before: Qixia Xianlin Avenue District of Nanjing City, Jiangsu province 210093 No. 163 School of chemistry and chemical engineering Nanjing University

Applicant before: Nanjing University (Suzhou) High-tech Institute

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171212

Termination date: 20190315